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Consistency of the Baryon-Multimeson Amplitudes for LargeN, QCD Feynman Diagrams
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We study the pion-baryon scattering process- B — (n — 1)7 + B in a QCD theory with a large
number (V.) of colors. It is known that this scattering amplitude decreases Wijttike N!~"/2, and
that its individual tree diagrams grow liké’/2. The only way these two can be consistent isrfor 1
powers ofN. to be canceled when the Feynman diagrams are summed. We prove this to be true in
tree order for any:. [S0031-9007(97)03541-2]

PACS numbers: 11.15.Pg, 12.38.Aw, 12.38.Cy, 13.75.Gx

QCD with a large numberN,) of colors [1-3] is a By demanding these cancellations to take place:fer
useful tool and a beautiful theory. It allows strong in- 2 andn = 3, one obtains a set of conditions whose solution
teractions to be dealt with, thus complementing the unieads to interesting relations satisfied by physical baryons
derstanding gained from lattice QCD calculations. In[4]. These are constraints consistent with quark-model
the infinite-color limit, special symmetry and simplify- results, but now obtained without the explicit assumptions
ing dynamics often emerge, thus allowing a perturbativeof the model. In particular, it demands the presence of a
expansion inl /N, with impressive phenomenological re- tower of baryon resonances with equal spand isospir,
sults. Examples include predictions on baryon magneticanging in values fron% to %NC (assumingV, to be odd).
moments and mass splittings [4,5], latye-improved It has a rotational mass spectrum with a moment of intertia
heavy baryon and chiral Lagrangian expansions [6], angrroportional taV.. The presence of the baryon resonances
nucleon-nucleon potentials [7]. The only cloudy issueis instrumental in effecting the cancellations needed for the
had been related to the consistency of the coupling beconsistency. Similar results were also obtained from the
tween mesons and baryons, an issue which has been catrong-coupling theory [9] and the Skyrme model [10].
siderably clarified in recent years, thus lending credence Alternatively, one can derive the same physical relations
to largeN,. phenomenological applications [4,5,8]. from an explicit quark picture at larg¥, [4], but then

At first sight the physical attributes of these lalge- one must demonstrate these cancellations to take place for
baryons [2,3] look very different from the real ones, asthe sake of consistency. This has been carried out in the
well as the large¥. mesons. They contaitv, quarks, literature forn = 2 andn = 3 by direct calculations [4].
whose various spin and isospin alignments produce a These cancellations are progressively more difficult to
large number of baryon resonances, all with masseachieve for largem becausen — 1 powers of N. must
proportional toN.. Since the emission of a pion may be canceled. To complicate the matter further, vertices
flip the spin and isospin of a quark, these resonances afer pion emissions are matrices coupling together all
coupled together into a multichannel problem. Moreoverthe baryon resonances. For these reasons it is not very
it is known that then-meson amplitude is proportional hopeful to be able to demonstrate the cancellation for
to Nj*”/z, in both the zero-baryon and the one-baryonlargen by straight forward computation in the usual way.
sectors [2,3]. Thus all couplings between mesons arélowever, by using a resummation technique recently
weak, decreasing as some powers Igh/N,., but the developed [11,12], such cancellations can be established
Yukawa coupling of a pion to a baryon is strong andfor tree diagramsvery easily, and it is the purpose of this
proportional to/N.. This again marks the difference Letter to discuss how this is done.
between large¥. mesons and baryons. The cancellation mechanism leading to the consistency

The strength of this Yukawa coupling produces ais actually a rather general phenomenon, not confined to
number of serious problems. It implies that meson largeN. QCD. It stems from a destructive interference
tree diagram in the one-baryon sector is proportional t®f the multimeson amplitude, valid even when the mesons
N;’/Z, because this diagram containsYukawa coupling are off shell. It is this destructive interference that sup-
constants and because all baryon propagators are pfesses high powers &f., and it is the same destructive
O(1). Not only does it generate undesirably large loopinterference in high energy elastic scattering of quarks that
corrections, it utterly disagrees with the rule thatan suppresses high powers ofsrto enable the eikonal and
meson amplitude should decrease wih like Ncl‘”/z, the Regge pictures to be applied, and unitarity to be re-
for any n and for any number of loops [2,3]. Unless stored [12,13].

