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Backflow in a Fermi Liquid
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We calculate the backflow current around a fixed impurity in a Fermi liquid. The leading contribution
at long distances is radial and proportional igr?. It is caused by the current induced density
modulation first discussed by Landauer [IBM J. Res. D223 (1957)]. The familia/»* dipolar
backflow obtained in linear response is only the next-to-leading term, whose strength is calculated
here to all orders in the scattering. In the charged case the condition of perfect screening gives rise
to a novel sum rule for the phase shifts. Similar to the behavior in a classical viscous liquid, the
friction force is due only to the leading contribution in the backflow while the dipolar term does not
contribute. [S0031-9007(97)04866-7]

PACS numbers: 67.20.+k, 05.30.Fk

The calculation of backflow in liquids is one of the stan- systematic force exerted on the impurity by the moving
dard problems in hydrodynamics, determining, e.g., théermions. It is shown that only the leadidgr¢~' term
Stokes friction in a classical viscous liquid [1] or the prop- of the backflow current contributes to the force, a situation
erties of rotons and impurities in superfluid Helium 4 [2]. which is completely analogous to that in a classical viscous
For the case of a Fermi liquid, the backflow around daliquid.
slowly moving massive impurity is discussed in the clas- Let us consider a fixed scattering center at the origin
sic text by Pines and Nozieres [3]. Within linear responsevhich is characterized by a spherically symmetric inter-
they show that the backflow is proportional to the densityaction potentialV/ (x). In the frame where the impurity is
response function and dipolar in character. As pointed ouat rest, the Fermi system is flowing past with asymptotic
by these authors, the dipolar form may be derived from aelocity v # 0. The unperturbed current density is there-
rather simple geometrical argument: Indeed, the backfloviore j(x)|o = nv, with n the equilibrium number density.
current outside the impurity should have zero divergenc@ecause of scattering off the impurity, the actual current
being a stationary flow and zero curl because the pertulaensity}(;c) differs fromn by a backflow currens j(x).
bation is longitudinal. The only vector function obeying To |owest order inv the Fourier transfornd;(g) of the
both conditions, however, is a dipole. For a neutral Fermpgckflow is of the form
liquid the strength of the dipole is given by the compress- >, .
ibility times the Fourier transform of the interaction at zero 8j(q) = (g - v)g — v], 1)
momentum. In the charged case the dipolar backflow haghereg is the unit vector in the direction @j. Indeed,

a universal amplitude. This is a result of perfect screenthe vector in Eq. (1) is uniquely determined by the require-
ing which requires that the backflow identically cancels thement that it is linear iny and the zero divergence condi-
longitudinal part of the impurity current [3]. tiong - 6j(g) = 0 due to the stationarity of the flow. For

In this Letter we reconsider the backflow problem in asmall velocities the backflow pattern is thus completely
Fermi liquid, going beyond the linear response treatmentdetermined by the scalar functidr{g). As pointed out
Starting with the simple case of a noninteracting Fermi gasabove, a treatment of the interaction poteriiét) in linear
we show that the leading term at long distances is not theesponse gives rise to a dipolar backflow which is charac-
dipolar backflow but a radial contribution decaying like terized by lim_, h(q) = ho. The associated dimension-
1/r?"Vin d dimensions{ = 2,3 in the following). Itis less constank, is equal todn/du - V(g = 0) in the case
proportional to the impurities transport cross section anaf a neutral Fermi liquid [3]. Here, the compressibility
thus is not contained in a linear response calculation wherén/d u is just theq — 0 limit of the general density re-
the interaction only appears linearly. The novel term hasponse functiony(g). For an impurity with charg&, the
nonzero curl and is directly related to the asymmetry inproducty (¢)V(q) is replaced byZ[e ~'(g) — 1]with e(q)
density around localized scatterers in the presence of a fihe static dielectric constant [3]. As a result of the perfect
nite transport current, discussed long ago by Landauer [4kcreening conditiorz ~!(¢ — 0) = 0, this leads to a uni-
The result is easily generalized to interacting Fermi lig-versal value:; = —Z for the strength of the dipolar back-
uids, where it applies to the low temperature, collisionlesslow in the charged case.
regime. We also calculate the familiar dipolar backflow In order to discuss the generalization of these results
to all orders in the scattering potential. It is found thatbeyond linear response, still, however, keeping the asymp-
the condition of perfect screening entails a sum rule fototic velocity v small, we start by considering a non-
the scattering phase shifts which is similar to, but differeninteracting Fermi gas. In this case, the backflow can be
from the one, by Friedel [5]. Finally, we determine the calculated analytically from the single particle eigenstates
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(), which are the exact outgoing scattering states in In order to understand its physical origin we consider
V(x). Indeed, describing the finite asymptotic curredit  the current induced padn(x) of the density modulation

