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How Long Do Numerical Chaotic Solutions Remain Valid?
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Dynamical conditions for the loss of validity of numerical chaotic solutions of physical systems
are already understood. However, the fundamental questions of “how good” and “for how long”
the solutions are valid remained unanswered. This work answers these questions by establishing
scaling laws for the shadowing distance and for the shadowing time in terms of physically meaningful
quantities that are easily computable in practice. The scaling theory is verified against a physical model.
[S0031-9007(97)03523-0]
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In studying their systems, physical scientists wri
differential equations derived from fundamental law
These equations are then used to understand, anal
predict, and control the system’s behavior, provided o
is able to determine the solutions. As the role o
nonlinearity grows in importance for the study of physic
solutions often cannot be obtained in closed form, a
numerical solutions must be relied on. Computers a
now an integral part of the physicist’smodus operandi.

A basic question always present when obtaining nume
cal solutions is to what extent they are valid. This questi
is especially meaningful when dealing with chaotic dynam
ics, since local sensitivity to small errors is the hallmark o
a chaotic system. Floating-point calculations common
used to approximate solutions of differential equations
compute discrete maps producepseudotrajectories, which
differ from true trajectories by new, small errors at eac
computational step. Despite the sensitive dependence
initial conditions, the methods of shadowing have show
that for chaotic systems that are hyperbolic [1] or near
hyperbolic [2], locally sensitive trajectories are oftenglob-
ally insensitive, in that there exist true trajectories with
adjusted initial conditions, called shadowing trajectorie
very close to long computer-generated pseudotrajector
A dynamical system is hyperbolic if phase space can
spanned locally by a fixed number of independent stab
and unstable directions which are consistent under the
eration of the dynamics.

In the absence of hyperbolic structure, much less
known about the validity of long computer simulations
Recently it was shown that trajectories of a chaotic sy
tem with a fluctuating number of positive finite-time Lya
punov exponents fail to have long shadowing trajectori
[3]. In other words, they are globally sensitive to sma
errors. The hyperchaotic system of [3] has two positiv
Lyapunov exponents, although finite-time approximatio
of the smaller of the two fluctuate about zero, due to vis
of the trajectory to regions of the attractor with a vary
ing number of stable and unstable directions. The destr
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tion of hyperbolicity caused by this phenomenon leads
global sensitivity—only relatively short pseudotrajectorie
will be approximately matched by true system trajectorie

Our discussion of the global sensitivity of trajectories fo
these nonhyperbolic systems is limited in this Letter to th
comparison between physical models and computer sim
lations, but the same questions arise whenever compar
the time behavior of two systems evolving under simila
but slightly different dynamical rules. For example, a natu
ral system and its theoreticalmodeldiffer by modeling er-
rors. In the presence of fluctuating Lyapunov exponen
global sensitivity may lead to trajectory mismatch, in par
ticular when long times are considered. The result is th
no trajectory of the theoretical model matches, even a
proximately, the true system outcome over long time span

Although the dynamical reasons and conditions for th
loss of validity of chaotic solutions have been identifie
[1–5], the central and most practical question of all fo
physical scientists remained to be answered: If the nume
cal solutions are valid, “how good” are they and “for how
long” are they valid? In this work, we answer these que
tions by establishing fundamental scaling laws in terms
physically meaningful quantities that are easily obtaine
in practice when doing computer simulations of physica
systems. We answer the “how good” question by obtai
ing a quantitative rule governing theshadowing distance,
the pointwise distance from the shadowing trajectory to th
pseudotrajectory, and we answer the “for how long” que
tion by obtaining a quantitative rule governing theshad-
owing time, the length of true shadowing trajectories. W
find that the expected shadowing distance and time ha
power law dependencies on the size of the one-step er
made in the computer simulation. The exponents of th
power laws depend on the mean and variance of the Ly
punov exponent nearest to zero, quantities that are eas
computable in practice. The greater the finite-time fluc
tuation about zero, the smaller the power law exponen
resulting in large shadowing distances and valid traject
ries of limited length.
© 1997 The American Physical Society 59
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We begin with a statistical description of the pointwis
shadowing distance. For our purposes, a pseudotraject
is a discrete list of numbers generated according to
computer-implemented evolution rule, such as a Rung
Kutta approximation to the solution of a differential equa
tion. Typically, at each of a number of discrete steps, the
is a small discrepancy between the rule and the gove
ing equation, due to the truncation error of the rule or th
rounding properties of the computer. Shadowing theo
shows that, under certain conditions, there is another tr
trajectory, with a slightly adjusted initial condition, tha
follows very closely to (shadows) the pseudotrajector
The pointwise shadowing distancesare the stepwise dis-
tances between it and the true shadowing trajectory. T
maximum such distance may be considered the “glob
error” of the original calculation.

