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How Long Do Numerical Chaotic Solutions Remain Valid?
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Dynamical conditions for the loss of validity of numerical chaotic solutions of physical systems
are already understood. However, the fundamental questions of “how good” and “for how long”
the solutions are valid remained unanswered. This work answers these questions by establishing
scaling laws for the shadowing distance and for the shadowing time in terms of physically meaningful
guantities that are easily computable in practice. The scaling theory is verified against a physical model.
[S0031-9007(97)03523-0]
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In studying their systems, physical scientists writetion of hyperbolicity caused by this phenomenon leads to
differential equations derived from fundamental laws.global sensitivity—only relatively short pseudotrajectories
These equations are then used to understand, analyzeill be approximately matched by true system trajectories.
predict, and control the system’s behavior, provided one Our discussion of the global sensitivity of trajectories for
is able to determine the solutions. As the role ofthese nonhyperbolic systems is limited in this Letter to the
nonlinearity grows in importance for the study of physics,comparison between physical models and computer simu-
solutions often cannot be obtained in closed form, andations, but the same questions arise whenever comparing
numerical solutions must be relied on. Computers arghe time behavior of two systems evolving under similar,
now an integral part of the physicistsodus operandi but slightly different dynamical rules. For example, a natu-

A basic question always present when obtaining numeriral system and its theoreticalodeldiffer by modeling er-
cal solutions is to what extent they are valid. This questionrors. In the presence of fluctuating Lyapunov exponents,
is especially meaningful when dealing with chaotic dynam-global sensitivity may lead to trajectory mismatch, in par-
ics, since local sensitivity to small errors is the hallmark ofticular when long times are considered. The result is that
a chaotic system. Floating-point calculations commonlyno trajectory of the theoretical model matches, even ap-
used to approximate solutions of differential equations oproximately, the true system outcome over long time spans.
compute discrete maps produyggeudotrajectorigswhich Although the dynamical reasons and conditions for the
differ from true trajectories by new, small errors at eachloss of validity of chaotic solutions have been identified
computational step. Despite the sensitive dependence ¢h—5], the central and most practical question of all for
initial conditions, the methods of shadowing have showrphysical scientists remained to be answered: If the numeri-
that for chaotic systems that are hyperbolic [1] or nearlycal solutions are valid, “how good” are they and “for how
hyperbolic [2], locally sensitive trajectories are ofgglob-  long” are they valid? In this work, we answer these ques-
ally insensitive in that there exist true trajectories with tions by establishing fundamental scaling laws in terms of
adjusted initial conditions, called shadowing trajectoriesphysically meaningful quantities that are easily obtained
very close to long computer-generated pseudotrajectoriem practice when doing computer simulations of physical
A dynamical system is hyperbolic if phase space can bsystems. We answer the “how good” question by obtain-
spanned locally by a fixed number of independent stabléng a quantitative rule governing trehadowing distange
and unstable directions which are consistent under the ophe pointwise distance from the shadowing trajectory to the
eration of the dynamics. pseudotrajectory, and we answer the “for how long” ques-

In the absence of hyperbolic structure, much less igion by obtaining a quantitative rule governing thlead-
known about the validity of long computer simulations. owing time the length of true shadowing trajectories. We
Recently it was shown that trajectories of a chaotic sysfind that the expected shadowing distance and time have
tem with a fluctuating number of positive finite-time Lya- power law dependencies on the size of the one-step error
punov exponents fail to have long shadowing trajectoriesnade in the computer simulation. The exponents of the
[3]. In other words, they are globally sensitive to small power laws depend on the mean and variance of the Lya-
errors. The hyperchaotic system of [3] has two positivepunov exponent nearest to zero, quantities that are easily
Lyapunov exponents, although finite-time approximationscomputable in practice. The greater the finite-time fluc-
of the smaller of the two fluctuate about zero, due to visitduation about zero, the smaller the power law exponent,
of the trajectory to regions of the attractor with a vary-resulting in large shadowing distances and valid trajecto-
ing number of stable and unstable directions. The destruaies of limited length.
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We begin with a statistical description of the pointwise 0.6 T T T
shadowing distance. For our purposes, a pseudotrajectory (a)
is a discrete list of humbers generated according to a
computer-implemented evolution rule, such as a Runge-
Kutta approximation to the solution of a differential equa-
tion. Typically, at each of a number of discrete steps, there
is a small discrepancy between the rule and the govern-
ing equation, due to the truncation error of the rule or the
rounding properties of the computer. Shadowing theory
shows that, under certain conditions, there is another true
trajectory, with a slightly adjusted initial condition, that
follows very closely to (shadows) the pseudotrajectory.
The pointwise shadowing distancese the stepwise dis- 0 L L I
tances between it and the true shadowing trajectory. The 1le-20 le-16 le-12 1e-8 le-4
maximum such distance may be considered the “global pointwise shadowing distance
error” of the original calculation.