n — 1 powers of N. are canceled in the sum of the It should be noted, however, that the argument pre-
tree diagrams, the larg€; rule in the one-baryon sector sented later is not sufficient to account for all the necessary
will not be self-consistent even in the tree approximation.cancellations in loop diagrams, so the consistency for loop
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amplitudes remains an open and challenging question. Thamaller number. Denoting a cut diagram by a subscript

cancellation for tree amplitudes may be viewed as a dee, and indicating a cut by a vertical bar, the cut diagram

structive interference between the external pions, broughor Fig. 1(a) is [231465]. = [231]|4|65], as shown in

on by their Bose-Einstein statistics. In loop amplitudesFig. 1(b).

internal pions also participate in the interference but even Let p be the final momentum of the baryon agg

so a sufficient amount of cancellation will not be attained.be the outgoing meson momenta. Usihg— Z}=1 qo,

From the known examples of one-loop [3,4] and two-loopto denote the sums of meson momenta for the diagram

[14] cancellations in the one-pion sector, one sees thdir o, ---o,], the momentum of théth baryon is then

counterterms coming from renormalization are also necess + k;. The assumption of the tree trunk carrying large

sary to effect the desirable cancellations. This somewhainergy is used to approximate tith baryon propagator

complicates the physics and alters the combinatoric nature M+ v(p + k) 1 1

of the problem, which is why we are yet unable to extend : 5 s = — (1 + %) -

our result to loop diagrams. (p + ki)? = Mi +ie 2 ki —AM; +ie
Non-Abelian cut diagrams-The resummation men- (1)

tioned above replaces the sum of Feynman tree diagramighere AM; = M; — M is the mass difference between
[Fig. 1(a)] with the sum ofnon-Abelian cut diagrams the baryon resonance and the nucleon. Implicit in this

[Fig. 1(b)] [11,12]. The latter are organized in such ajs the assumption that whil&/ and M; are O(N,), the
way that the interferences of Bose-Einstein amplitudes argifference AM; is at mostO(1) as N. — % in order to

automatically built in. With that tool the proof of the con- keep all the baryons at a constant velocity.

sistency criterion follows almost immediately. . With this approximation, the Feynman amplitude for
The resummation theorem applies to any tree amplitudgs, o, - - - o, ] is given by

whose main trunk carries a large energy, either in the

form of a large mass as in the present case of I&ge Aloioy--o,] = 1 (1 + YOa[oi10s- - 04]
or a large kinetic energy as in the case of high-energy 2
quark-quark elastic scattering. The energies and momenta X Vloioa-+- o], 2)

of the emitted bosons are comparatively small, but the L
can be off shell to allow this tree amplitude to be sewe here Vigiop- 0] =V Vo, -+ Vy, is simply the
up to others to form a loop diagram. In this way theproduct of .aII 'the verticesV;, anod we have agsumed
resummation theorem and the resulting non-Abelian cuf@t the projection operata(1 + y ) commutes with the
diagrams are applicable in the presence of loops as well. VErtex operators/; attached to theth meson line. For

Tree diagrams will be labeled by the order their mesorf€ moment we will also assume that al/; = 0, but
lines appear along the baryon trunk. The tree diagram ithis restriction ywll be'llfted Iatgr. The spacetime part of
Fig. 1(a), for example, will be denoted bg31465). We (e amplitude in (2) is then given bylorio o] =
will construct from each Feynman tree diagrannan- —2mid Xy i) [Ty (ki + i€)”". _
Abelian cut diagram[12] by placing cuts on some of 'On thg othgr hand, the amplitude fonan-Abelian cut
its propagators as follows. A cut is put after a mesorfiagramis defined as follows:

line iff there is no meson to its right designated by a 1
A[O-IO-Z e a-n]c = E (1 + 70)0[0'1 gy a-n]c

9z q3 q a4 9s qs X V[0-10-2 e O-II]C > (3)
where a[o0, -+ 0,]. is obtained froma[o0s--- 0]
! ! ! ! ! ! by replacing the Feynman propagatt? + ie)~! of

a cut line by the Cutkosky cut propagater2qis(k?).
The vertex part Voo, --0,]. is obtained from
(a) V{0, -+ o,] by replacing the product df;’s straddling

uncut linesby (multiple) commutators. For example,
V[231465]. = V[231|4|65] = [V2,[V3, V111V Ve, Vs].

