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Quantization of the Stochastic Pump Model of Arnold Diffusion
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A semiclassical quantization of the stochastic pump model of Arnold diffusion is presented. The
semiclassical model is found to be equivalent to a one-dimensional disordered wire, yielding localized
states limiting the extent of diffusion. [S0031-9007(97)03422-4]

PACS numbers: 05.45.+b, 03.65.Sq, 05.60.+w

Arnold diffusion [1] has long been considered a uni-ality required for Arnold diffusion, and is also a conve-
versal mechanism for global phase space flow in systemsient model for the semiclassical quantization procedure
characterized as weakly chaotic [2—4]. It has also beedescribed below. Each oscillator pair may in general be
a suspected source of instability in colliding beam storwritten asH,(J,0) = Hy(J) + V(J,0), and the small
age rings [3-5] and magnetic traps [6], and its impli-coupling expanded d@(J,0) = Y, Vim(@)e™®, where
cations for the dynamics of Rydberg atoms [7] and ofn is an integer vector. We can locally approximag(J)
molecules [8] are under current investigation. A com—aszl?:2 (w;J; + g,ijf) where the oscillator frequency is
plete formal description of Arnold diffusion is still lack- ¢, "and & is the nonlinearity. We assume a low order
ing, though upper bounds on rates have been establishegsonance between the oscillatoss,/w, =~ s/r, where
[9]. An approximate theory for classical Arnold diffu- , ands are small integers. The coupled oscillator pair
sion is provided by the stochastic pump model [3,4,10]Hamiltonian H, can be rewritten as the sum of a reso-

which has adequately predicted diffusion rates for a num- () .
ber of mappings. Despite these successes, it remaimance Hamiltonia#/, * and a second term containing both

. . - 112 7 H H (.f)
unclear how quantization changes the role of Arnold dif-constants and the “fast” contributiof#, [(3;1 Tr})e reso-
fusion in weakly chaotic systems: Effects of quantiza-nance Hamiltonian of the oscillator pairig = = 1% —
tion may be significant owing to the very slow rate of W, cos¥,, where®, = 2(r’@, + s’@); ¥, = r; —
Arnold diffusion. Shuryak [11] presented dimensional ar-gg,: and W, = -2V, _,. H,(f) is also the Hamiltonian

guments concerning the size of the classical actions reyf 3 nonlinear pendulum, the dynamics of which is regu-
quired for quantum Arnold diffusion to be appreciable.|ar Upon adding the fast terms, however, a narrow sto-
In this Letter, we introduce a semiclassical quantizationpastic layer forms in the separatrix region, which plays
of the stochastic pump model of Arnold diffusion. We ine central role of driving Arnold diffusion [4] upon cou-
find the semiclassical model to be equivalent to a modaeg"ng the pair to additional oscillatorsH,, is coupled to

descrilging single-p.article'transport in a one-dimension second coupled pali,, the latter characterized by the
(1D) disordered wire. Eigenstates of a disordered WINesonancen|/w) =~ s'/r'. Arnold diffusion results upon
are Iocal_lze_d [12], so f[h.at Arnol_d dl_ffu3|on in this mode| coupling the resonance Hamiltonians of each pair. Starting
is also limited by a fln_lte localization length. The re- with the full Hamiltonian for the coupled paifs = H, +
sults presented here will also help us to understand ho% P,V =5 Va(d)em®, /i is transformed topslow

p’ ’ - n'n ’

ergodicity arises In many-dlmens_lonal quantum system ngles¥, and¥,; the largest coupling between the reso-
that are classically weakly chaotic, suggesting a signifi-

. . . ; ; (r) (r) . —
cant role for nonclassical “mechanisms” such as dynamicdl@nce Hamiltoniangf, ™ and H,," is V4 = pcod¥, —
tunneling [13,14]. V,), wherew = 2V, _ . ¢. Transformed? appears as

We examine the effect of quantization on Arnold dif- & = A + H,(,’,) + V4 + HY) whereH') contributes

fusion in a system of coupled nonlinear oscillators. Wethe fast terms that create thin stochastic zones in the
consider a model where pairs of weakly coupled oscillaphase space.