Typical distributions of pointwise shadowing distances 0.6 T T T
are shown in Fig. 1. The two plots show histograms of (b)
shadowing distances for simulations of two different dy-
namical systems. The exponential shape of the histogram
of log distances suggests that the distances themselves
obey a power law fit. These physical systems are taken
from the family of kicked double rotors, which are hyper-
chaotic systems with two positive Lyapunov exponents
for certain parameter settings. The mechanical system is
composed of two coupled rods rotating in a horizontal
plane (see [3] for more details). One rod receives a pe-
riodic delta function kick of constant magnituge The
system is integrable between kicks, so an explicit equa- 0 : '
tion, or discrete map, can be derived which governs the le-20 le-16 le-12 le-8 le-4
state (consisting of two angles and velocities) at the kick pointwise shadowing distance
time. The leftmost histogram in Fig. 1(a) corresponds tQr|G. 1. (a) Distribution of pointwise shadowing distance for a
a pseudotrajectory created by integrating the double rotarajectory of the kicked double rotor with = 8.2. The three
map with kick strengthp = 8.2, and artificially adding histograms, from left to right, correspond to one-step errors of
errors of sized = 10~ !6 at each step (at each kick). The 107'%, 107", and 10~ "2, respectively. (b) Same as (a), but for
true trajectory that shadows was computed in higher prec? ~ 8.7.
sion using the refinement technique [5], and log distances
between each point of the two form the exponential distritrajectory lies in hyperbolic regions of the attractor, shad-
bution shown. In Fig. 1(b), the kick strengthhas been owing theory guarantees the existence of a nearby true
increased t@.7, and the exponent of the exponential dis-trajectory. The true trajectory is found by adjusting the
tribution is much larger. points in a consistent manner along the stable and unstable

In Fig. 1, the distribution of shadowing distances overdirections. When a nonhyperbolic region is entered, this
several orders of magnitude occurs because the trajectocpnsistency of adjustments is interrupted by a normally
experiences nonhyperbolicity due to the varying number oéxpanding direction becoming momentarily contracting (or
stable and unstable dimensions. Since this nonhyperboligce versa), causing an excursion away from the reflecting
behavior is reflected by a Lyapunov exponent fluctuatingoarrier at logs, as shown in Fig. 1. The one-step eréor
about zero, we use a diffusion approximation to explain theserves as a reflecting barrier since new errors are created
guantitative aspects of the distributions in Fig. 1 in termson each step, so that the correct trajectory can never be ex-
of the finite-time Lyapunov exponents of the system. Oupected to lie closer thaé to the pseudotrajectory.
answer to the “how good” question is that the shadow- The time# Lyapunov exponents of am-dimensional
ing distances follow a power law distributiorcy ~2"/¢*, system trajectory are the averages\; of the logarithm
wherem > 0 and o are the mean and standard deviationof local expansion rates along the trajectory of lengtso
of the finite-time Lyapunov exponent closest to zero. Wethat an infinitesimal sphere of radids at the beginning
hypothesize the exponential distribution of log shadowingof the trajectory would evolve to an ellipsoid with axes
distances of Fig. 1 to follow from a biased random walk A;dr after ¢ time units. Distributions of the four time-
with drift toward a reflecting barrier. When the pseudo-100 Lyapunov exponents for the kicked double rotor,

distribution height

distribution height
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gathered over a long trajectory, are graphed in Fig. 2. Our A quantitative test of the fitness of the diffusion ap-
diffusion model uses the finite-time Lyapunov exponentproximation for shadowing distances is shown in Fig. 3.
closest to zero as the per-step innovation. For th&he close agreement between the exponent measured
kicked double rotor, we consider only the second largestrom the shadowing distance distributions a@ad/ o> cal-
Lyapunov exponent, since this one reflects the varyingulated from finite-time Lyapunov exponents [7] supports

number of unstable dimensions along the trajectory.

To obtain the exponential distribution of log shadow-

the diffusion model explanation of shadowing distance.
The fact that shadowing distances obey a power law dis-

ing distances shown in Fig. 1 in terms of the finite-timetribution with exponent-2m/o? as a function of one-step
Lyapunov exponent closest to zero, we consider the trarerror magnitude allows us to infer shadowing time. Shad-

sition probability P for a continuous diffusion process to

be given by Kolmogorov's equatiolf = ”2 (;xf + me,

where the innovations have meann and varianceo?
[6]. The time-invariant equilibrium distribution is found
by settingdP/dr = 0; together with the assumptiofs=
P() = dP/dx(») due to the drift-m < 0, it follows that
the equilibrium is given by an exponential distribution

2
P(x) = =5 e 72m/, (1)
g

This is consistent with the empirical distributions of Fig. 1,

where the distribution of log distances= log,,(y) have
a roughly exponential shape.