by a shifted Fermi distributioif(e; _,,; ) for the incom-  which is caused by the scattering off the impurity. As
ing momentak, the total fermionic current density at zero predicted by Landauer [4] and recently verified experi-

temperature and to linear orderinis given by mentally [7], this modulation asymptotically has the form
) k1 R én(x) ~ —(x - v)/r?! of a dipole potential. Compar-
jx) = (2‘;)[1 f dQuk - v Img; ()Y b (X)li=, - ing the exact expression obtained & (x) in a scattering

theory calculation [8] with our result (6), it turns out that,
(2)  atT =0 and to linear order i, the asymptotic back-

Here d(); denotes an integration over the directions offlow current is simply given by
the unit yectorl%, while the magnitudé = [«| is fixed at 8j(%) = vpon@) - . @
the Fermi wave vectokr. Thus, atl” = 0 and to linear . . _ _
order inv, the backflow is completely determined by the The leading term in the backflow is thus directly propor-
exact scattering states right at the Fermi surface. Clearljional to the current induced density change(x) which
the behavior ofj(¥) at arbitrary distances depends on!S Positive in front and negative behind the scatterer, in
the details ofy(¥). For large distances, however, it is @greement with the intuitive picture developed by Lan-
sufficient to know the asymptotic form of the scatteringdauer [4]. As aresult, the sign of this contribution to the

states. In order to obtain the first two leading contributiong®@ckflow remains unchanged upon going from a repulsive
to ;(;C) it is necessary to expand to an attractive potentid¥(x). This is in contrast to the
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with phase shifts5; and the usual Legendre polynomials - -
P;. This resultis obtained by a straightforward asymptotic —
expansion of the free particle solutions with given angular Ve hN
momentuml. In two dimensions the corresponding result ¥ %
turns out to be

~

. i eikr eikr
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with amplitudesf and f, which are not given here ex-
plicitly. It is now straightforward to insert the asymptotic -
behavior of the scattering states into our expression (2) for ! 7 R '
the current. Apart from the trivial terr, which accounts ! !
for the background current density, the leading contri- > ’
butions to Ini Vi ]|—«, obviously arise from the square N ;-
kpx| f1>/r¢=1 of the outgoing wave and the two interfer-
ence terms linear ii. Now, expi(kr — k - X) is asymp- - ¢ - =
totically proportional to & function,5(Q; — Q,), which
singles out the forward direction= %. Using the optical e AN
theorem, it is straightforward to show that the leading term g >
to the backflow is given by [6] ' !

- K
8j(3) = — 5 5 it

- to9r+ 00 ) (6
Qm)d rd-1 &-2)% + 00 (6 b) . )
with oy = [dQ (1 — k2)| f|* the standard transport . L

cross section. Obviously, the contribution (6) is a purelyF!C- 1. (@) Radial backflow current (% - 9)%/r in d = 2.

- . . - . . . The impurity sits at the center with incoming current from the
radial current which vanishes in the direction perpendiculajgg (b) Dipolar backflow[ — 2(3 - #)]/r2in d = 2 for a

tov _(gee Fig. 1). It has vanishing divergence as it shouldgepulsive impurity at the center. The direction of the flow is
but finite curl. reversed in the attractive case, in contrast to (a).
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dipolar contribution,
P _ ho
Bj(x)ldlp = 2m(d — 1) (8)
which is only the next-to-leading term in an asymptotic
expansion ofj(x¥). Including the subleading amplituge
in (3) and (5), a straightforward but rather tedious calcu
lation indeed gives a contribution t8;(x) of the form
(8) with strength
on 2

hg = — ReVy — —
o T

dx -v)x — v
rd

>

X ch sind;sind;+1siN(6; — 8;+1). (9)
1=0
Herec; =21 + 1or(l + 1)>ind = 2ord = 3, respec-
tively, while

