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The Balian-Low theorem is applied to the motion of an electron inxph@lane with a magnetic
field B perpendicular to this plane. The energy spectrum for this problem is the Landau levels. It is
shown that the eigenfunctions for the Landau levels cannot be chosen sufficiently localized in order
to make both uncertaintieAx and Ay finite. A similar result holds for the coordinates of the orbit
center. With this restriction on the localization, complete orthonormal sets are defined on von Neumann
lattices. [S0031-9007(97)03641-7]

PACS numbers: 03.65.Db, 71.23.An, 72.15.Rn

The Balian-Low [1,2] theorem relates to a set of or-following way. Instead of the pairs of the conjugate coor-
thogonal states on a von Neumann lattice. This is a recdinatesxp, andyp, one can choose two other pairs: the
angular lattice in the phase plane with a unit cell of drea andy components of the velocity,, v, (which will later
Such a lattice was first introduced by von Neumann [3] inbe connected to the operatoPs, and W, respectively)
the xy plane and independently by Gabor [4] in the time-and the componentX,Y of the magnetic orbit center.
frequency plane. The Balian-Low theorem can be for-The Hamiltonian does not depend on tK& degree of
mulated in the following way. Given a square integrablefreedom. They are constants of motion, and they deter-
function ¢ (x), one builds out of it by translations in the mine the infinitesimal magnetic translations [9]. Corre-
phase plane a von Neumann ggf, (x), where the indices spondingly, the commuting finite translations randY
m, n label the number of the unit cell on the von Neumanncreate a von Neumann lattice in the phase plane of the
lattice in the phase planeiy(x) = ¢(x)]. mandn as- orbit center [6]. These same translations when consid-
sume all integer value$, =1,.... The theorem then ered in thexy plane are nothing else but the commuting
claims that if ¢,,,(x) are orthogonal taj, . (x) for all  magnetic translations (translations accompanied by gauge
m,n # m',n’ it follows that at least one of the two quan- shifts) [9], which are used in the construction of magnetic
tities (x2) or ( p?) in the statey(x) diverges (the triangular Wannier functions [10—12]. As was already mentioned
brackets denote the expectation value). Although discowwhen only a magnetic field is present and there is no pe-
ered by physicists, the Balian-Low theorem has becomeodic potential, the Hamiltonian does not depend on the
of widespread interest in the engineering literature of sigeoordinatesX andY of the orbit center [13]. Each Lan-
nal processing [5]. dau level is then infinitely degenerate with respect to the

In physics the von Neumann lattice has been known tdéocation of this center and one can therefore apply the
appear in a natural way in the motion of an electron inBalian-Low theorem to it.

a constant magnetic field [6]. In particular, this has In this Letter we show how the Balian-Low theorem
to do with the construction of magnetic Wannier func-can be directly applied to the wave functions of a single
tions [7,8]. There is an interesting connection betweerandau level. When the motion is restricted to the

the Balian-Low theorem and the properties of magnetiplane perpendicular to the magnetic fighd the energy
Wannier functions in thety plane for the case wheh is spectrum consists of discrete levels which carry the name
parallel to thez axis, despite the fact that the latter prob- of Landau [14]. The wave function for each Landau
lem has 2 degrees of freedom. This can be seen in tHevel ¢ can be written either agy(x,y) or ¢¢(W, X).
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In the latter form it separates into a product functionEg. (4) is

with one factory,(W) depending orW [its relation to RS X| < d/2
vy is given in Eq. (11)] and the other one(X) on X x(X) Jd’ (5)
only. Since the Hamiltonian does not depend on the orbit 0, IX| > d/2.

center X, the factor y(X) in the wave function can be
chosen completely arbitrarily and one can then apply tdor the x in Eq. (5), AX = d/+/12 and APx = o, in
the XY degree of freedom the Balian-Low theorem. Thisagreement with the Balian-Low theorem.
is done by applying toy(X) the complete commuting  The condition ony for an orthogonal von Neumann
set of translations in theXY plane. They create the set [Eq. (4)] was first formulated in theg representation
von Neumann set, and an explicit condition is given on[6] (see also Ref. [1]). This condition is that the absolute
x (X) for the set to be orthogonal. For this purpose thevalue of thekq function, C(k, g), is constant [16]
kqg representation [12] turns out to be convenient. Having _
carried everything out in thé&/X coordinates, one can then IC(k, g)I = const 6)
transform the results into they plane. An analysis of where @ is an arbitrary constanf@(k, ¢) and y(X) are
the Balian-Low theorem for an arbitrary Landau level isrelated in the following way [12]
presented. 1/2

