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Extraction of Spin-Orbit Interactions from Phase Shifts via Inversion
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An exact inversion procedure for obtaining the central and spin-orbit potential from phase shifts at
fixed energy is described. The method, based on Sabatier interpolation formulas, reduces the nonlinear
problem to linear-algebraic equations. We have tested the method with a Woods-Saxon potential with
a strong spin-orbit component. [S0031-9007(97)03688-0]

PACS numbers: 03.65.Nk, 02.30.—f, 03.80.+r, 24.10.—i

The problem of constructing the interaction betweenthe separation, one can employ any inversion method for
two particles, whether with or without spin, from scat- the central potential on two decoupled sets of phase shifts.
tering data at fixed energy has been extensively investithe procedure works well for weak spin-orbit interactions
gated in the past three decades due to its great significanead high energies. This scheme has been applied to
in diverse fields ranging from nuclear [1], atomic [2], nucleon-alpha spin-orbit potentials at low energies [12].
and molecular [3] physics. There are two different ap- In this Letter, we present an exact inversion scheme
proaches to the problem. The most common one is théor the spin-orbit interaction. The main achievement of
local inversion approach which is either a phenomenologithis scheme is the transformation of the Sabatier interpo-
cal potential-parameter fitting [4] or an iterative perturba-lation formulas, which are nonlinear, into finite, coupled
tion method [5]. With the local inversion approach, onelinear-algebraic equations. The scheme is computation-
starts from some initial guess and the results are often dealy simple as the whole procedure requires only solutions
pendent on the starting point. The questions of existencéo linear-algebraic equations. In this scheme, we assume
uniqueness, and ill-posedness are simply ignored. A morhat the central and the spin-orbit potentials are known
rigorous and global approach is to use inverse scatterinfjom a certain radial distance to infinity. This assump-
theory (IST) [6], which establishes a connection betweertion is similar to the one made in the modified Newton
the potential and the scattering function by a certain lineamethod for the inversion of central potentials [14] and
equation [7]. An important tool in IST for fixed energy usually does not pose any difficulty in practice.
is a set of coupled, linear-algebraic equations called the Before presenting our method, we note a very recent
Regge-Newton equations or the Newton interpolation forpaper by Eberspacheast al. [13] reporting an extended
mula [8]. By solving these equations, one can construcand modified Newton-Sabatier method for the coupled-
the central potential from the scattering function directlychannel case. Unlike the spin-orbit interaction which
for spinless scattering systems. For the spin-orbit interdepends linearly on the angular momentum, the potential
action, an analog of the Regge-Newton equations knowfor the coupled-channel scattering is a matrix independent
as the Sabatier interpolation formulas was first found byof the angular momentum. It is hoped that in the future
Sabatier [9]. However, the Sabatier interpolation formu-our inversion scheme for the spin-orbit interaction and
las are nonlinear and not readily useful for inversion analyEberspacher’s inversion scheme for the potential matrix
sis. Hooshyar [10] developed a scheme which brings thean be integrated together to apply to coupled-channel
Sabatier interpolation formulas closer to realistic applicascattering systems with spin.
tions. Hooshyar’'s procedure is rather complicated as it Now let us consider the scattering of a spﬁrparticle
requires solutions to coupled, linear integral equations anldy a central and a spin-orbit field. The potential has the
a nonlinear Reccati equation, apart from a set of infiniteform
coupled linear-algebraic equations.

An approximate inversion method for the spin-orbit V(r) = Ecm[Uc(r) + 21 - sU,(r)]. Q)
interaction has been proposed recently by Leeal. [11].