Vo = ] d¥x e ERY (R) g (7) (10)
is essentially the exact forward scattering amplitude
SinceV, reduces td/ (¢ = 0) in Born approximation, the

first term in (9) is the obvious generalization of the linear

ticle states in a local and centrally symmetric potential are
characterized by phase shifis In general, these are func-
tionals of both the energy and the quasiparticle distribution
ni(x) [9]. By Galileian invariance the asymptotic distri-
bution is again a Fermi sphere shifted B} = muv/#h,
with m the bare mass. Af = 0 the energy is fixed atr,

and there are no collisions other than with the impurity.
Moreover, since the deviation af, from equilibrium is
already linear inb, we may neglect the dependencesef
both on energy and om,. The resulting values o, then
define an effective forcé; on the quasiparticles which
appears in the corresponding transport equation [3]. In a
fully quantum mechanical treatment of the Wigner func-
tion ny (%), Ehe associated local particle current must then
be equal tgj; (x) = % Im 4, V.., whereys, are the exact
scattering states in an effective potential with phase shifts
8;. As was shown above;_; andhy can be expressed
completely in terms okr and the scattering phase shifts
6;. The generalization of our results to the interacting case
is therefore rather obvious, provided that the collision term
in the transport equation is irrelevant. Indeed, sikgéas

unchanged, one only needs to replace the phase shifts by
S%ose for quasiparticles. The general form of the back-
flow as determined by (1) and (12) thus applies also in the

response result of Pines and Nozieres [3] to arbitrary ord
in the scattering potential. Itis convenient to also expre

this contribution in terms of the phase shiétsvia

(1) 1 < .
= —— sin2é6,,
3y 2 crsin2d)

0
wherea; =2 — §;9o or 21 + 1 in d =2,3. In addi-

tion to h(()l) there is a second contribution which is at
least of orderV3. It arises from the interference term
(krz/r?) (2 Ref* f,) between the first and next-to-leading

h

(11)

contribution to the outgoing wave. The additional term is

odd underd; — —§; as is the first one, but vanishes in
the case of-wave scattering only.

Including both the radial and dipolar contributions to the
backflow current, the scalar functiéig) defined in (1) has
the general form

. h—
lim h(g) = =~ + ho + ... (12)
q—0 q
with hy = (2,37 /4)noy ind = (2,3). Since
4 <
Ow = 77 sz Sif(8; — 8141 (13)
kr " =0

with b; = 1 or w(I + 1) in d = 2,3, both leading coef-
ficientsh_; andhy can be expressed completely in terms
of the densityn ~ k{ and the scattering phase shifis

In the particular case af = 3 ands-wave scattering with
scattering lengtla, we haveh_; = (kpa)’kr/2 andhy =
kra/m. With kr as the typical scale fog, this shows

interacting case, however, with renormalized parameters
h_y and hy. For a charged impurity in an electron lig-
uid, the perfect screening condition must hold to all orders
in V. As we have seen, this implies a universal dipolar
backflow characterized by, = —Z for an impurity with
chargeZ. Sincehq is completely determined by th&

via (9) and (11), perfect screening gives a nontrivial con-
dition on the scattering phase shifts at a charged impurity.
In the limit §; < 1 it reduces to the well-known Friedel
sum rule [5] which fixes the number of bound states. The
novel sum rule shows that even f@r= 1 no purelys-
wave scattering potential can account for the backflow in
the charged case. Regarding the dominant radial contribu-
tion, the transport cross section appearing in the coefficient
h_1 has to be replaced by its value for the screened poten-
tial V(g)/€(q). In contrast tdu, the strength of the radial
backflow is therefore not universal.