tors are coupled weakly to one another. The phase spaceThe general mechanism for Arnold diffusion in this os-
structure of two weakly coupled oscillators contains re-illator system is captured by the stochastic pump model.
gions of irregular motion separated by regular tori, guarRoughly, Arnold diffusion is driven by stochastic trajecto-
anteed to exist by the Kolmogorov-Arnold-Moser (KAM) ries of one oscillator pair throughy; regular trajectories
theorem [15]. Because chaotic motion is confined by theying in the resonance zone #f, are “pumped” by irregu-
tori of the 2D system, no global instability is possible. In|ar motion in the separatrix region of palf,, driving
systems of higher dimension, however, chaotic regions argitfusion along the resonance zonef. The classical

not separated from one another, and a globally connectggl;mp model approximates the coupling scheme as
web of irregular regions along which Arnold diffusion pro- Hy = HOU,.W,) + pcodW, — W¥,) (1a)
ceeds densely covers the energy surface [4]. Coupling one A p NP> P K P P

oscillator pair to a second pair provides the dimension- Hg = H;,r,)(lp/,\lfp/) + U, cos¥, — ¢,). (1b)
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HY is the pendulum Hamiltonian above. The couplingthey coupleio, is very small when the energy difference

in (1b), where U, = 2V_,.,11, is the term ofg'/)  is greater than Qi) [18]. For states close in energy2

p/ . . . .
contributing most to the stochastic layer near the separatri?ppears in terms of the time integral of the autocorrelation

of H,(,r,); b = Qpt + ¢, where Q, is the driving unction of Vs as

frequency, taken to be the slower aofi and w); the o2 ~p! f dt(8Va(t) - 6V4(0))/4mp,
conjugate ofp, isT,.. The couplingVy = ucog¥, — . 2)
W¥,) between the pairs drives the Arnold diffusion. To = Dy/4mps,

make the stochastic pump Hamiltonian time-independen
the form of the classical pump model we quantize below
we add toH, + Hg the termH. = Qpljp/ + ‘I’prlpr, and

define the time-independent stochastic pump Hamiltonia
asH = Hy + Hg + Hc.

%here ps is the density of irregular states given be-
low. The second equality relatgsds (5V(t) - 5V 4(0))
fo the diffusion coefficient for the actiod. This re-
sult is seen upon time integrating= —w, sin¥, +
& sin(¥, — ¥,), where only the second term contributes

To quantize the stochastic pump model we adopt th over long times. The mean square displacemehisithen
semiclassical assumption [16] that the eigenstateH pf obtained from the time integration gf sin(¥, — W),

or H,  can be characterized as either regular or irregular; ich when(I,. ¥ ) execute motion in the irreqular sepa-
Irregular states correspond to phase space regions th P Ep 9 P

are irregular; their density is primarily determined by re rllx rée_glt_)ln S '? tt|1e'form hOf a;]MeIr;)lkov-Arno_Iddmte-'
the relative phase space density of the stochastic regi raf. 4|T(|)ar .c?dcu ations that a¥e ee_nhca;]rrle out in
around the separatrix of the resonance Hamiltonian. T eIS.'k[ ,10] y'ﬁj . an exlpreSS|on de, W'th the same
have irregular states, the classical irregular region o enl ov—Arng integral. - Starting from the time inte-
an oscillator pair must be>i2. Following standard 9raton OfVa = pcoSW), — W), we see precisely that

. : . . ;= [ dt{8V4(t) - 8V4(0)). Following the analysis of
fggcgg%fjst%vggng] f(ljre ]c(?b[)g’i]étt\il\r/](; ?r? etzalgor:z(i?[imsrlée OfIl:e)ef. [10], we find the action diffusion coefficient for the
Ce ™2/2 whereC = 87TU,,,Q’,,/Q§; 0o = 0/ woy is pumped oscillator pair to be
the ratio of the high, driving frequency), of the D; = [167*R* exp(—mR) Q" 3)
pump oscillator pair producing the stochastic layer, to . _ _ o
the low, resonant frequency, = (@, W,)"/? of the ~The ratio of frequencies of pairsp and p’ is
same pair; andU, is the amplitude of the driving R = wo,/®op; p is the strength of coupling between the
term in (1b). Within this framework we can write Oscillator pairs. The density of statgs coupled byV,
the Hamiltonian for the coupled oscillator system in aiS the density of pump states. We determine first the size
product basis of states that are either regular-requlaPf the classical stochastic region féf, [4]; then p; is
irregular-irregular, or regular-irregular. The latter is theObtained from the semiclassical Weyl relation
subspace in which Arnold diffusion occurs. Irregular - 2 -2 3 _
states are modeled by the Gaussian orthogonal ensemble ps = A8mQ, Uy O XH=7Q0/2). “)
(GOE) [17]. The stochastic pump Hamiltoniaffi =  The classical phase space density of the stochastic region
H, + Hg + Hc is quantized by coupling irregular states is largely unaffected by the small coupling [10].

