
VOLUME 79, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 28 JULY 1997
Consistency of the Baryon-Multimeson Amplitudes for Large-Nc QCD Feynman Diagrams
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We study the pion-baryon scattering processp 1 B ! sn 2 1dp 1 B in a QCD theory with a large
number (Nc) of colors. It is known that this scattering amplitude decreases withNc like N12ny2

c , and
that its individual tree diagrams grow likeNny2

c . The only way these two can be consistent is forn 2 1
powers ofNc to be canceled when the Feynman diagrams are summed. We prove this to be true in
tree order for anyn. [S0031-9007(97)03541-2]

PACS numbers: 11.15.Pg, 12.38.Aw, 12.38.Cy, 13.75.Gx
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QCD with a large number (Nc) of colors [1–3] is a
useful tool and a beautiful theory. It allows strong i
teractions to be dealt with, thus complementing the
derstanding gained from lattice QCD calculations.
the infinite-color limit, special symmetry and simplify
ing dynamics often emerge, thus allowing a perturbat
expansion in1yNc with impressive phenomenological re
sults. Examples include predictions on baryon magn
moments and mass splittings [4,5], large-Nc-improved
heavy baryon and chiral Lagrangian expansions [6],
nucleon-nucleon potentials [7]. The only cloudy iss
had been related to the consistency of the coupling
tween mesons and baryons, an issue which has been
siderably clarified in recent years, thus lending crede
to large-Nc phenomenological applications [4,5,8].

At first sight the physical attributes of these large-Nc

baryons [2,3] look very different from the real ones,
well as the large-Nc mesons. They containNc quarks,
whose various spin and isospin alignments produc
large number of baryon resonances, all with mas
proportional toNc. Since the emission of a pion ma
flip the spin and isospin of a quark, these resonances
coupled together into a multichannel problem. Moreov
it is known that then-meson amplitude is proportiona
to N12ny2

c , in both the zero-baryon and the one-bary
sectors [2,3]. Thus all couplings between mesons
weak, decreasing as some powers of1y

p
Nc, but the

Yukawa coupling of a pion to a baryon is strong a
proportional to

p
Nc. This again marks the differenc

between large-Nc mesons and baryons.
The strength of this Yukawa coupling produces

number of serious problems. It implies that ann-meson
tree diagram in the one-baryon sector is proportiona
Nny2

c , because this diagram containsn Yukawa coupling
constants and because all baryon propagators are
Os1d. Not only does it generate undesirably large lo
corrections, it utterly disagrees with the rule that ann-
meson amplitude should decrease withNc like N12ny2

c ,
for any n and for any number of loops [2,3]. Unles
n 2 1 powers ofNc are canceled in the sum of then!
tree diagrams, the large-Nc rule in the one-baryon secto
will not be self-consistent even in the tree approximatio
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By demanding these cancellations to take place forn ­
2 andn ­ 3, one obtains a set of conditions whose solutio
leads to interesting relations satisfied by physical baryo
[4]. These are constraints consistent with quark-mod
results, but now obtained without the explicit assumptio
of the model. In particular, it demands the presence o
tower of baryon resonances with equal spinJ and isospinI,
ranging in values from1

2 to 1
2 Nc (assumingNc to be odd).

It has a rotational mass spectrum with a moment of inter
proportional toNc. The presence of the baryon resonanc
is instrumental in effecting the cancellations needed for t
consistency. Similar results were also obtained from t
strong-coupling theory [9] and the Skyrme model [10].

Alternatively, one can derive the same physical relatio
from an explicit quark picture at largeNc [4], but then
one must demonstrate these cancellations to take place
the sake of consistency. This has been carried out in
literature forn ­ 2 andn ­ 3 by direct calculations [4].

These cancellations are progressively more difficult
achieve for largern becausen 2 1 powers ofNc must
be canceled. To complicate the matter further, vertic
for pion emissions are matrices coupling together
the baryon resonances. For these reasons it is not v
hopeful to be able to demonstrate the cancellation
largen by straight forward computation in the usual way
However, by using a resummation technique recen
developed [11,12], such cancellations can be establis
for tree diagramsvery easily, and it is the purpose of thi
Letter to discuss how this is done.