Typical distributions of pointwise shadowing distance
are shown in Fig. 1. The two plots show histograms o
shadowing distances for simulations of two different dy
namical systems. The exponential shape of the histogr
of log distances suggests that the distances themsel
obey a power law fit. These physical systems are tak
from the family of kicked double rotors, which are hyper
chaotic systems with two positive Lyapunov exponen
for certain parameter settings. The mechanical system
composed of two coupled rods rotating in a horizont
plane (see [3] for more details). One rod receives a p
riodic delta function kick of constant magnituder. The
system is integrable between kicks, so an explicit equ
tion, or discrete map, can be derived which governs t
state (consisting of two angles and velocities) at the kic
time. The leftmost histogram in Fig. 1(a) corresponds
a pseudotrajectory created by integrating the double ro
map with kick strengthr ­ 8.2, and artificially adding
errors of sized ­ 10216 at each step (at each kick). The
true trajectory that shadows was computed in higher pre
sion using the refinement technique [5], and log distanc
between each point of the two form the exponential distr
bution shown. In Fig. 1(b), the kick strengthr has been
increased to8.7, and the exponent of the exponential dis
tribution is much larger.

In Fig. 1, the distribution of shadowing distances ove
several orders of magnitude occurs because the traject
experiences nonhyperbolicity due to the varying number
stable and unstable dimensions. Since this nonhyperbo
behavior is reflected by a Lyapunov exponent fluctuatin
about zero, we use a diffusion approximation to explain th
quantitative aspects of the distributions in Fig. 1 in term
of the finite-time Lyapunov exponents of the system. O
answer to the “how good” question is that the shadow
ing distancesy follow a power law distributioncy22mys2

,
wherem . 0 ands are the mean and standard deviatio
of the finite-time Lyapunov exponent closest to zero. W
hypothesize the exponential distribution of log shadowin
distances of Fig. 1 to follow from a biased random wal
with drift toward a reflecting barrier. When the pseudo
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FIG. 1. (a) Distribution of pointwise shadowing distance for
trajectory of the kicked double rotor withr ­ 8.2. The three
histograms, from left to right, correspond to one-step errors
10216, 10214, and10212, respectively. (b) Same as (a), but for
r ­ 8.7.

trajectory lies in hyperbolic regions of the attractor, shad
owing theory guarantees the existence of a nearby tr
trajectory. The true trajectory is found by adjusting th
points in a consistent manner along the stable and unsta
directions. When a nonhyperbolic region is entered, th
consistency of adjustments is interrupted by a normal
expanding direction becoming momentarily contracting (o
vice versa), causing an excursion away from the reflectin
barrier at logd, as shown in Fig. 1. The one-step errord

serves as a reflecting barrier since new errors are crea
on each step, so that the correct trajectory can never be
pected to lie closer thand to the pseudotrajectory.

The time-t Lyapunov exponents of anm-dimensional
system trajectory are them averagesli of the logarithm
of local expansion rates along the trajectory of lengtht, so
that an infinitesimal sphere of radiusdr at the beginning
of the trajectory would evolve to an ellipsoid with axes
l

t
idr after t time units. Distributions of the four time-

100 Lyapunov exponents for the kicked double roto
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gathered over a long trajectory, are graphed in Fig. 2. O
diffusion model uses the finite-time Lyapunov expone
closest to zero as the per-step innovation. For t
kicked double rotor, we consider only the second large
Lyapunov exponent, since this one reflects the varyi
number of unstable dimensions along the trajectory.

To obtain the exponential distribution of log shadow
ing distances shown in Fig. 1 in terms of the finite-tim
Lyapunov exponent closest to zero, we consider the tr
sition probabilityP for a continuous diffusion process to
be given by Kolmogorov’s equation≠P

≠t ­
s2

2
≠2P
≠x2 1 m

≠P
≠x ,

where the innovations have mean2m and variances2

[6]. The time-invariant equilibrium distribution is found
by setting≠Py≠t ­ 0; together with the assumptions0 ­
Ps`d ­ dPydxs`d due to the drift2m , 0, it follows that
the equilibrium is given by an exponential distribution

Psxd ­
2m
s2

e22mxys2

. (1)

This is consistent with the empirical distributions of Fig. 1
where the distribution of log distancesx ­ log10s yd have
a roughly exponential shape.

FIG. 2. Distribution of time-100 Lyapunov exponents for th
double rotor. (a)r ­ 8.2, and (b)r ­ 8.7.
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A quantitative test of the fitness of the diffusion ap
proximation for shadowing distances is shown in Fig. 3
The close agreement between the exponent measu
from the shadowing distance distributions and2mys2 cal-
culated from finite-time Lyapunov exponents [7] support
the diffusion model explanation of shadowing distance.

