
VOLUME 79, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 7 JULY 1997
Quantization of the Stochastic Pump Model of Arnold Diffusion
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A semiclassical quantization of the stochastic pump model of Arnold diffusion is presented. The
semiclassical model is found to be equivalent to a one-dimensional disordered wire, yielding localized
states limiting the extent of diffusion. [S0031-9007(97)03422-4]

PACS numbers: 05.45.+b, 03.65.Sq, 05.60.+w
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Arnold diffusion [1] has long been considered a un
versal mechanism for global phase space flow in syste
characterized as weakly chaotic [2–4]. It has also be
a suspected source of instability in colliding beam sto
age rings [3–5] and magnetic traps [6], and its impl
cations for the dynamics of Rydberg atoms [7] and
molecules [8] are under current investigation. A com
plete formal description of Arnold diffusion is still lack-
ing, though upper bounds on rates have been establis
[9]. An approximate theory for classical Arnold diffu-
sion is provided by the stochastic pump model [3,4,10
which has adequately predicted diffusion rates for a nu
ber of mappings. Despite these successes, it rema
unclear how quantization changes the role of Arnold d
fusion in weakly chaotic systems: Effects of quantiza
tion may be significant owing to the very slow rate o
Arnold diffusion. Shuryak [11] presented dimensional a
guments concerning the size of the classical actions
quired for quantum Arnold diffusion to be appreciable
In this Letter, we introduce a semiclassical quantizatio
of the stochastic pump model of Arnold diffusion. W
find the semiclassical model to be equivalent to a mod
describing single-particle transport in a one-dimension
(1D) disordered wire. Eigenstates of a disordered w
are localized [12], so that Arnold diffusion in this mode
is also limited by a finite localization length. The re
sults presented here will also help us to understand h
ergodicity arises in many-dimensional quantum system
that are classically weakly chaotic, suggesting a sign
cant role for nonclassical “mechanisms” such as dynami
tunneling [13,14].

We examine the effect of quantization on Arnold dif
fusion in a system of coupled nonlinear oscillators. W
consider a model where pairs of weakly coupled oscill
tors are coupled weakly to one another. The phase sp
structure of two weakly coupled oscillators contains r
gions of irregular motion separated by regular tori, gua
anteed to exist by the Kolmogorov-Arnold-Moser (KAM
theorem [15]. Because chaotic motion is confined by t
tori of the 2D system, no global instability is possible. I
systems of higher dimension, however, chaotic regions
not separated from one another, and a globally connec
web of irregular regions along which Arnold diffusion pro
ceeds densely covers the energy surface [4]. Coupling o
oscillator pair to a second pair provides the dimensio
0031-9007y97y79(1)y55(4)$10.00
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ality required for Arnold diffusion, and is also a conve
nient model for the semiclassical quantization proced
described below. Each oscillator pair may in general
written asHpsJ, Qd  H0sJd 1 V sJ, Qd, and the small
coupling expanded asV sJ, Qd 

P
l,m Vl,msJdeinQ, where

n is an integer vector. We can locally approximateH0sJd
as

P2
i2 sviJi 1 ṽiJ

2
i d where the oscillator frequency is

v, and ṽ is the nonlinearity. We assume a low orde
resonance between the oscillators,v1yv2 ø syr, where
r and s are small integers. The coupled oscillator pa
Hamiltonian Hp can be rewritten as the sum of a res

nance HamiltonianH
srd
p and a second term containing bot

constants and the “fast” contributionsH
s fd
p [3]. The reso-

nance Hamiltonian of the oscillator pair isH
srd
p 

ṽp

2 I2 2

Wp cosCp , whereṽp  2sr2ṽ1 1 s2ṽ2d; Cp  ru1 2

su2; and Wp  22Vr ,2s. H
srd
p is also the Hamiltonian

of a nonlinear pendulum, the dynamics of which is reg
lar. Upon adding the fast terms, however, a narrow s
chastic layer forms in the separatrix region, which pla
the central role of driving Arnold diffusion [4] upon cou
pling the pair to additional oscillators.Hp is coupled to
a second coupled pairHp0 , the latter characterized by th
resonancev0