at those pumped sites, the regular Stateg_Hérf), that The matrix model introduced to quantize the stochastic
are nearest-neighbor in action. The stochastic pumpump modelis reminiscent of a 1D wire. Since the pump
HamiltonianH is written in the basis of the eigenstates of €nergies at all the sites along the wire are energy levels
Hy=H — V4. Hy contains the energy levels of a block- of a member of the GOE, and shifted from site to Site,
diagona| matrix, each block being the same member of it is reasonable to assume the energies at each site are
the GOE, providing the irregular states; plus the diagonaf@ndom and nearly independent, coupled by the random
matrix E,1, whereE, is the energy of therth pumped €lements ofV,. With this decorrelation assumption, it is
level. The pumped levels are obtained from the Mathiei@Pparent that our model is equivalent to a 1D disordered
equation for the nonlinear resonance. For librationalire. The eigenstates of a disordered wire are localized.
levels, we can approximaté, as fiwg,a + fitdg,a?, The localization lengtl; has been determined by Efetov

wherewy, =~ (@,W,)"/? is the local frequency and,, [12] using the nonlineas- model to be&; = wi~'D;p;.

the local nonlinearity. Rotational levels approagh =  From (2),; for our model is¢7*o;p7. Combining (3)
m®,a? asE, surpasses the separatrix eneigy, and ~and (4),
\évoeuslzsume only rotational levels of the same symmetry &~ 3 Aexd—70/2), (5)

The size of the elements of, are determined from where A = 1287*u2U,R*w,,, and Q = Qp + 2R.
a semiclassical relation between off-diagonal matrix eleThe extent of diffusion depends on how small the value
ments of an operator, and the Fourier transform of its clasef / is compared to eXp-7Q/2). To scale&; with the
sical autocorrelation function [18]. The variane€ of  actions of the coupled oscillators, we compatewith
the elements oV, depends on the energies of the stategshe width of the resonance zone of the pumped oscillator
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pair, which isL, = i~ '4(W,/@,)"/?. The criterion for ~results. The elements &f, couple the levels of one site

¢ = L, is met when to those of its neighboring sites; they are Gaussian ran-
i < Bexp(—mQ/4), (6) dom, and the same value is taken for elements coupling

the same pair of irregular states between different pairs of

whereB = 472 uR+/2w,, U,,,/wSP,W,,. The criterion of  coupled regular sites. We compare the averggef H at

Eq. (6) is illustrated in Fig. 1, which shows the valuesdifferentA = o2p2 and/iw, with that for the disordered

of i and Q where diffusion a length at least the size wire at corresponding.. The wire is also modeled by 80

of the resonance zone occurs. Notice that to guarantegoupled GOE blocks of dimension 24, each block now a

irregular states in the semiclassical pump model we needifferent member of the GOE. The results are plotted in

to haveli < Cexp(—7Qo/2) as mentioned above. This Fig. 2. We see thaf; consistently follows the wire pre-

is sometimes more restrictive than Eq. (6), though thigliction of £, = 472A.

depends omB and C, since typicallyB < C due to small We also compare results of; for a particular

w. NeverthelessL, serves only as a length scale with coupled oscillator system wittg; for the wire. We

which to compare;, and we must bear in mind the overall have analyzed numerically the Hamiltoniat/ =

localization of the eigenstates. Shuryak [11] presentedi,, + H,, + V, where Hy, = %(p)% + pl) + %(bx4 +

dimensional arguments giving a criterion for W|despreadb—1y4 —2Ax%y?): H,, = lpzz + D(1 — e~*%)2;  and

m 2

Arnold diffusion in quantum mechanical systems that has, — yzx®. H, can be written aso,,I + @,I%, where

the form /i < b exp(—aQo). However, his dimensional ,, — ,./2D and@,, = —w2/2D. Thousands of eigen-