The fact that shadowing distances obey a power law di
tribution with exponent22mys2 as a function of one-step
error magnitude allows us to infer shadowing time. Shad
owing trajectories exist as long as the shadowing distan
is small, compared to the size of the attractor. Breakdow
in shadowing (called “glitches” in [3,5]) occur when the
reverse happens, namely an excursion far from zero u
der the diffusion approximation. Therefore, times betwee
glitches are analogous to first passage times of the shado
ing distance to approach the order of the attractor leng
in phase space. The first passage time can be compu
from the parameters of the diffusion process. A standa
Laplace transform calculation yields the expected time

ktl ­
s2

2m2
sd

22m

s2 2 1d 2
ln d

m
(2)

for the shadowing distance to reach 1. Our answer to th
“for how long” question is that for smalld, the expected
shadowing timet is governed by the power law

ktl , d
22m

s2 .

To compare actual shadowing times of the kicked doub
rotor with the power law (3), we have made lengthy calcu
lations summarized in Fig. 4. Shadowing trajectories we
calculated for between 500 and 10 000 pseudotrajectori
whose mean shadowing time is plotted as a function of on
step error magnitude. For each fixed kick-strength param
eter r, log shadowing time shows straight-line behavio
as a function of logd, supporting the power-law conjec-
ture (3).

FIG. 3. Comparison of three exponents. Crosses represe
the exponent from the power law fit of pointwise shadowing
distances from Fig. 1. Diamonds represent2mys2, calculated
from finite-time Lyapunov exponents shown in Fig. 2. Boxe
represent the exponent from the power law fit of shadowin
times, which are the slopes of the line segments in Fig. 4.
61
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FIG. 4. Squares represent mean number of steps for which
pseudotrajectory of the kicked double rotor with specified one
step accuracy can be shadowed by true trajectory. Straight li
on this log-log plot supports a power-law model for shadowin
time. The lines drawn are least squares fits, whose slop
are plotted as squares in Fig. 3. The top line corresponds
r ­ 8.7. Other lines connect data points corresponding t
smaller r with a decrement of0.1; lowest line corresponds
to r ­ 8.1.

The slopes of the least squares fits from shadowing tim
in Fig. 4 are plotted as small boxes in Fig. 3 for each o
the parametersr. According to our heuristic argument
above, the slopes should be the power law exponents
(3), and in particular should match2mys2 measured from
the finite-time Lyapunov exponent distributions. Indeed
does for the middle of the parameter range. Forr ­ 8.7
the fit is not as good; a possible explanation is that usin
the Lyapunov statistics from only one Lyapunov exponen
loses validity when the meanm moves away from zero, as
it does for largerr. For8.1 # r # 8.3 the exponent from
2mys2 is an overestimate because the terms neglect
in moving from (2) to (3) have more effect whenm
approaches0. Our derivations for shadowing distance and
shadowing time are first-order approximations that depen
on the existence of one finite-time Lyapunov exponent th
is significantly closer to zero than the others.

The fundamental conclusion to be drawn from Fig. 4
is that to obtain a long trajectory which is even approxi
mately correct is for some systems virtually impossible
Dynamical systems like the kicked double rotor tha
have a finite-time Lyapunov exponent lying close to
zero, relative to the variance of its distribution, posses
obstructions to the existence (not to mention explic
computation) of true shadowing trajectories close to lon
pseudotrajectories. Figure 4 shows that the limit fo
double-precision (10215) shadowable pseudotrajectories
is a few thousand; nor does the situation improve ver
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much for higher precision. The slope of the lowest line
corresponding tor ­ 8.1, is almost flat (slopeø 0.006),
which is to be expected from the power law (3) when
mys2 ø 0. When the scaling exponentmys2 is close
to zero, and increasing the one-step accuracy of th
computation results in virtually no improvement in the
lengths of shadowable trajectories, it is far from obviou
how a long computer simulation should be interpreted.

The fact that for some systems, long computer
generated pseudotrajectories are not matched by tr
trajectories was first pointed out in [3]. In the presen
Letter we have shown explicitly how this phenomenon
is caused by a Lyapunov exponent fluctuating abou
zero, and described quantitatively how shadowing brea
down, depending on the proximity of the exponent to
zero. Although we have demonstrated fluctuating Lya
punov exponents only for a mechanical system (kicke
double rotor), we expect it, and the accompanying globa
sensitivity of trajectories, to be a common feature o
higher-dimensional chaotic dynamical systems.
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