1yv
0
2 ø s0yr 0. Arnold diffusion results upon

coupling the resonance Hamiltonians of each pair. Start
with the full Hamiltonian for the coupled pairs̃H  Hp 1

Hp0 1 Ṽ , Ṽ 
P

n ṼnsJdeinQ, H̃ is transformed to slow
anglesCp andCp0 ; the largest coupling between the res

nance HamiltoniansH
srd
p and H

srd
p0 is VA ; m cossCp 2

Cp0d, wherem  2Ṽr ,2s,2r 0,s0 . TransformedH̃ appears as

H̃  H
srd
p 1 H

srd
p0 1 VA 1 Hs fd, whereHs fd contributes

the fast terms that create thin stochastic zones in
phase space.

The general mechanism for Arnold diffusion in this o
cillator system is captured by the stochastic pump mod
Roughly, Arnold diffusion is driven by stochastic trajecto
ries of one oscillator pair throughVA; regular trajectories
lying in the resonance zone ofHp are “pumped” by irregu-
lar motion in the separatrix region of pairHp0 , driving
diffusion along the resonance zone ofHp . The classical
pump model approximates the coupling scheme as

HA  Hsrd
p sIp , Cpd 1 m cossCp 2 Cp0d , (1a)

HS  H
srd
p0 sIp0 , Cp0d 1 Up0 cossCp0 2 fp0d . (1b)
© 1997 The American Physical Society 55
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H
srd
p is the pendulum Hamiltonian above. The couplin

in (1b), where Up0  2V2r 0,s011, is the term of H
s fd
p0

contributing most to the stochastic layer near the separa
of H

srd
p0 ; fp0  Vp0t 1 f0, where Vp0 is the driving

frequency, taken to be the slower ofv
0
1 and v

0
2; the

conjugate offp0 is Ip0 . The couplingVA  m cossCp 2

Cp0 d between the pairs drives the Arnold diffusion. T
make the stochastic pump Hamiltonian time-independe
the form of the classical pump model we quantize belo
we add toHA 1 HS the termHC  Vp0 Ip0 1 Cp0 Ip0 , and
define the time-independent stochastic pump Hamiltoni
asH  HA 1 HS 1 HC .

To quantize the stochastic pump model we adopt t
semiclassical assumption [16] that the eigenstates ofHp

or Hp0 can be characterized as either regular or irregul
Irregular states correspond to phase space regions
are irregular; their density is primarily determined b
the relative phase space density of the stochastic reg
around the separatrix of the resonance Hamiltonian.
have irregular states, the classical irregular region
an oscillator pair must be.h̄2. Following standard
procedures given in Refs. [3,4], we obtain the size
the stochastic zone for (1b), setting the conditionh̄ ,

Ce2pQ0y2, whereC  8pUp0Vp0 Q2
0 ; Q0  Vp0 yv0p0 is

the ratio of the high, driving frequencyVp0 of the
pump oscillator pair producing the stochastic layer,
the low, resonant frequencyv0p0  sṽp0Wp0 d1y2 of the
same pair; andUp0 is the amplitude of the driving
term in (1b). Within this framework we can write
the Hamiltonian for the coupled oscillator system in
product basis of states that are either regular-regu
irregular-irregular, or regular-irregular. The latter is th
subspace in which Arnold diffusion occurs. Irregula
states are modeled by the Gaussian orthogonal ensem
(GOE) [17]. The stochastic pump HamiltonianH 
HA 1 HS 1 HC is quantized by coupling irregular state
at those pumped sites, the regular states ofH

srd
p , that

are nearest-neighbor in action. The stochastic pum
HamiltonianH is written in the basis of the eigenstates o
H0  H 2 VA. H0 contains the energy levels of a block
diagonal matrix, each blocka being the same member o
the GOE, providing the irregular states; plus the diagon
matrix Ea1, whereEa is the energy of theath pumped
level. The pumped levels are obtained from the Mathi
equation for the nonlinear resonance. For libration
levels, we can approximateEa as h̄v0pa 1 h̄2ṽ0pa2,
wherev0p ø sṽpWpd1y2 is the local frequency and̃v0p

the local nonlinearity. Rotational levels approachEa 
h̄2ṽpa2 as Ea surpasses the separatrix energyWp , and
we assume only rotational levels of the same symme
couple.