arguments do not give the length along a resonance withigtates of#,, were previously analyzed and, to within a

which quantum Arnold diffusion is actually confined. ~  few percent, unambiguously assigned as either regular or
We turn now to some numerical studies of the semiclasyregular [19]. The product of the irregular statesHf,

sical pump model. The aim is to check the extent to whictyng the (regular) states @f,, make up the basis of the

the actual correlated matrix model of the stochastic pum ump model. We thus compuge for thoseH eigenstates
is similar to that of the uncorrelated disordered wire useqnat project primarily(>0.9) onto the irregular-regular

for the above estimates. We compare localization Iengtth) subspace. In our computatiohs= 7 /4, w,, = 1.2,
of the random matrix model of the pump with those for theg “— 104 and A = 0.16. For these parameters, we

corresponding wire. In our numericH, of the stochastic  ¢|assified about 35% of the states in the range 501—580
pump consists of a diagonal pdty, which is the solu- a5 jrregular, comparable to the estimate #a5% of the

tion to 80 blocks of dimension 24, each the same membe&gnergy surface of the corresponding classical system is
of the GOE. The eigenvalues of each block labeled bYrreguIar [20]. We coupled,, states 501580 to6 H,,

a correspond to those of the pump states at each pumpegtes, comprising théf basis. Elements of are set by
site. The density of pump states at each gitejs known  aqjystingy. For differentA, determined numerically for
from Wigner's semicircle law for the GOE. Taking the g " \ye plot & in Fig. 2, where we see close agreement

pumped states to be librational, the energy of the regulafjth the wire prediction. If we separate regular and
state at each site is E, = hwga + A2dpa?. The non-

linearity /i@, was set to values of 10705, to —1074S,,
whereS; = p!; all values in this range yielded the same log &

2
In#
0 No Diffusion
glrmmm e Thick layer result 1
-10 e T T T T T
- - [
/I -~
15 x4
II,/
_20.:; Diffusion along resonance zone 4 -
; 2 -1 1
' og A
25 0.02 0.04 0.06 0.08 0.1
Q? FIG. 2. Plotted are the average localization lengths at different

A = 02 p? obtained numerically for the random matrix models

FIG. 1. Curves represent criterion for quantum Arnold diffu- of the stochastic pump Hamiltonian; a coupled oscillator
sion a given length [Eq. (6)], in terms of and Q2; Q2 Hamiltonian (see text); and equivalent disordered wire. Filled
varies linearly with the coupling/,, between oscillators pump- circles are results for the wire model. Pump model results
ing diffusion. The couplingu between the coupled oscillator are plotted foriw, = 0.1 (square); 0.3 (open circle); 0(X);
pairs is 1072 (short dashes)]03 (dashes), and0~* (line). and 1.1 (triangle). Oscillators results include IR and RR states
The uppermost curve illustrates criterion for “thick layer” dif- (4), and IR states onlyS). The solid line is¢; predicted
fusion (see text). analytically for a disordered wire.
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irregular states ofy, and couple only irregular states of fusion appears in the nuclear motion of molecules. Perry

Hy, to H,,, we get similar results, also plotted in Fig. 2. et al’s analysis of rotation-vibration coupling in ethanol

Without separation, we find some eigenstategiofre a [22], for instance, can be interpreted as quantum thick layer

mixture of regular-regular (RR) and IR states. Still, theArnold diffusion.

projection onto either IR or RR i5-0.9 for about 99% In conclusion, we have introduced a semiclassical quan-

of the eigenstates aff with the smallesty plotted, and tization of the stochastic pump model of Arnold diffusion.

about 75% with the largest, so that any ambiguity from We have argued that the semiclassical model is equivalent

tunneling between IR and RR states is relatively small. to a 1D disordered wire. Numerical results for the pump
We finally consider the effect of additional oscilla- model support this correspondence. The states of the pump

tors in the general model. Introducing a third pair of model are thus localized for any finile The localization

coupled oscillators, which satisfy a resonance conditiorlength is expressed in terms bfand classical properties

w!/w) = s"/r" wherer” ands” are small integers, we of the model.

couple the oscillator pairs by = V,,,, + V0 + V0. The authors acknowledge support from NSF Grant

The largest contribution to Arnold diffusion in this model No. CHE 95-30680.
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