We start by formulating the Balian-Low theorem in the C9k,q) = <i> Zeik‘l”x(q —na). (7)
XY plane of the orbit center. For this we replageby
Px = (/)Y with A> = Jic/eB being the square of the |t is easy to check that the functiog(X) in Eg. (5)
cyclotron radius. X and Py are a couple of conjugate |eads to|C@(kq)| = const. A normalizeckq function

COOFd'SG[lE? withX, Px] = ii. The shift operatoD(a)  that satisfies Eq. (6) is necessarily a pure phase factor
is use

D) = explaa’ — a*a). W Clk.a) = 5= extfipk.a)]. ®)

wherea is the annihilation operator . . .

where o (k, q) is real. In theX representation the condi-
<X + L /\ZPX> ) tion given by Eq. (6) [or Eq. (8)] assumes the following
form [Eq. (7) is used]:

a

Af
and« is a number

“ aZ)(*(X —na)y(X — na — €a) = d¢p. (9)
X + —AZP ) 3 !
)n/— ( * ®)
Here X and Px are expectation values of the operators
X and Py in the eigenstate oh. «a* is the Hermitian
conjugate ofa and «™ is the complex conjugate af. A
von Neumann set in thEPx phase plane is [3]

Again it is easy to check that the function in Eq. (5) with
d = a satisfies Eq. (9).

This is as far as the Balian-Low theorem goes. Now
we shall connect it with the dynamics of an electron in
a magnetic field8. When the motion is in thay plane
with the magnetic field in the z direction, Schrddinger’s

X) = D(«a X 4 equation assumes the form [the Landau gatige (0, Bx

Xomn( (atmn) x (X)), (4) he form [the Land (0, Bx)
. . . - is chosen]

wherea,,, is obtained fromx in Eq. (3) by setting = s -

md, Px = h(2m/d) with d a constant. y(X) in Eq. (4) [P_x N [py + (7/A%)x] }//(x ) = Epley)

is an arbitrary square integrable function. The properties 2m 2m Y Y

of the von Neumann set in Eq. (4) are determined by the e (20)

initial function y(X). The Balian-Low theorem states that 2N=—

if the functions in Eq. (4) are orthogonal fern # m'm’ ¢B

then at least one of the uncertainti®&X or APy in the  Equation (10) is written in the&y representation. For the
x(X) state diverges. An example of a normalizgd magnetic field problem it is convenient to work in théx
function that leads to an orthogonal von Neumann set imepresentation according to the transformation

mA? A2 h B
WZ—vy:f py+ﬁx» Py = mv, = py,
(11)

A? h h
X=E<Px+pY>, Px=py =37

Here WPy, denotes the velocity degree of freedom an®ly the orbit center degree of freedom (as was already used
above). The relation between the wave functibfx, y) in the xy representation and the wave functi¢twX) in the
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WX representation is [17]

1 i
P(x,y) = Y f] exp{—p(xy + WX — xX — yW)}d)(W,X)deX. (12)

I
From Egs. (10) and (11) it follows that the Hamiltonian It should be pointed out that the condition given by
depends on the degree of freed®¥#®y, only (it does not Eq. (6) [or Eq. (9)] is necessary and sufficient for the
depend on the orbit center). The wave functib#,X)  von Neumann set [Egs. (16) or (17)] for each Landau
can therefore be chosen as a product function level ¢ to be orthogonal.

(W, X) = ye(W)x(X), (13) By using the results for the single degree of freedom
where¢ labels the Landau levels. On the other hand, thé{Px [Px = (i/A*)Y], the Balian-Low theorem implies
magnetic translations depend on the orbit center operatotgat the coordinateX andY of the orbit center in the state
X andPyx only [9,12]. In particular, the commuting finite ¢ [EQ. (18)] for a magnetic field cannot both be well
magnetic translations ir andy directions can be written localized, or in a more precise language, at least one of the