The size of the elements ofVA are determined from
a semiclassical relation between off-diagonal matrix el
ments of an operator, and the Fourier transform of its cla
sical autocorrelation function [18]. The variances2

y of
the elements ofVA depends on the energies of the stat
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they couple;sy is very small when the energy differenc
is greater than Osh̄d [18]. For states close in energy,s2

y

appears in terms of the time integral of the autocorrelati
function ofVA as

s2
y ø h̄21

Z
dt kdVAstd ? dVAs0dly4prs

 h̄21DIy4prs ,
(2)

where rs is the density of irregular states given be
low. The second equality relates

R
dt kdVAstd ? dVAs0dl

to the diffusion coefficient for the actionI. This re-
sult is seen upon time integratingÙI  2vp sinCp 1

m sinsCp 2 Cp0d, where only the second term contribute
over long times. The mean square displacement inI is then
obtained from the time integration ofm sinsCp 2 Cp0d,
which whensIp0 , Cp0d execute motion in the irregular sepa
ratrix region is in the form of a Melnikov-Arnold inte-
gral. Similar calculations that have been carried out
Refs. [4,10] yield an expression forDI with the same
Melnikov-Arnold integral. Starting from the time inte-
gration ofVA  m cossCp 2 Cp0d, we see precisely that
DI 

R
dt kdVAstd ? dVAs0dl. Following the analysis of

Ref. [10], we find the action diffusion coefficient for the
pumped oscillator pair to be

DI ø f16p2R2 exps2pRdgm2V21
p0 . (3)

The ratio of frequencies of pairsp and p0 is
R  v0pyv0p0 ; m is the strength of coupling between th
oscillator pairs. The density of statesrs coupled byVA

is the density of pump states. We determine first the s
of the classical stochastic region forH0 [4]; then rs is
obtained from the semiclassical Weyl relation

rs ø h̄228pV22
p0 Up0 Q3

0 exps2pQ0y2d . (4)

The classical phase space density of the stochastic reg
is largely unaffected by the small couplingVA [10].

The matrix model introduced to quantize the stochas
pump model is reminiscent of a 1D wire. Since the pum
energies at all the sites along the wire are energy lev
of a member of the GOE, and shifted from site to sit
it is reasonable to assume the energies at each site
random and nearly independent, coupled by the rand
elements ofVA. With this decorrelation assumption, it is
apparent that our model is equivalent to a 1D disorder
wire. The eigenstates of a disordered wire are localiz
The localization lengthjl has been determined by Efeto
[12] using the nonlinears model to bejl  p h̄21DIrs.
From (2),jl for our model is4p2s2

yr2
s . Combining (3)

and (4),

jl ø h̄23A exps2pQy2d , (5)

where A  128p4m2Up0R2v
23
0p0 , and Q  Q0 1 2R.

The extent of diffusion depends on how small the val
of h̄ is compared to exps2pQy2d. To scalejl with the
actions of the coupled oscillators, we comparejl with
the width of the resonance zone of the pumped oscilla
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pair, which isLr  h̄214sWpyṽpd1y2. The criterion for
jl $ Lr is met when

h̄ & B exps2pQy4d , (6)

whereB  4p2mR
q

2v0pUp0yv
3
0p0Wp . The criterion of

Eq. (6) is illustrated in Fig. 1, which shows the value
of h̄ and Q where diffusion a length at least the siz
of the resonance zone occurs. Notice that to guaran
irregular states in the semiclassical pump model we ne
to haveh̄ , C exps2pQ0y2d as mentioned above. This
is sometimes more restrictive than Eq. (6), though th
depends onB andC, since typicallyB , C due to small
m. Nevertheless,Lr serves only as a length scale with
which to comparejl , and we must bear in mind the overa
localization of the eigenstates. Shuryak [11] present
dimensional arguments giving a criterion for widesprea
Arnold diffusion in quantum mechanical systems that h
the form h̄ & b exps2aQ0d. However, his dimensional
arguments do not give the length along a resonance wit
which quantum Arnold diffusion is actually confined.

