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Backflow in a Fermi Liquid
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We calculate the backflow current around a fixed impurity in a Fermi liquid. The leading contribut
at long distances is radial and proportional to1yr2. It is caused by the current induced density
modulation first discussed by Landauer [IBM J. Res. Dev.1, 223 (1957)]. The familiar1yr3 dipolar
backflow obtained in linear response is only the next-to-leading term, whose strength is calcu
here to all orders in the scattering. In the charged case the condition of perfect screening give
to a novel sum rule for the phase shifts. Similar to the behavior in a classical viscous liquid,
friction force is due only to the leading contribution in the backflow while the dipolar term does n
contribute. [S0031-9007(97)04866-7]

PACS numbers: 67.20.+k, 05.30.Fk
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The calculation of backflow in liquids is one of the stan
dard problems in hydrodynamics, determining, e.g., th
Stokes friction in a classical viscous liquid [1] or the prop
erties of rotons and impurities in superfluid Helium 4 [2]
For the case of a Fermi liquid, the backflow around
slowly moving massive impurity is discussed in the clas
sic text by Pines and Nozieres [3]. Within linear respons
they show that the backflow is proportional to the densi
response function and dipolar in character. As pointed o
by these authors, the dipolar form may be derived from
rather simple geometrical argument: Indeed, the backflo
current outside the impurity should have zero divergen
being a stationary flow and zero curl because the pert
bation is longitudinal. The only vector function obeying
both conditions, however, is a dipole. For a neutral Ferm
liquid the strength of the dipole is given by the compres
ibility times the Fourier transform of the interaction at zer
momentum. In the charged case the dipolar backflow h
a universal amplitude. This is a result of perfect scree
ing which requires that the backflow identically cancels th
longitudinal part of the impurity current [3].

In this Letter we reconsider the backflow problem in
Fermi liquid, going beyond the linear response treatme
Starting with the simple case of a noninteracting Fermi ga
we show that the leading term at long distances is not t
dipolar backflow but a radial contribution decaying like
1yrd21 in d dimensions (d ­ 2, 3 in the following). It is
proportional to the impurities transport cross section an
thus is not contained in a linear response calculation whe
the interaction only appears linearly. The novel term h
nonzero curl and is directly related to the asymmetry
density around localized scatterers in the presence of a
nite transport current, discussed long ago by Landauer [
The result is easily generalized to interacting Fermi liq
uids, where it applies to the low temperature, collisionle
regime. We also calculate the familiar dipolar backflow
to all orders in the scattering potential. It is found tha
the condition of perfect screening entails a sum rule f
the scattering phase shifts which is similar to, but differe
from the one, by Friedel [5]. Finally, we determine th
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systematic force exerted on the impurity by the movin
fermions. It is shown that only the leading1yrd21 term
of the backflow current contributes to the force, a situatio
which is completely analogous to that in a classical viscou
liquid.

Let us consider a fixed scattering center at the orig
which is characterized by a spherically symmetric inter
action potentialV s$xd. In the frame where the impurity is
at rest, the Fermi system is flowing past with asymptoti
velocity $y fi 0. The unperturbed current density is there
fore $js$xdj0 ­ n $y, with n the equilibrium number density.
Because of scattering off the impurity, the actual curren
density$js $xd differs fromn $y by a backflow currentd$js $xd.
To lowest order in$y the Fourier transformd$js $qd of the
backflow is of the form

d $js $qd ­ hsqd fsq̂ ? $ydq̂ 2 $yg , (1)

whereq̂ is the unit vector in the direction of$q. Indeed,
the vector in Eq. (1) is uniquely determined by the require
ment that it is linear in$y and the zero divergence condi-
tion $q ? d $js $qd ­ 0 due to the stationarity of the flow. For
small velocities the backflow pattern is thus completel
determined by the scalar functionhsqd. As pointed out
above, a treatment of the interaction potentialV s $xd in linear
response gives rise to a dipolar backflow which is chara
terized by limq!0 hsqd ­ h0. The associated dimension-
less constanth0 is equal to≠ny≠m ? V sq ­ 0d in the case
of a neutral Fermi liquid [3]. Here, the compressibility
≠ny≠m is just theq ! 0 limit of the general density re-
sponse functionxsqd. For an impurity with chargeZ, the
productxsqdV sqd is replaced byZfe21sqd 2 1g with esqd
the static dielectric constant [3]. As a result of the perfec
screening conditione21sq ! 0d ­ 0, this leads to a uni-
versal valuehc

0 ­ 2Z for the strength of the dipolar back-
flow in the charged case.