° R )
=
20
5]
<
=
g
5
=2
g
Z
0 ] I
-4 -2 0 2
time-100 Lyapunov exponents
=
.20
=
=
g
=
fa]
=
Z
0 i
-4 -2 0 2

time-100 Lyapunov exponents

owing trajectories exist as long as the shadowing distance
is small, compared to the size of the attractor. Breakdowns
in shadowing (called “glitches” in [3,5]) occur when the
reverse happens, namely an excursion far from zero un-
der the diffusion approximation. Therefore, times between
glitches are analogous to first passage times of the shadow-
ing distance to approach the order of the attractor length
in phase space. The first passage time can be computed
from the parameters of the diffusion process. A standard
Laplace transform calculation yields the expected time

2 —2m
(=567 —n- == 2)

for the shadowing distance to reach 1. Our answer to the
“for how long” question is that for smal$, the expected
shadowing timer is governed by the power law

(ry ~ 8.

To compare actual shadowing times of the kicked double
rotor with the power law (3), we have made lengthy calcu-
lations summarized in Fig. 4. Shadowing trajectories were
calculated for between 500 and 10 000 pseudotrajectories,
whose mean shadowing time is plotted as a function of one-
step error magnitude. For each fixed kick-strength param-
eter p, log shadowing time shows straight-line behavior
as a function of lo@, supporting the power-law conjec-
ture (3).
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FIG. 3. Comparison of three exponents. Crosses represent
the exponent from the power law fit of pointwise shadowing
distances from Fig. 1. Diamonds repres@nt/ o2, calculated
from finite-time Lyapunov exponents shown in Fig. 2. Boxes

FIG. 2. Distribution of time-100 Lyapunov exponents for the represent the exponent from the power law fit of shadowing

double rotor. (ap = 8.2, and (b)p = 8.7.

times, which are the slopes of the line segments in Fig. 4.
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1e+07 T T T T T much for higher precision. The slope of the lowest line,
corresponding t@ = 8.1, is almost flat (slope= 0.006),
which is to be expected from the power law (3) when
m/a? =~ 0. When the scaling exponeni/c? is close
to zero, and increasing the one-step accuracy of the
computation results in virtually no improvement in the
lengths of shadowable trajectories, it is far from obvious
how a long computer simulation should be interpreted.
The fact that for some systems, long computer-
generated pseudotrajectories are not matched by true
trajectories was first pointed out in [3]. In the present
Letter we have shown explicitly how this phenomenon
is caused by a Lyapunov exponent fluctuating about
zero, and described quantitatively how shadowing breaks
down, depending on the proximity of the exponent to
zero. Although we have demonstrated fluctuating Lya-
punov exponents only for a mechanical system (kicked

FIG. 4. Squares represent mean number of steps for which ((;Jilouble rotor), we expect it, and the accompanying global

pseudotrajectory of the kicked double rotor with specified one-S?nSitiVit_y of '.trajectories', to be a common feature of
step accuracy can be shadowed by true trajectory. Straight lineigher-dimensional chaotic dynamical systems.
on this log-log plot supports a power-law model for shadowing We thank E. Ott, . Kan, and S. Dawson for helpful

time. The lines drawn are least squares fits, whose slopegggestions. The research was supported by the National
are plotted as squares in Fig. 3. The top line corresponds Qcience Foundation, Department of Energy, and the

p = 87. Other lines connect data points corresponding t . .
smaller p with a decrement o0.1; lowest line corresponds OW M. Keck Foundation for computing facilities.

top = 8.1.
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Dynamical systems like the kicked double rotor that
have a finite-time Lyapunov exponent lying close to
zero, relative to the variance of its distribution, possess
obstructions to the existence (not to mention explicit
computation) of true shadowing trajectories close to long
pseudotrajectories. Figure 4 shows that the limit for
double-precision 10~ !°) shadowable pseudotrajectories
is a few thousand; nor does the situation improve very
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largest time-100 Lyapunov exponent, which is an approxi-
mation to the (infinite-time) Lyapunov exponent. The
standard deviatiomr was computed as ten times the stan-
dard deviation of the distribution of the second-largest
time-100 Lyapunov exponent. Since the diffusion ap-
proximation assumes independent and identically dis-
tributed innovations, it is important to calculate as the
time-T Lyapunov exponent multiplied by/T for T be-
yond the system decorrelation time.