We turn now to some numerical studies of the semicla
sical pump model. The aim is to check the extent to whi
the actual correlated matrix model of the stochastic pum
is similar to that of the uncorrelated disordered wire us
for the above estimates. We compare localization leng
of the random matrix model of the pump with those for th
corresponding wire. In our numerics,H of the stochastic
pump consists of a diagonal partH0, which is the solu-
tion to 80 blocks of dimension 24, each the same memb
of the GOE. The eigenvalues of each block labeled
a correspond to those of the pump states at each pum
site. The density of pump states at each site,rs, is known
from Wigner’s semicircle law for the GOE. Taking the
pumped states to be librational, the energy of the regu
state at each sitea is Ea  h̄v0a 1 h̄2ṽ0a2. The non-
linearity h̄2ṽ0 was set to values of21026Ss to 21024Ss,
whereSs  r21

s ; all values in this range yielded the sam

FIG. 1. Curves represent criterion for quantum Arnold diffu
sion a given length [Eq. (6)], in terms of̄h and Q22; Q22

varies linearly with the couplingUp0 between oscillators pump-
ing diffusion. The couplingm between the coupled oscillator
pairs is 1022 (short dashes),1023 (dashes), and1024 (line).
The uppermost curve illustrates criterion for “thick layer” dif
fusion (see text).
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results. The elements ofVA couple the levels of one site
to those of its neighboring sites; they are Gaussian ra
dom, and the same value is taken for elements coupli
the same pair of irregular states between different pairs
coupled regular sites. We compare the averagejl of H at
different L ; s2

yr2
s and h̄v0 with that for the disordered

wire at correspondingL. The wire is also modeled by 80
coupled GOE blocks of dimension 24, each block now
different member of the GOE. The results are plotted
Fig. 2. We see thatjl consistently follows the wire pre-
diction of jl  4p2L.

We also compare results ofjl for a particular
coupled oscillator system withjl for the wire. We
have analyzed numerically the HamiltonianH 
Hqo 1 Hm 1 V , where Hqo 

1
2 sp2

x 1 p2
yd 1

1
6 sbx4 1

b21y4 2 2lx2y2d; Hm 
1
2 p2

z 1 Ds1 2 e2azd2; and
V  gzx2. Hm can be written asvmI 1 ṽmI2, where
vm  a

p
2D andṽm  2v2

my2D. Thousands of eigen-
states ofHqo were previously analyzed and, to within a
few percent, unambiguously assigned as either regular
irregular [19]. The product of the irregular states ofHqo
and the (regular) states ofHm make up the basis of the
pump model. We thus computejl for thoseH eigenstates
that project primarilys.0.9d onto the irregular-regular
(IR) subspace. In our computationsb  py4, vm  1.2,
ṽm  1024, and l  0.16. For these parameters, we
classified about 35% of the states in the range 501–5
as irregular, comparable to the estimate thatø35% of the
energy surface of the corresponding classical system
irregular [20]. We coupleHqo states 501–580 to16 Hm

sites, comprising theH basis. Elements ofV are set by
adjustingg. For differentL, determined numerically for
H, we plot jl in Fig. 2, where we see close agreemen
with the wire prediction. If we separate regular an

