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An exact inversion procedure for obtaining the central and spin-orbit potential from phase shi
fixed energy is described. The method, based on Sabatier interpolation formulas, reduces the no
problem to linear-algebraic equations. We have tested the method with a Woods-Saxon potentia
a strong spin-orbit component. [S0031-9007(97)03688-0]
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The problem of constructing the interaction betwee
two particles, whether with or without spin, from sca
tering data at fixed energy has been extensively inve
gated in the past three decades due to its great significa
in diverse fields ranging from nuclear [1], atomic [2
and molecular [3] physics. There are two different a
proaches to the problem. The most common one is
local inversion approach which is either a phenomenolo
cal potential-parameter fitting [4] or an iterative perturb
tion method [5]. With the local inversion approach, on
starts from some initial guess and the results are often
pendent on the starting point. The questions of existen
uniqueness, and ill-posedness are simply ignored. A m
rigorous and global approach is to use inverse scatter
theory (IST) [6], which establishes a connection betwe
the potential and the scattering function by a certain line
equation [7]. An important tool in IST for fixed energy
is a set of coupled, linear-algebraic equations called
Regge-Newton equations or the Newton interpolation fo
mula [8]. By solving these equations, one can constru
the central potential from the scattering function direct
for spinless scattering systems. For the spin-orbit int
action, an analog of the Regge-Newton equations kno
as the Sabatier interpolation formulas was first found
Sabatier [9]. However, the Sabatier interpolation form
las are nonlinear and not readily useful for inversion ana
sis. Hooshyar [10] developed a scheme which brings
Sabatier interpolation formulas closer to realistic applic
tions. Hooshyar’s procedure is rather complicated as
requires solutions to coupled, linear integral equations a
a nonlinear Reccati equation, apart from a set of infin
coupled linear-algebraic equations.

An approximate inversion method for the spin-orb
interaction has been proposed recently by Leebet al. [11].
Their procedure, based on the second-order distorted w
Born approximation, allows the separation of the cent
and the spin-orbit potentials from the phase shifts. Aft
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the separation, one can employ any inversion method
the central potential on two decoupled sets of phase sh
The procedure works well for weak spin-orbit interaction
and high energies. This scheme has been applied
nucleon-alpha spin-orbit potentials at low energies [12]

In this Letter, we present an exact inversion schem
for the spin-orbit interaction. The main achievement
this scheme is the transformation of the Sabatier interp
lation formulas, which are nonlinear, into finite, couple
linear-algebraic equations. The scheme is computati
ally simple as the whole procedure requires only solutio
to linear-algebraic equations. In this scheme, we assu
that the central and the spin-orbit potentials are know
from a certain radial distance to infinity. This assum
tion is similar to the one made in the modified Newto
method for the inversion of central potentials [14] an
usually does not pose any difficulty in practice.

Before presenting our method, we note a very rece
paper by Eberspächeret al. [13] reporting an extended
and modified Newton-Sabatier method for the couple
channel case. Unlike the spin-orbit interaction whic
depends linearly on the angular momentum, the poten
for the coupled-channel scattering is a matrix independ
of the angular momentum. It is hoped that in the futu
our inversion scheme for the spin-orbit interaction an
Eberspächer’s inversion scheme for the potential mat
can be integrated together to apply to coupled-chan
scattering systems with spin.

Now let us consider the scattering of a spin–1
2 particle

by a central and a spin-orbit field. The potential has t
form

V srd ­ EcmfUcsrd 1 2l ? sUssrdg . (1)

Since the energy is fixed, it is convenient to introduc
r ­ kr. The dimensionless, reduced radial Schröding
equation is given by
"

d2

dr2
1 1 2 Uc 1

1
2

Us 7 lUs 2
l2 2 s1y4d

r2

#
x6

l srd ­ 0 , (2)

with l ­ , 1 1y2. Sabatier gives an interpolation formula [9] for the regular solutionsx
6
l srd for Uc andUs:
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x6
l srd ­ F6srdclsrd 1

X
m[S

cmsrdc 0
lsrd 2 clsrdc 0

msrd
l2 2 m2

h
bmx6

m srd 2 a6
m x7

m srd
i 2m

p
, (3)

with S ­ h 1
2 , 1, 3

2 , 2, 5
2 , 3, . . .j and

F6srd ­ exp

∑
6

Z r

0

t
2

Usstd dt

∏
­

2
pr

a0x0srdc0srd 1
2

pr

X
m[S

h
a6

m x7
m srd 1 bmx6

m srd
i
cmsrd . (4)
e
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The functions clsrd are the regular solutions [with
clsrd °! s 1

