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J. Zak
Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel 32000

(Received 15 November 1996)

The Balian-Low theorem is applied to the motion of an electron in thexy plane with a magnetic
field B perpendicular to this plane. The energy spectrum for this problem is the Landau levels.
shown that the eigenfunctions for the Landau levels cannot be chosen sufficiently localized in
to make both uncertaintiesDx and Dy finite. A similar result holds for the coordinates of the orb
center. With this restriction on the localization, complete orthonormal sets are defined on von Neu
lattices. [S0031-9007(97)03641-7]

PACS numbers: 03.65.Db, 71.23.An, 72.15.Rn
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The Balian-Low [1,2] theorem relates to a set of o
thogonal states on a von Neumann lattice. This is a re
angular lattice in the phase plane with a unit cell of areah.
Such a lattice was first introduced by von Neumann [3]
the xy plane and independently by Gabor [4] in the time
frequency plane. The Balian-Low theorem can be fo
mulated in the following way. Given a square integrab
function csxd, one builds out of it by translations in the
phase plane a von Neumann setcmnsxd, where the indices
m, n label the number of the unit cell on the von Neuman
lattice in the phase planefc00sxd ; csxdg. m and n as-
sume all integer values0, 61, . . . . The theorem then
claims that if cmnsxd are orthogonal tocm0n0 sxd for all
m, n fi m0, n0 it follows that at least one of the two quan
tities kx2l or kp2l in the statecsxd diverges (the triangular
brackets denote the expectation value). Although disco
ered by physicists, the Balian-Low theorem has beco
of widespread interest in the engineering literature of s
nal processing [5].

In physics the von Neumann lattice has been known
appear in a natural way in the motion of an electron
a constant magnetic field$B [6]. In particular, this has
to do with the construction of magnetic Wannier func
tions [7,8]. There is an interesting connection betwe
the Balian-Low theorem and the properties of magne
Wannier functions in thexy plane for the case when$B is
parallel to thez axis, despite the fact that the latter prob
lem has 2 degrees of freedom. This can be seen in
0031-9007y97y79(4)y533(4)$10.00
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following way. Instead of the pairs of the conjugate coo
dinatesxpx andypy one can choose two other pairs: thex
andy components of the velocityyx , yy (which will later
be connected to the operatorsPW and W, respectively)
and the componentsX, Y of the magnetic orbit center.
The Hamiltonian does not depend on theXY degree of
freedom. They are constants of motion, and they det
mine the infinitesimal magnetic translations [9]. Corre
spondingly, the commuting finite translations forX andY
create a von Neumann lattice in the phase plane of
orbit center [6]. These same translations when cons
ered in thexy plane are nothing else but the commutin
magnetic translations (translations accompanied by gau
shifts) [9], which are used in the construction of magnet
Wannier functions [10–12]. As was already mentione
when only a magnetic field is present and there is no p
riodic potential, the Hamiltonian does not depend on t
coordinatesX andY of the orbit center [13]. Each Lan-
dau level is then infinitely degenerate with respect to t
location of this center and one can therefore apply t
Balian-Low theorem to it.

In this Letter we show how the Balian-Low theorem
can be directly applied to the wave functions of a sing
Landau level. When the motion is restricted to thexy
plane perpendicular to the magnetic field$B the energy
spectrum consists of discrete levels which carry the na
of Landau [14]. The wave function for each Landa
level , can be written either asc,sx, yd or f,sW , Xd.
© 1997 The American Physical Society 533
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In the latter form it separates into a product functio
with one factorg,sW d depending onW [its relation to
yy is given in Eq. (11)] and the other onexsXd on X
only. Since the Hamiltonian does not depend on the or
centerX, the factorxsXd in the wave function can be
chosen completely arbitrarily and one can then apply
the XY degree of freedom the Balian-Low theorem. Th
is done by applying toxsXd the complete commuting
set of translations in theXY plane. They create the
von Neumann set, and an explicit condition is given o
xsXd for the set to be orthogonal. For this purpose th
kq representation [12] turns out to be convenient. Havin
carried everything out in theWXcoordinates, one can then
transform the results into thexy plane. An analysis of
the Balian-Low theorem for an arbitrary Landau level
presented.