Their procedure, based on the second-order distorted wa&nce the energy is fixed, it is convenient to introduce
Born approximation, allows the separation of the centrap = kr. The dimensionless, reduced radial Schrodinger
and the spin-orbit potentials from the phase shifts. Af}elequation is given by

d2 1 /\2 - 1 4 +
|:—-|—1—UC—I—EUS?LAUS—IO—E/)}X)L(P):O, (2

with A = € + 1/2. Sabatier gives an interpolation formula [9] for the regular solutip$p) for U. andUs:
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. . (A (p) — a(p)y)(p) . Lo, 2
XE(0) = F(hin(p) + 3 L2 S e k2 (o) - axE (o) 22, 3)
MES M T
with § = {3,1,3,2,3,3,.. } and
+ p ! 2 2 * =+ *
F~(p) = eXp[ifo EUS([)dt:| = W—pao/\/o(p)lﬂo(ﬁ) + W—gs[aﬂxﬂ(p) + b,LX,L(p)]%(p)- 4)

The functions ,(p) are the regular solutions [with
alp) — (mp)2(5))/T(1 + 1) as p — 0] for a
given reference central potentid), andb, are determined
by Uy. ForU, = 0, b, are simply

b _{1 for positive integen
L=

0 otherwise AES.

(5)

potential and then to determine the wave functigns
from the potential coefficientsy. Oncea) and y, are
determined[/, can be constructed via=. Similarly one
can obtainU. via F* andG=. The Sabatier interpolation
formula, Eqg. (3), does not give the solution because
the functionsF=(p) are unknown and sought. In the
following, we show how we findiy and y; .

Note that Egs. (3) and (4) involve physical values Assuming thatAU(= U, — U,) and U, are zero for

of A {%%%} as well as nonphysical values of
{0,1,2,.. }.

given by
>/
U, = L2 (F+), with FTF~ = 1. (6)
p F=
Defining
+ 2 + I +
G*(p) = == > ulaixi(p) = buxi(p) [pu(p).
mp MHES
7)
U, can be expressed by
U.= U + lUX - l(G*F’ + G FYY
2 p
P2 2
+ = U;.

From Egs. (6) and (8), it can be seen that bGthand U,

p > po, thenyy (p) is a linear combination of the regular

From Eq. (4), the spin-orbit potential is and irregular solutions, denoted dgg\(p) and G,(p),

respectively, of the reference potentld). So we have
for p > po,

Ua(p) = Falp), (11)
Xy (p) = cilcodsy — o) Falp)
+sin(8;y — o)GA(p)]. (12)
F*(p) = exp{i j;pn é U, (1) dtj| = h*
with »*A~ = 1. (13)

Our assumption also makes all phase shiffs with
A > Amax Negligible. Anax is related to py and the
stren%th oSf the potential. S® becomes a finite sef =
1

vary asr~! towards the origin. Let us assume that the{3.1,5,2.3.3...., Amag. Using the following abbrevia-
reference potential is a Coulomb potential with Coulombtions:

phase shiftsor, and Coulomb parametey. The wave
functions then have the asymptotic forms@s— oo;

Ia(p) = sin[p — %(A — %)77 + o) — ‘r]|n2pi|,
)

N L1
Xi(p) = c; S'”[P 2</\ 2>7T

+5/\+—n|n2pi|. (20)

(14)

Q
>+
o
>4
=
+

(15)

— o)) Falp) + sin(dy — o)Galp),
(16)

Ty (p) = coddy

Gu(p)i(p) — ¥a(p)yr),(p)
A2 — MZ

The task for the inversion is first to find the potential Eq. (3) gives4Amax + 2 linear equations foA; and Cj

coefficientsa; from the phase shiftsS; for the full |

Falp) =

MES

542
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atp > po, with A € {0} U S:

— b, T, (p)C;]. (18)
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Also Eq. (4) gives

7p

L= ATTo(p)Folp) + DT (PIAL + buT; (P)C1Fulp). (19)

MES

To determine the8Ama + 2 coefficients Ar and C; | the problem is the following. Letting — o, Eq. (18)
(except forAy), Eq. (18) may be solved at two radial becomes

distancespy and p1(> po). ThenA; can be determined - - . .