The cancellation mechanism leading to the consisten
is actually a rather general phenomenon, not confined
large-Nc QCD. It stems from a destructive interferenc
of the multimeson amplitude, valid even when the meso
are off shell. It is this destructive interference that su
presses high powers ofNc, and it is the same destructive
interference in high energy elastic scattering of quarks t
suppresses high powers of lns to enable the eikonal and
the Regge pictures to be applied, and unitarity to be
stored [12,13].

It should be noted, however, that the argument p
sented later is not sufficient to account for all the necess
cancellations in loop diagrams, so the consistency for lo
© 1997 The American Physical Society 597
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amplitudes remains an open and challenging question.
cancellation for tree amplitudes may be viewed as a
structive interference between the external pions, brou
on by their Bose-Einstein statistics. In loop amplitud
internal pions also participate in the interference but ev
so a sufficient amount of cancellation will not be attaine
From the known examples of one-loop [3,4] and two-lo
[14] cancellations in the one-pion sector, one sees
counterterms coming from renormalization are also nec
sary to effect the desirable cancellations. This somew
complicates the physics and alters the combinatoric na
of the problem, which is why we are yet unable to exte
our result to loop diagrams.

Non-Abelian cut diagrams.—The resummation men
tioned above replaces the sum of Feynman tree diagr
[Fig. 1(a)] with the sum ofnon-Abelian cut diagrams
[Fig. 1(b)] [11,12]. The latter are organized in such
way that the interferences of Bose-Einstein amplitudes
automatically built in. With that tool the proof of the con
sistency criterion follows almost immediately.

The resummation theorem applies to any tree amplitu
whose main trunk carries a large energy, either in
form of a large mass as in the present case of largeNc,
or a large kinetic energy as in the case of high-ene
quark-quark elastic scattering. The energies and mom
of the emitted bosons are comparatively small, but th
can be off shell to allow this tree amplitude to be sew
up to others to form a loop diagram. In this way th
resummation theorem and the resulting non-Abelian
diagrams are applicable in the presence of loops as we

Tree diagrams will be labeled by the order their mes
lines appear along the baryon trunk. The tree diagram
Fig. 1(a), for example, will be denoted byf231465g. We
will construct from each Feynman tree diagram anon-
Abelian cut diagram[12] by placing cuts on some o
its propagators as follows. A cut is put after a mes
line iff there is no meson to its right designated by

FIG. 1. (a) A Feynman tree diagram for baryon-meson sc
tering; (b) the non-Abelian cut diagram corresponding to (a)
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smaller number. Denoting a cut diagram by a subscri
c, and indicating a cut by a vertical bar, the cut diagram
for Fig. 1(a) is f231465gc ­ f231j4j65g, as shown in
Fig. 1(b).

Let p be the final momentum of the baryon andqi

be the outgoing meson momenta. Usingki ­
Pi

j­1 qsj

to denote the sums of meson momenta for the diagra
fs1s2 · · · sng, the momentum of theith baryon is then
p 1 ki . The assumption of the tree trunk carrying large
energy is used to approximate theith baryon propagator

Mi 1 gsp 1 kid
sp 1 kid2 2 M2

i 1 ie
.

1
2

s1 1 g0d
1

k0
i 2 DMi 1 ie

,

(1)

where DMi ­ Mi 2 M is the mass difference between
the baryon resonance and the nucleon. Implicit in th
is the assumption that whileM and Mi are OsNcd, the
differenceDMi is at mostOs1d as Nc ! ` in order to
keep all the baryons at a constant velocity.