2 prd1y2s r

2 dlyGs1 1 ld as r °! 0] for a
given reference central potentialU0 andbl are determined
by U0. For U0 ­ 0, bl are simply

bl ­

Ω
1 for positive integerl
0 otherwise

l [ S . (5)

Note that Eqs. (3) and (4) involve physical valu
of l h 1

2 , 3
2 , 5

2 , . . .j as well as nonphysical values ofl

h0, 1, 2, . . .j. From Eq. (4), the spin-orbit potential i
given by

Us ­ 6
2
r

sF6d0

F6
, with F1F2 ­ 1 . (6)

Defining

G6srd ­
2

pr

X
m[S

m

h
a6

m x7
m srd 2 bmx6

m srd
i
cmsrd ,

(7)

Uc can be expressed by

Uc ­ U0 1
1
2

Us 2
1
r

sG1F2 1 G2F1d0

1
r2

4
U2

s . (8)

From Eqs. (6) and (8), it can be seen that bothUc andUs

vary asr21 towards the origin. Let us assume that t
reference potential is a Coulomb potential with Coulom
phase shiftssl and Coulomb parameterh. The wave
functions then have the asymptotic forms asr °! `:

clsrd ­ sin

∑
r 2

1
2

µ
l 2

1
2

∂
p 1 sl 2 h ln 2r

∏
,

(9)

x6
l srd ­ c6

l sin

∑
r 2

1
2

µ
l 2

1
2

∂
p

1 d6
l 2 h ln 2r

∏
. (10)

The task for the inversion is first to find the potent
coefficients a6

l from the phase shiftsd6
l for the full
542
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potential and then to determine the wave functionsx
6
l

from the potential coefficientsa6
l . Oncea6

l andx
6
l are

determined,Us can be constructed viaF6. Similarly one
can obtainUc via F6 andG6. The Sabatier interpolation
formula, Eq. (3), does not give the solution becau
the functionsF6srd are unknown and sought. In the
following, we show how we finda6

l andx
6
l .

Assuming thatnUs­ Uc 2 U0d and Us are zero for
r . r0, thenx

6
l srd is a linear combination of the regular

and irregular solutions, denoted asFlsrd and Glsrd,
respectively, of the reference potentialU0. So we have
for r . r0,

clsrd ­ Flsrd , (11)

x6
l srd ­ c6

l f cossd6
l 2 sldFlsrd

1 sinsd6
l 2 sldGlsrdg , (12)

F6srd ­ exp

∑
6

Z r0

0

t
2

Usstd dt

∏
­ h6

with h1h2 ­ 1 . (13)

Our assumption also makes all phase shiftsd
6
l with

l . lmax negligible. lmax is related to r0 and the
strength of the potential. SoS becomes a finite set:S ­
h 1

2 , 1, 3
2 , 2, 5

2 , 3, . . . , lmaxj. Using the following abbrevia-
tions:

A6
l ­ a6

l c7
l h7, (14)

C6
l ­ c6

l h7, (15)

T6
l srd ­ cossd6

l 2 sldFlsrd 1 sinsd6
l 2 sldGlsrd ,

(16)

Wlmsrd ­
cmsrdc 0

lsrd 2 clsrdc 0
msrd

l2 2 m2
, (17)

Eq. (3) gives4lmax 1 2 linear equations forA6
l andC6

l

at r . r0, with l [ h0j < S:
Flsrd ­ C6
l T 6

l srd 1
X

m[S

2m

p
Wlmsrd fT 7

m srdA6
m 2 bmT 6

m srdC6
m g . (18)
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Also Eq. (4) gives

pr

2
­ A6

0 T0srdF0srd 1
X

m[S

fT7
m srdA6

m 1 bmT6
m srdC6

m gFmsrd . (19)
l

e
(1
a

l

To determine the8lmax 1 2 coefficients A6
l and C6

l

(except for A6
0 ), Eq. (18) may be solved at two radia

distancesr0 andr1s. r0d. ThenA6
0 can be determined

using Eq. (19). The coefficientsA6
l and C6

l obtained
from Eqs. (18) and (19) depend onr0 andr1. To reduce
the dependency ofr, one may use a linear least-squar
method for the overdetermined system, Eqs. (18) and
at N (.2) points. Also we have found that Eq. (18) is
highly unstable system and the coefficientsC6

l for largel

tend to have very high values. We suggest a way to so
w

e

t
e

s
9)

ve

the problem is the following. Lettingr °! `, Eq. (18)
becomes

1 ­ C6
l expsid6

l d 1
X

m[S

fA6
m expsid7

m d

2 C6
m bm expsid6

m dg exp

∑
i

p

2
sl 2 md

∏
Llm , (20)

with

Llm ­
2m

p

sin p

2 sl 2 md
l2 2 m2 s1 2 dl

md 1
1
2

dl
m . (21)