using Eq. (19). The coefficientds and Ci obtained | = Cx eXMidy) + D[4} explis,)

from Egs. (18) and (19) depend @g andp;. To reduce #ES

the dependency gf, one may use a linear least-squares — Cibﬂ eXp(i5,f)] ex;{il (A — M)}LMM (20)
method for the overdetermined system, Egs. (18) and (19\k/ith 2

at N (>2) points. Also we have found thét Eq. (18) is a 20 SinT(A — w) 1

highly unstable system and the coefficieats for large A Ly, = s ST T B 1-8H+ =62 (21)
tend to have very high values. We suggest a way to solve T )\2_ - p? g 2

| The real and imaginary parts of Eq. (20) are

+ + + T + ™ + + + T
cosé, = Cy + ZE:SA; co{(éM - 8;) + 7()\ - M)}LM - CMcho{(cSM - 8;) + 7(/\ - M)}LM, (22)
y73
. + + . T + T + . + + o
siné; = ZE:S —A, sm[(aﬂ - 6;) + 7()\ — M)}LM + C;bﬂsm[(Sl; - 6;) + 7()\ — M)}LM. (23)
o

We have found that the use of one of Egs. (22) and (23) together with Eq. (18) gives much more stable solutions.
The reason is that Eq. (20) provides an exact relation betwigeand C;. OnceA, andC, are found, thez; are
determined from Egs. (14) and (15) with the usd/of)? = Cy /Cq .

With ) determined, we next fing; (p) for all p and forA € {0} U S. Inserting Eq. (4) into Eq. (3) give$ nax
homogeneous linear equations faf(p) and4 Ay values ofy, (p) with A € §

Fo(p) Falplaoxo(p) = D AlupWau(p) — Falp) Fulp)la; x;(p)

MES
+ [8uamp2™" = buFa(p) Fulp) — mpbuWau(p)lx, (p)}. (24)

Equation (24) definesy; up to an arbitrary constantl. dure. po and p; have been set to 26 and 26.3, respec-
To convert Eq. (24) into an inhomogeneous equation, wéively. The inverted central and spin-orbit potentials are
divide both sides of the equation ky. Then we obtain shown in Fig. 1. We can see from the figure that the re-
X1 /xo for eachp. xo can be determined by putting production is quite good from 2 fm outward. For radius

X /xo into Eq. (4) and using the relatioR*F~ = 1.  smaller than 2 fm, the inverted potentials are oscillatory.
With the absolute values of, anday for A € {0} U S,  The oscillatory behavior exists in inversion methods em-
we construct firstU, from Eq. (6) and thenU,. from  ploying interpolation formulas like the Newton method

Eq. (8). [15], the modified Newton method [14], and the coupled-

The method just described is applicable for complexchannel modified Newton method [13]. In fact, the oscil-
potentials. For simplicity, we tested the method with alations are relatively small in our test case compared to

real Woods-Saxon potential: those from the other methods. At the moment, we are in-
~1 vestigating ways to further reduce these oscillations.
r — .
Ve(r) = —Vo[l + ex;( )} , (25) In conclusion, we have demonstrated a procedure

1 for an exact spin-orbit inversion. Applications of the
_ 1 d r— R\| method to experimental data are under investigation. The
Vio(r) = 2Vso - _[1 * exr( a )} - (26) experimental measureables are the unpolarized differential

with the parameters cross section and polarization data (Sherman function or
analyzing power), not the phase shifts. Obtaining the
Vo = 50 MeV, Vso = 15 MeV, phase shifts from the the experimental measureables is

R = 3fm, a=06fm. @7) an important issue from the inversion point of view.

For elastic scattering, the generalized unitarity theorem
and with the reference potential being zero. The phasprovides a way to extract phase shifts from the differential
shifts (A\max = 40.5) from the Woods-Saxon potential at cross section and polarization data [16]. In the near future
E.n = 150 MeV have been used as input to our proce-we will report our inversion analysis on electron-Xenon
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FIG. 1. The comparison of the inverted (dashed curves) and
original (solid curves) potentials with centrél}. and spin-orbit [9]
Vs components ak.,, = 150 MeV.

elastic scattering at 5 eV. It will be the first inversion
analysis in which the interaction with central and spin-
orbit components is deduced from experimental data
without using any free parameters.
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