With this approximation, the Feynman amplitude fo
fs1s2 · · · sng is given by

Afs1s2 · · · sng ­
1
2

s1 1 g0dafs1s2 · · · sng

3 V fs1s2 · · · sng , (2)

where V fs1s2 · · · sng ­ Vs1 Vs2 · · · Vsn is simply the
product of all the verticesVi, and we have assumed
that the projection operator12 s1 1 g0d commutes with the
vertex operatorsVi attached to theith meson line. For
the moment we will also assume that allDMi ­ 0, but
this restriction will be lifted later. The spacetime part o
the amplitude in (2) is then given byafs1s2 · · · sng ­
22pids

Pn
i­1 q0

i d
Qn21

i­1 sk0
i 1 ied21.

On the other hand, the amplitude for anon-Abelian cut
diagram is defined as follows:

Afs1s2 · · · sngc ­
1
2

s1 1 g0dafs1s2 · · · sngc

3 V fs1s2 · · · sngc , (3)

where afs1s2 · · · sngc is obtained fromafs1s2 · · · sng
by replacing the Feynman propagatorsk0

i 1 ied21 of
a cut line by the Cutkosky cut propagator22pidsk0

i d.
The vertex part V fs1s2 · · · sngc is obtained from
V fs1s2 · · · sng by replacing the product ofVi ’s straddling
uncut lines by (multiple) commutators. For example,
V f231465gc ­ V f231j4j65g ­ fffV2, fV3, V1ggggV4fV6, V5g.

The resummation formula (called themultiple commu-
tator formulain [11]) asserts that the sum of the Feynma
amplitudes is equal to the sum of the non-Abelian cut am
plitudes,

n!X
s

Afs1s2 · · · sng ­
n!X
s

Afs1s2 · · · sngc , (4)

when the sum is taken over all then! permutations
s ­ fs1s2 · · · sng of f12 · · · ng.
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In the special case when the verticesVi are Abelian
so they mutually commute, the only surviving term is t
one without any commutator appearing, which is giv
by the cut diagram with every baryon propagator c
The spacetime partaf123 · · · ngc is now a product ofd
functions inq0

i , showing neatly a very peaked interferen
pattern in all the variablesq0

i . Away from q0
i ­ 0, the

interference is purely destructive.
In case of non-Abelian vertices, the different terms

the right-hand side of (4) carry different internal qua
tum numbers, and their spacetime parts exhibit vary
degrees of destructive interference according to the n
ber ofd functions present. However, since the number
d functions plus the number of commutators is the sa
for every term, what is lacking in spacetime destruct
interference is made up by the “destructive interferen
in the internal quantum numbers, in the following sen
ImagineVi to be the generators of a Lie group in a low
dimensional representation. Then products ofVi will con-
tain progressively higher-dimensional representations
hence larger quantum numbers, but commutators of th
will simply behave like a singleVi, creating only small
quantum numbers. In this sense commutators repre
an “interference” in which large quantum numbers tend
be wiped out. We shall see that it is this kind of interfe
ence that suppresses the high powers ofNc.

These formulas, suitably modified, are applicable ev
when baryon mass degeneracy is lifted, provided we in
into the tree new verticesV 0

i ­ DM carrying away no
energy. To see that, letDM be the diagonal operato
whose matrix elements are the mass differencesDMi.
Using the expansion

1

k0
i 2 DM 1 ie

­
1

k0
i 1 ie

X̀
m­0

√
DM

k0
i 1 ie

!m

, (5)

we see that the new vertex necessary is simplyV 0
i ­ DM.

Proof of the consistency criterion.—Let us first
review some standard facts in the one-baryon se
[5]. The quark-pion interaction is proportional t
N2 1

2
c c̄gmg5ta≠mpa, in which the coefficientN2 1

2
c is

fixed (see later) by the requirement of the meson-bar
Yukawa constant being of order

p
Nc. In the rest frame

of the baryon, the large componentf of the Dirac
spinor c dominates, so this interaction is reduced
an expression proportional toN2 1

2
c hsitaj≠ipa, where

hGj ; fyGf. This in turn determines the pion-baryo
vertex to be proportional toVi ­ N2 1