The real and imaginary parts of Eq. (20) are
lutions.
cosd6
l ­ C6

l 1
X

m[S

A6
m cos

∑
sd7

m 2 d6
l d 1

p

2
sl 2 md

∏
Llm 2 C6

m bm cos

∑
sd6

m 2 d6
l d 1

p

2
sl 2 md

∏
Llm , (22)

sind6
l ­

X
m[S

2A6
m sin

∑
sd7

m 2 d6
l d 1

p

2
sl 2 md

∏
Llm 1 C6

m bm sin

∑
sd6

m 2 d6
l d 1

p

2
sl 2 md

∏
Llm . (23)

We have found that the use of one of Eqs. (22) and (23) together with Eq. (18) gives much more stable so
The reason is that Eq. (20) provides an exact relation betweenA6

l and C6
l . OnceA6

l and C6
l are found, thea6

l are
determined from Eqs. (14) and (15) with the use ofsh6d2 ­ C7

0 yC6
0 .

With a6
l determined, we next findx6

l srd for all r and forl [ h0j < S. Inserting Eq. (4) into Eq. (3) gives4lmax

homogeneous linear equations forx0srd and4lmax values ofx6
l srd with l [ S

F0srdFlsrda0x0srd ­
X

m[S

hfmrWlmsrd 2 FlsrdFmsrdga6
m x7

m srd

1 fdmlpr221 2 bmFlsrdFmsrd 2 mrbmWlmsrdgx6
m srdj . (24)
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Equation (24) definesx6
l up to an arbitrary constant.

To convert Eq. (24) into an inhomogeneous equation,
divide both sides of the equation byx0. Then we obtain
x

6
l yx0 for each r. x0 can be determined by putting

x
6
l yx0 into Eq. (4) and using the relationF1F2 ­ 1.

With the absolute values ofx
6
l anda6

l for l [ h0j < S,
we construct firstUs from Eq. (6) and thenUc from
Eq. (8).

The method just described is applicable for compl
potentials. For simplicity, we tested the method with
real Woods-Saxon potential:

Vcsrd ­ 2V0

∑
1 1 exp

µ
r 2 R

a

∂∏21

, (25)

Vsosrd ­ 2Vso
1
r

d
dr

∑
1 1 exp

µ
r 2 R

a

∂∏21

, (26)

with the parameters

V0 ­ 50 MeV, Vso ­ 15 MeV,

R ­ 3 fm, a ­ 0.6 fm , (27)

and with the reference potential being zero. The pha
shifts (lmax ­ 40.5) from the Woods-Saxon potential a
Ecm ­ 150 MeV have been used as input to our proc
e

x
a

se

-

dure. r0 and r1 have been set to 26 and 26.3, resp
tively. The inverted central and spin-orbit potentials a
shown in Fig. 1. We can see from the figure that the
production is quite good from 2 fm outward. For radi
smaller than 2 fm, the inverted potentials are oscillato
The oscillatory behavior exists in inversion methods e
ploying interpolation formulas like the Newton metho
[15], the modified Newton method [14], and the couple
channel modified Newton method [13]. In fact, the osc
lations are relatively small in our test case compared
those from the other methods. At the moment, we are
vestigating ways to further reduce these oscillations.

In conclusion, we have demonstrated a proced
for an exact spin-orbit inversion. Applications of th
method to experimental data are under investigation.
experimental measureables are the unpolarized differe
cross section and polarization data (Sherman function
analyzing power), not the phase shifts. Obtaining
phase shifts from the the experimental measureable
an important issue from the inversion point of view
For elastic scattering, the generalized unitarity theor
provides a way to extract phase shifts from the differen
cross section and polarization data [16]. In the near fut
we will report our inversion analysis on electron-Xen
543
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FIG. 1. The comparison of the inverted (dashed curves) a
original (solid curves) potentials with centralVc and spin-orbit
Vso components atEcm ­ 150 MeV.

elastic scattering at 5 eV. It will be the first inversio
analysis in which the interaction with central and spi
orbit components is deduced from experimental da
without using any free parameters.
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