We start by formulating the Balian-Low theorem in th
XY plane of the orbit center. For this we replaceY by
PX ­ sh̄yl2dY with l2 ­ h̄cyeB being the square of the
cyclotron radius. X and PX are a couple of conjugate
coordinates withfX, PXg ­ ih̄. The shift operatorDsad
is used [15]

Dsad ­ expsaa1 2 apad , (1)

wherea is the annihilation operator

a ­
1

l
p

2

µ
X 1

i
h̄

l2PX

∂
(2)

anda is a number

a ­
1

l
p

2

µ
X 1

i
h

l2PX

∂
. (3)

Here X and PX are expectation values of the operato
X and PX in the eigenstate ofa. a1 is the Hermitian
conjugate ofa andap is the complex conjugate ofa. A
von Neumann set in theXPX phase plane is [3]

xmnsXd ­ DsamndxsXd , (4)

whereamn is obtained froma in Eq. (3) by settingX ­
md, PX ­ h̄s2pydd with d a constant. xsXd in Eq. (4)
is an arbitrary square integrable function. The properti
of the von Neumann set in Eq. (4) are determined by t
initial function xsXd. The Balian-Low theorem states tha
if the functions in Eq. (4) are orthogonal formn fi m0m0,
then at least one of the uncertaintiesDX or DPX in the
xsXd state diverges. An example of a normalizedx

function that leads to an orthogonal von Neumann set
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Eq. (4) is

xsXd ­

8<: 1
p

d
, jXj , dy2

0, jXj . dy2 .
(5)

For the x in Eq. (5), DX ­ dy
p

12 and DPX ­ `, in
agreement with the Balian-Low theorem.

The condition onx for an orthogonal von Neumann
set [Eq. (4)] was first formulated in thekq representation
[6] (see also Ref. [1]). This condition is that the absolu
value of thekq function,Csk, qd, is constant [16]

jCsk, qdj ­ const, (6)

where (a is an arbitrary constant)Csadsk, qd andxsXd are
related in the following way [12]

Csadsk, qd ­

µ
a

2p

∂1y2 X
n

eikanxsq 2 nad . (7)

It is easy to check that the functionxsXd in Eq. (5)
leads tojCsddskqdj ­ const. A normalizedkq function
that satisfies Eq. (6) is necessarily a pure phase factor

Csk, qd ­
1

p
2p

expfiwsk, qdg , (8)

wherewsk, qd is real. In theX representation the condi-
tion given by Eq. (6) [or Eq. (8)] assumes the followin
form [Eq. (7) is used]:

a
X
n

xpsX 2 nadxsX 2 na 2 ,ad ­ d,0 . (9)

Again it is easy to check that the function in Eq. (5) wit
d ­ a satisfies Eq. (9).

This is as far as the Balian-Low theorem goes. No
we shall connect it with the dynamics of an electron
a magnetic fieldB. When the motion is in thexy plane
with the magnetic field$B in thez direction, Schrödinger’s
equation assumes the form [the Landau gauge$A ­ s0, Bxd
is chosen]∑

p2
x

2m
1

fpy 1 sh̄yl2dxg2

2m

∏
csx, yd ­ Ecsx, yd ,

l2 ­
h̄c
eB

.
(10)

Equation (10) is written in thexy representation. For the
magnetic field problem it is convenient to work in theWX
representation according to the transformation
sed
W ­
ml2

h̄
yy ­

l2

h̄

µ
py 1

h̄
l2

x

∂
, PW ; myx ­ px ,

X ­
l2

h̄

µ
px 1

h̄
l2

y

∂
, PX ­ py ­

h̄
l2

Y .