2
c hsitaj, with “a”

labeling the isospin of the pion it couples to.
The large-Nc rules for n-meson amplitude in the one

baryon sector were derived from the quark picture us
the Hartree approximation [2]. In this approximatio
the wave function of a baryon statejBJ,I l with spin
J and isospinI can be represented by an SUs2dJ and
an SUs2dI Young tableau, as shown in Figs. 2(a) a
2(b). For this color-singlet ands-state baryon to have
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FIG. 2. Young tableaux for (a) SUs2dJ and (b) SUs2dI .

a totally antisymmetric wave function, the spin and
isospin tableaux must be identical, which impliesI ­ J.
Incidentally, if there are more than two flavors, then onl
the light-quark spins match this way. Adding to tha
the spins of the strange and other quarks, the allow
baryon spin now takes on many values, thus forming
considerably larger multiplet for a givenI .

Returning to the case of two flavors, the double boxe
appearing in a column of the tableau are singlets of qua
pairs in J or I , so they are killed by the spin operator
hsij and the isospin operatorhtaj. However,hsitaj fi

hsij htaj, so these singlets are not killed byhsitaj.
Since there areOsNcd columns in a tableau, the baryon
matrix elementkVil is of the orderN2 1

2
c Nc ­

p
Nc, as it

should for a Yukawa coupling constant. For simplicity
the notationkO l ; kBJ0 ,I 0 jO jBJ,I l has been used.

Similarly, the matrix element of a two-body operator
khsitaj hsjtbjl, is of order N2

c , but their commutator
is only of orderNc. This is so becausefhG1j, hG2jg ­
hfG1, G2gj, and because

fsmta , sntbg ­
1
2

fsm, sng fta , tbg

1
1
2

fsm, sng 1 fta , tbg1 (6)

is a linear combination ofsltg , thus making its matrix
elements orderNc. This means thatkfVi , Vjgl is of

order sN2 1

2
c d2Nc ­ 1. Similarly, each time an additional

commutator appears, the matrix element is reduced
an additional power ofN2 1

2
c . In particular, the matrix

element of ann-tuple commutator is of orderN12ny2
c . In

these expressions,s0 and t0 are, respectively, the unit
matrices in the spin and isospin spaces.

We proceed now to prove the consistency criterio
for the pion-baryon scattering amplitudep 1 B ! sn 2

1dp 1 B. We shall first assume allDMi ­ 0 and all
pions to be coupled directly to the baryon. We will also
take the pion mass to be nonzero.
599
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One of the n pions is incoming and the remainin
n 2 1 are outgoing, so one of theq0

i is negative but
the rest of them are positive. Energy conservation,
the requirement of the initial baryon to be on she
demands that the sum of then q0

i ’s be zero. However,
because all but one of them are positive, a partial s
of them can never be zero, which is to say that the o
surviving terms in (4) are the ones without any Cutkos
cut. These incidentally are the non-Abelian cut diagra
with pion 1 at the far right. For such terms, the vert
factor V fs1s2 · · · sng containsn-tuple commutators of
the verticesVi, whose baryon matrix elements are of ord
N12ny2

c as we saw before. This then shows that the s
of the n! tree diagrams is of orderN12ny2

c , and we have
attained just the right amount of cancellations required
consistency.

This conclusion remains valid without the speci
assumptions. IfDMi fi 0, then rotational invariance
demands it to be of the formDM ­ ch $sj ? h $sjyNc

[5], so fDM, hsitajg ­ s2cyNcd hsitaj. This means that
any commutator withDM will only lead to subleading
dependences at largeNc. The same will also be true i
some of the mesons are coupled directly to other mes
rather than the baryon, because all meson coupli
vanish as a power ofN2 1

2
c . Seagull type of diagrams ar

also negligible.
Before ending, we also remark on the special situat

when the pion is massless. In that case pion energies
be zero and thed functions in the partial sums ofq0

i can
no longer be thrown away so easily. These terms h
less commutators ofVi and hence higher powers ofNc

than N12ny2
c . However, these correspond exactly to t

terms in which different pions hit different quarks [2,3
rather than the same quark which leads to the fami
dependence ofN12ny2

c .
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