) 3 1 4 6 5 The resummation formula (called tmeultiple commu-

: : tator formulain [11]) asserts that the sum of the Feynman

amplitudes is equal to the sum of the non-Abelian cut am-

plitudes,

ZA[O‘[O’g"'O’n]ZZA[U'IU'Z"'Un]c» (4)

p pt+k ptky ptks pt+ky ptks

(b)

FIG. 1. (a) A Feynman tree diagram for baryon-meson scatwhen the sum is taken over all the! permutations
tering; (b) the non-Abelian cut diagram corresponding to (a). o = [o102---0,] of [12---n].
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In the special case when the verticEs are Abelian |<— 27 —>|
so they mutually commute, the only surviving term is the
one without any commutator appearing, which is given
by the cut diagram with every baryon propagator cut.
The spacetime pa[123---n]. is now a product of6
functions ing?, showing neatly a very peaked interference

pattern in all the variableg. Away from ¢! = 0, the (a)
interference is purely destructive.
In case of non-Abelian vertices, the different terms on |<—— 21 —>

the right-hand side of (4) carry different internal quan-

tum numbers, and their spacetime parts exhibit varying

degrees of destructive interference according to the num-

ber of § functions present. However, since the number of

6 functions plus the number of commutators is the same (b)

for every term, what is lacking in spacetime destructive

interference is made up by the “destructive interference” FIG. 2. Young tableaux for (a) S@), and (b) SW2);.

in the internal quantum numbers, in the following sense.

ImagineV; to be the generators of a Lie group in a low- a totally antisymmetric wave function, the spin and

dimensional representation. Then product¥ofvill con-  isospin tableaux must be identical, which implies= J.

tain progressively higher-dimensional representations anhcidentally, if there are more than two flavors, then only

hence larger quantum numbers, but commutators of themhe light-quark spins match this way. Adding to that

will simply behave like a single/;, creating only small the spins of the strange and other quarks, the allowed

quantum numbers. In this sense commutators represebaryon spin now takes on many values, thus forming a

an “interference” in which large quantum numbers tend taconsiderably larger multiplet for a given

be wiped out. We shall see that it is this kind of interfer- Returning to the case of two flavors, the double boxes

ence that suppresses the high powerd/of appearing in a column of the tableau are singlets of quark
These formulas, suitably modified, are applicable everpairs inJ or I, so they are killed by the spin operator

when baryon mass degeneracy is lifted, provided we inseflr'} and the isospin operatdr“}. However,{o'7%} #

into the tree new vertice¥’; = AM carrying away no {s'}{r%}, so these singlets are not killed Hyir%}.

energy. To see that, leAM be the diagonal operator Since there ar@(N,.) columns in a tableau, the baryon

Wh_ose matrix eIe_ments are the mass differend@$;.  matrix elementV,) is of the orderN;%NC = JN,, as it
Using the expansion should for a Yukawa coupling constant. For simplicity,

1 o0
0 _ ; Z( Similarly, the matrix element of a two-body operator,
ki — AM + ie k e pm\k e {oir}{a’7"}), is of order N2, but their commutator
we see that the new vertex necessary is simfly= AM. is only of orderN.. This is so becausg{I'|},{I'>}] =
Proof of the consistency criterioa-Let us first {[I'1, 2]}, and because

)’" ©) the notation©® ) = (B, ;/|O|B; ;) has been used.

review some standard facts in the one-baryon sector 1

[5] The quark-pion interaction is proportional to [o#7%, 0" 7P] = 3[0”30”][7&»7[3]
2¢7“75T d.7a, IN which the coefficientv_ > is

fixed (see Iater) by the requirement of the meson- baryon + l[gn’gv] + [7%, 78], (6)

Yukawa constant being of ordefN.. In the rest frame 2

of the baryon, the large componert of the Dirac is a linear combination o&*77, thus making its matrix
spinor ¢ dominates, so this interaction is reduced toelements orderN.. This means that[V;,V;]) is of

an expression proportional tw‘i{a'ra}a 7., Where order(N*IE)zN 1. Similarly, each time an additional

{I'} = ¢tI'¢p. This in turn determines the pion-baryon commutator appears, the matrix element is reduced by

vertex to be proportional t&; = N z{gtTa} with “a” an additional power ofV . In particular, the matrix

labeling the isospin of the pion it couples to. element of am tuple commutator is of orde?lcf1 "2 In
The largedV, rules forn-meson amplitude in the one- these expressions;’ and 70 are, respectlvely the unit

baryon sector were derived from the quark picture usingnatrices in the spin and isospin spaces.

the Hartree approximation [2]. In this approximation, We proceed now to prove the consistency criterion

the wave function of a baryon stai#;;) with spin  for the pion-baryon scattering amplituége + B — (n —

J and isospin/ can be represented by an @Y and 1)7 + B. We shall first assume alhM; = 0 and all

an SU2); Young tableau, as shown in Figs. 2(a) andpions to be coupled directly to the baryon. We will also

2(b). For this color-singlet and-state baryon to have take the pion mass to be nonzero.
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