Our discussion up to now has been restricted to the
zero temperature limit, where only properties right at the
Fermi energy are relevant. For the noninteracting prob-
lem, the generalization to finite temperatures is trivial. In-
deed, in this case, the basic result (12) remains valid at
arbitrary temperatures; however, the coefficignts and
ho are averaged over energy with the negatiee\dtive
of the Fermi distribution. In the interacting case the situa-
tion is more complicated since, for nonzero temperatures,

that the strength of the leading radial term is then a factothe quasiparticles have a finite mean free gath vpr ~

kra < 1 smaller than the dipolar contribution. Never-
theless, at long distances it is always the radial term whic
dominates.

In a Fermi liquid the interacting state develops adiabatiif scattering between quasiparticles is negligible.

T2 leading to a nonvanishing kinematic viscosity~
tv¢ of the liquid. The local particle current can therefore
be obtained from effective single particle eigenstates only
In a

cally from the noninteracting one. The resulting quasiparfermi liquid, our results are thus valid only in the low
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temperature, collisionless reginfes R, whereR is the to the additional resistivity is causes. The fact that
size of the impurity. At higher temperatures, one eventuthe dipolar contributions, to the backflow does not
ally enters the hydrodynamic reginfe< R, where colli- contribute to the friction force can be understood most
sions between the fermions play a crucial role. At presenteasily by considering the linear response regime. Indeed,
there seems to be no solution of the backflow problem iro linear order inV the response at low velocities is
this regime, except in the extreme limit of a classical ancpurely reactive [3], while a finite resistivity can only
incompressible liquid with kinematic viscosity. In this  appear at ordeV>. More generally, the coefficiertt, is
case, the problem may be treated by using the linearizeddd in §;, while the force must be an even function of
Navier-Stokes equation with boundary conditidr= 0 at  the phase shifts. This situation is, in fact, very similar to
the surface of the impurity. Taking a sphere of radiys  the case of a classical, incompressible, and viscous liquid.

one finds [1] thaﬁ}(?c) has a contribution proportional to Calculating the frictional forceF = —ngv in a fluid
1/r and a dipolar one. The associated functigqg) as  with kinematic viscosityr which is associated with the
defined in (1) is thus of the form corresponding backflow pattern (14), it turns out [1] that

only the leading termk_, contributes tons = 67 Rnmv
(14) while the dipolar backflow again drops out. Comparing

the Stokes result with that for a Fermi liquid, we see

that the fermionic friction coefficient for a scattering

. h_
lim hq(q) = —22 + hg+ ...
q—0 q

The coefficient of thel /» contribution ish—, = 6mRn  potential with characteristic rangesuch thatr, = 7 R?
while the strength of the dipolar backflow is negative ands equal to that of a classical liquid with finite kinematic
givenbyhg = —mR"n (the corresponding problem intwo viscosity v = vyR/6. With typical valuesR = 2 A

dimensions has no solution, which is known as the Stokegnd v, = 1.5 x 108 cm/s for electrons in metals, we

paradox). In a classical viscous liquid, thér? backflow  gptain v = 0.5 cm?/s which is about fifty times the
found for a Fermi liquid at low temperatures is thus abseni/iscosity of water. From this point of view, therefore,
and replaced by d/r contribution. It is an interesting electrons in metals behave like a rather viscous liquid.
open problem to study how the backflow changes from the |5 summary, we have calculated the backflow and the in-
quantum result (12) to the quite different expression (144yced force due to a fixed impurity in a Fermi liquid at low
for the classical, incompressible case. . velocities and temperature. Similar to the related concept
Finally, we calculate the systematic forde due to  of the Landauer resistivity dipole, our calculation provides
the transfer of momentum between liquid and scatterera microscopic understanding of the basic phenomenon of
Taking the gradient of the interaction energy with respectesidual resistance. It would therefore be very interesting
to the impurity position, it is straightforward to see that  if scanning microscopy, which has been successfully used
[7] to detect the Landauer dipole, could also monitor lo-
F = —[ddx n(@V, V. (15) cal current distributions. Recent progress in this direction
[11] shows that this may be possible in the near future.

Clearly, at zero current? = 0, this force vanishes al-
though the fermion density is not uniform even in this
case. Therefore only the current induced density change
dn(x) contributes taF. For simplicity we consider again
a Fermi gas al' = 0 with scattering statelg+). To low-
est order inv, the force can then be written as
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