FIG. 2. Plotted are the average localization lengths at differe
L ; s2

yr2
s obtained numerically for the random matrix models

of the stochastic pump Hamiltonian; a coupled oscillato
Hamiltonian (see text); and equivalent disordered wire. Fille
circles are results for the wire model. Pump model resul
are plotted forh̄v0  0.1 (square); 0.3 (open circle); 0.7s3d;
and 1.1 (triangle). Oscillators results include IR and RR stat
sAd, and IR states onlysSd. The solid line isjl predicted
analytically for a disordered wire.
57
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irregular states ofHqo and couple only irregular states of
Hqo to Hm, we get similar results, also plotted in Fig. 2
Without separation, we find some eigenstates ofH are a
mixture of regular-regular (RR) and IR states. Still, th
projection onto either IR or RR is.0.9 for about 99%
of the eigenstates ofH with the smallestg plotted, and
about 75% with the largestg, so that any ambiguity from
tunneling between IR and RR states is relatively small.

We finally consider the effect of additional oscilla-
tors in the general model. Introducing a third pair o
coupled oscillators, which satisfy a resonance conditio
v

00
1 yv

00
2 ø s00yr 00, wherer 00 ands00 are small integers, we

couple the oscillator pairs bỹV  Ṽpp0 1 Ṽp0p00 1 Ṽpp00 .
The largest contribution to Arnold diffusion in this mode
arises from regular motion in the resonance zone of o
pair driven by the irregular motion in any of the othe
pairs. The driving term in the pump model is then of th
form VA  mpp0 cosscp 2 cp0d 1 mpp00 cosscp 2 cp00d.
The quantization of this model again has the structure
a 1D disordered wire. The localization length isjl 
p h̄21DIrs, where now callingDI ,pp0 the diffusion coef-
ficient for pairsp and p0, etc., we haveDI  DI ,pp0 1

DI ,pp00 and rs  rs,p0 1 rs,p00 . Assuming theDI ’s and
rs ’s for all coupled pairs to be roughly the same,jl over
regular sites grows approximately as the square of t
number of oscillator pairs in the system. The diffusio
coefficients and level densities given by Eqs. (3) and (
pertain to a stochastic region confined to the separat
layer of the resonance zone. We must, however, bear
mind that the addition of oscillators increases the likel
hood for intersection of primary resonances. Overlap
intersection of primary resonances profoundly alters th
dynamics at the quantum level, and ultimately the loca
ization, allowing energy flow to escape the 1D confines
a single resonance line of the Arnold web and be mul
dimensional and global [21]. In addition, classically, in
tersection of resonances among three or more oscillat
generates chaotic dynamics in the vicinity of intersectio
[8]. Action diffusion again occurs along resonance zon
that remain isolated, but is now driven by chaos occup
ing a much larger phase space fraction, regions of res
nance intersection, than when all resonances are larg
isolated, and only motion near the separatrix serves a
pump. Arnold diffusion driven by thick regions of strong
chaos at resonance intersections has been termed “th
layer” diffusion [4]. The 3 oscillator model studied nu-
merically could be said to be in this regime. The effect o
resonance intersection on the quantized pump model is
dramatically increasers andDI . The density of irregular
states depends now on the region of resonance inters
tion, rather than the exponentially small stochastic laye
Thus jl , h̄21DIrs varies as a polynomial in the small
couplinge between oscillators, rather thane2Ky

p
e, which

over a given length greatly extends possible values ofh̄ and
couplings for which quantum Arnold diffusion can procee
as illustrated in Fig. 1. Quantum thick layer Arnold dif-
58
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fusion appears in the nuclear motion of molecules. Per
et al.’s analysis of rotation-vibration coupling in ethano
[22], for instance, can be interpreted as quantum thick lay
Arnold diffusion.

In conclusion, we have introduced a semiclassical qua
tization of the stochastic pump model of Arnold diffusion
We have argued that the semiclassical model is equivale
to a 1D disordered wire. Numerical results for the pum
model support this correspondence. The states of the pu
model are thus localized for any finitēh. The localization
length is expressed in terms ofh̄ and classical properties
of the model.

The authors acknowledge support from NSF Gra
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