(11)

Here WPW denotes the velocity degree of freedom andXPX the orbit center degree of freedom (as was already u
above). The relation between the wave functioncsx, yd in the xy representation and the wave functionfsWXd in the
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WX representation is [17]

csx, yd ­
1

2pl2

Z Z
exp

∑
2

i
l2

sxy 1 WX 2 xX 2 yW d
∏

fsW , Xd dW dX . (12)
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From Eqs. (10) and (11) it follows that the Hamiltonia
depends on the degree of freedomWPW only (it does not
depend on the orbit center). The wave functionfsW , Xd
can therefore be chosen as a product function

f,sW , Xd ­ g,sW dxsXd , (13)
where, labels the Landau levels. On the other hand, t
magnetic translations depend on the orbit center opera
X andPX only [9,12]. In particular, the commuting finite
magnetic translations inx andy directions can be written
in the following way [6]

txsdd ­ exp

∑
i
h̄

µ
px 1

h̄
l2

y

∂
Nd

∏
; exp

µ
iX

2p

d

∂
,

tysNdd ­ exp

µ
i
h̄

pyd

∂
; exp

µ
i
h̄

PXd

∂
,

(14)

whereN is an integer which is defined by the following
rationality condition [9]

N ­
hcye
Bd2 ­

2pl2

d2 . (15)

This relation has a simple meaning of the ratio of th
elementary fluxonhcye to the flux of the magnetic field
B through a unit cell of aread2 [d is an arbitrary constant
[18], see Eq. (4)]. As is seen from Eq. (14), the magne
translations depend only on theXPX degree of freedom of
the orbit center. We can therefore use directly the resu
in Eqs. (1)–(4) for constructing a von Neumann set for
Landau level, by replacingxsXd in Eq. (13) byxmnsXd in
Eq. (4). We get

f,mnsW , Xd ­ g,sW dxmnsXd . (16)
Now, whenxsXd satisfies the condition given by Eq. (6
or (9), the set of functions in Eq. (16) for each Lan
dau level , is orthogonal. By using the transforma
tion in Eq. (12) we get the orthonormal von Neuman
set c,mnsx, yd in the xy representation [the operators i
Eq. (11) are used]

c,mnsx, yd ­ s21dmn exp

µ
i

l2
yN dn

∂
3 c,sx 1 N dn, y 1 dmd . (17)

The functionc,sx, yd in Eq. (17) is found according to
Eqs. (12) and (13), and can be given the two alternat
forms

c,sx, yd ­
1

p
2p

Z
expsiykdg,skl2 1 xdFx skd dk

­
exps2ixyyl2d

l2
p

2p
(18)

3
Z

exp

µ
i

l2
xz

∂
Fg

µ
z 2 y

l2

∂
xszd dz ,

where Fx and Fg are the Fourier transforms ofx and
g, respectively [g and x are the functions in Eq. (13)].
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It should be pointed out that the condition given b
Eq. (6) [or Eq. (9)] is necessary and sufficient for th
von Neumann set [Eqs. (16) or (17)] for each Landa
level , to be orthogonal.

By using the results for the single degree of freedo
XPX fPX ­ sh̄yl2dYg, the Balian-Low theorem implies
that the coordinatesX andY of the orbit center in the state
c, [Eq. (18)] for a magnetic field cannot both be we
localized, or in a more precise language, at least one of
two uncertaintiesDX and DY in the c, state [Eq. (18)]
diverges. It is interesting to point out that for obtainin
the result there is no need to go to the configuration pla
xy [see Eq. (12)]. However, since the coordinatesx and
y of the electron in a magnetic field are related to th
operatorsWPW and XPX fPX ­ sh̄yl2dY g in Eq. (11),
one has

x ­ W 2 Y , y ­ X 2
l2

h̄
PW . (19)

Bearing in mind that the uncertaintiesDW andDPW are
finite in the state given by Eq. (13) [or alternatively, b
Eq. (18)], we come to the conclusion [by using Eq. (18
that at least one of the uncertaintiesDx or Dy diverges
in the statec,sx, yd of Eq. (18). This also means that th
electron in a magnetic field cannot be well localized
both thex andy directions.