in the following way [6] two uncertaintiesAX and AY in the ¢, state [Eq. (18)]
i h 27 diverges. It is interesting to point out that for obtaining
x(d) = eXF{E <Px + pY>Nd} = ex;(zX 7) the result there is no need to go to the configuration plane
) . xy [see Eqg. (12)]. However, since the coordinatesnd
i i (14) , U
7,(Nd) = ex;(—pyd> = ex[<—PXd>, y of the electron in a magnetic field are related to the
h h operatorsWPy and XPx [Px = (h/A?)Y] in Eq. (11),
whereN is an integer which is defined by the following one has
rationality condition [9] A2
N—hc/€—27T/\2 15 x=W—-Y, y=X—;PW. (19)
Bd? dr - (15)

efBearing in mind that the uncertaintidsW and APy are
o inite in the state given by Eq. (13) [or alternatively, by
elementary qu>_<orhc/e to th(—g qu_x of the magnetic field Eq. (18)], we come to the conclusion [by using Eq. (18)]
B through a unit cell of ared” [d is an arbitrary constant -+ o+ |east one of the uncertaintids or Ay diverges

[18], see Eq. (4)]. As s seen from Eq. (14), the magnetiGy yhe statey,(x, y) of Eq. (18). This also means that the
translations depend only on they degree of freedom of  gjactron in a magnetic field cannot be well localized in
the orbit center. We can therefore use directly the result§oih, thex andy directions.

in Egs. (1)—(4) for constructing a von Neumann set for a
Landau level, by replacing (X) in EqQ. (13) byx».(X)in  gajian-Low theorem with the known results for the

EQ. (4). We get Wannier function in a magnetic field [8,19]. In Ref. [8]
¢€mn(W.»X) = W(W)X@(X) " (16) it was shown that Wannier functions for a Bloch electron
Now, wheny (X) satisfies the condition given by Eq. (6) in the xy plane, with the magnetic fiel8 perpendicular
or (9), the set of functions in Eq. (16) for each Lan-tg the plane, cannot fall off at infinity faster than?
dau level ¢ is orthogonal. By using the transforma- (,2 — 2 4 y2). In Ref. [19] Wannier functions with a
tion in Eq. (12) we get the orthonormal von Neumann, -2 fa|loff were actually constructed for such a two-
set e (x,y) in the xy representation [the operators in dimensional problem where only a magnetic field is

This relation has a simple meaning of the ratio of th

It is of interest to compare the consequences of the

Eq. (11) are used] . present. One can see that the Balian-Low theorem for
_ mn ! Landau levels is in good agreement with the results of

mn\As = (-1 eX[<— Nd > 9 9 . .
Yemn (5, y) = (=1) PR Refs. [8] and [19]. In order to see it, we notice that as

a consequence of the Balian-Low theorem the quantity
X gulx A+ Ny + dm).  (17) (x* + y%) = (r?) diverges (the angular brackets denote
the expectation value), because eithed) or (y?) has to
diverge. This divergence df-?) also follows when the
1 function falls off asr 2 at infinity, like in Ref. [19].
Pe(x,y) = — ] expliyk)ye(kA? + x)F (k) dk It should, however, be pointed out that the Balian-Low
Vam theorem is completely general in nature. For example,
exp(—ixy/A%) when y(X) is given by Eq. (5), themy(x, y) in Eq. (18)

The function,(x,y) in Eq. (17) is found according to
Egs. (12) and (13), and can be given the two alternativ
forms

- FEN (18) assumes the form (for the lowest Landau levef 0)
. B 1 1/4 ixy
8 f ex"(ﬁ“)Fyﬁ—zy)X(Z’dz’ oly) = <747r3d2)\6> exﬁ(‘?)
. d/2 . _\2
where F, and F, are the Fourier transforms of and % ex ny b -2 dz. (20)
v, respectively ¥ and y are the functions in Eq. (13)]. —d)2 A2 2A2
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In deriving Eq. (20), use was made of the second line irThis function has a% falloff in the x direction and is

Eq. (18). For largs, Eq. (20) becomes Gaussian in thg direction.
Finally, it can be directly checked that the
Jolx )~< d? )1/4e ixy y_2> von Neumann set in Eq. (17) is orthonormal, when
olx,y 47316 A2 22 Ye(x,y) is given by Eq. (18). In the particular case of the
d d localized function in Eq. (20), the explicit orthonormal
X sin<m> / <ﬁ> (21) von Neumann set is [see Eq. (17)]
|
(=1mn p( i i )fd/z p[ i (y + md — z)z}
= ——xy — — —(x + - )
Yomn(x,y) G ex vy xmd an ex IE (x + nNd)z Y dz (22)
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