It is of interest to compare the consequences of t
Balian-Low theorem with the known results for th
Wannier function in a magnetic field [8,19]. In Ref. [8
it was shown that Wannier functions for a Bloch electro
in the xy plane, with the magnetic fieldB perpendicular
to the plane, cannot fall off at infinity faster thanr22

sr2 ­ x2 1 y2d. In Ref. [19] Wannier functions with a
r22 falloff were actually constructed for such a two
dimensional problem where only a magnetic field
present. One can see that the Balian-Low theorem
Landau levels is in good agreement with the results
Refs. [8] and [19]. In order to see it, we notice that a
a consequence of the Balian-Low theorem the quan
kx2 1 y2l ­ kr2l diverges (the angular brackets deno
the expectation value), because eitherkx2l or ky2l has to
diverge. This divergence ofkr2l also follows when the
function falls off asr22 at infinity, like in Ref. [19].

It should, however, be pointed out that the Balian-Lo
theorem is completely general in nature. For examp
whenxsXd is given by Eq. (5), thenc0sx, yd in Eq. (18)
assumes the form (for the lowest Landau level,, ­ 0)

c0sx, yd ­

µ
1

4p3d2l6

∂1y4

exp

µ
2

ixy
l2

∂
3

Z dy2

2dy2
exp

∑
i

l2
xy 2

sy 2 zd2

2l2

∏
dz . (20)
535
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In deriving Eq. (20), use was made of the second line
Eq. (18). For largey, Eq. (20) becomes

c0sx, yd ,
µ

d2

4p3l6

∂1y4

exp

µ
ixy
l2

2
y2

2l2

∂
3 sin

µ
xd
2l2

∂ , µ
xd
2l2

∂
. (21)
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inThis function has a1
x falloff in the x direction and is

Gaussian in they direction.
Finally, it can be directly checked that the

von Neumann set in Eq. (17) is orthonormal, whe
c,sx, yd is given by Eq. (18). In the particular case of the
localized function in Eq. (20), the explicit orthonormal
von Neumann set is [see Eq. (17)]
c0mnsx, yd ­
s21dmn

s4p3d2l6d1y4
exp

µ
2

i
l2

xy 2
i

l2
xmd

∂ Z dy2

2dy2
exp

∑
i

l2
sx 1 nNddz 2

sy 1 md 2 zd2

2l2

∏
dz . (22)
f

,

f.
.

,

al
In conclusion, the Balian-Low theorem was applied
the motion of an electron in thexy plane, with a magnetic
field perpendicular to this plane. By using this theore
it was shown that orthonormality on a von Neuman
lattice and localizability are incompatible features. I
particular, it is shown that even for the best localize
eigenfunctions for the Landau levels the uncertaintiesDx
and Dy can never both be made finite. On a qualitativ
level, incompatibility of orthonormality and localizability
is not an unexpected feature for wave functions
quantum mechanics [20]. In this Letter we derive fo
the first time a precise quantitative result for Landa
level wave functions in a magnetic field. Although th
proof was carried out in the Landau gauge, the res
that Dx and Dy can never both be finite in a Landau
level statec,sx, yd [see Eq. (17)], for any,, is gauge
independent. This is seen from the expression of the wa
function in theWX representation [Eq. (16)]. The part o
the wave functionxmnsXd in Eq. (16) that leads to the
von Neumann set does not depend on the gauge beca
theX coordinate does not appear in the Hamiltonian of th
problem [Eq. (10)].

As is well known, in the symmetric gauge the wav
function for any Landau level can be chosen well loca
ized in bothx and y directions [13]. However, for such
a well localized wave function, the von Neumann set
Eq. (17) will not be orthogonal.
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