In order to discuss the generalization of these resu
beyond linear response, still, however, keeping the asym
totic velocity $y small, we start by considering a non-
interacting Fermi gas. In this case, the backflow can b
calculated analytically from the single particle eigenstate
© 1997 The American Physical Society
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cks $xd, which are the exact outgoing scattering states
V s $xd. Indeed, describing the finite asymptotic currentn $y
by a shifted Fermi distributionfse $k2m $yy h̄d for the incom-
ing momenta$k, the total fermionic current density at zer
temperature and to linear order in$y is given by

$js $xd ­
kd21

F

s2pdd

Z
dVk k̂ ? $y Imfcp

k s $xd=xcks $xdgjk­kF .

(2)

Here dVk denotes an integration over the directions
the unit vectork̂, while the magnitudek ­ j $kj is fixed at
the Fermi wave vectorkF . Thus, atT ­ 0 and to linear
order in $y, the backflow is completely determined by th
exact scattering states right at the Fermi surface. Clea
the behavior of$js $xd at arbitrary distances depends o
the details ofcks $xd. For large distances, however, it i
sufficient to know the asymptotic form of the scatterin
states. In order to obtain the first two leading contributio
to $js $xd, it is necessary to expand

cks $xd ! ei $k?$x 1 f
eikr

r
1 f2

eikr

r2 1 . . . (3)

to order1yr2 in three dimensions. Here,f is the standard
scattering amplitude while the coefficient of the1yr2

contribution is given by

f2 ­
i

2k2

X̀
l­0

s2l 1 1dlsl 1 1deidl sindlPlsk̂ ? x̂d (4)

with phase shiftsdl and the usual Legendre polynomial
Pl . This result is obtained by a straightforward asympto
expansion of the free particle solutions with given angu
momentuml. In two dimensions the corresponding resu
turns out to be

cks $xd ! ei $k?$x 1 f
eikr

r1y2
1 f2

eikr

r3y2
1 . . . (5)

with amplitudesf and f2 which are not given here ex-
plicitly. It is now straightforward to insert the asymptoti
behavior of the scattering states into our expression (2)
the current. Apart from the trivial term$k, which accounts
for the background current densityn $y, the leading contri-
butions to Imfcp=cgjk­kF obviously arise from the square
kFx̂j fj2yrd21 of the outgoing wave and the two interfer
ence terms linear inf. Now, expiskr 2 $k ? $xd is asymp-
totically proportional to ad function,dsVk 2 Vxd, which
singles out the forward direction̂k ­ x̂. Using the optical
theorem, it is straightforward to show that the leading ter
to the backflow is given by [6]

d$js $xd ! 2
kd

F

s2pdd

str

rd21
sx̂ ? $ydx̂ 1 Osr2dd (6)

with str ­
R

dVk s1 2 k̂x̂d j fj2 the standard transpor
cross section. Obviously, the contribution (6) is a pure
radial current which vanishes in the direction perpendicu
to $y (see Fig. 1). It has vanishing divergence as it shou
but finite curl.
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In order to understand its physical origin we conside
the current induced partdns$xd of the density modulation
which is caused by the scattering off the impurity. As
predicted by Landauer [4] and recently verified experi
mentally [7], this modulation asymptotically has the form
dns$xd , 2sx̂ ? $ydyrd21 of a dipole potential. Compar-
ing the exact expression obtained fordns$xd in a scattering
theory calculation [8] with our result (6), it turns out that,
at T ­ 0 and to linear order in$y, the asymptotic back-
flow current is simply given by

d$js $xd ­ yFdns$xd ? x̂ . (7)

The leading term in the backflow is thus directly propor-
tional to the current induced density changedns$xd which
is positive in front and negative behind the scatterer, i
agreement with the intuitive picture developed by Lan
dauer [4]. As a result, the sign of this contribution to the
backflow remains unchanged upon going from a repulsiv
to an attractive potentialV s $xd. This is in contrast to the

FIG. 1. (a) Radial backflow current2sx̂ ? $ydx̂yr in d ­ 2.
The impurity sits at the center with incoming current from the
left. (b) Dipolar backflowf $y 2 2sx̂ ? $ydx̂gyr2 in d ­ 2 for a
repulsive impurity at the center. The direction of the flow is
reversed in the attractive case, in contrast to (a).
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dipolar contribution,

d$js $xdjdip ­ 2
h0

2psd 2 1d
dsx̂ ? $ydx̂ 2 $y

rd
, (8)

which is only the next-to-leading term in an asymptoti
expansion of$js$xd. Including the subleading amplitudef2

in (3) and (5), a straightforward but rather tedious calc
lation indeed gives a contribution tod$js$xd of the form
(8) with strength

h0 ­
≠n
≠m

ReV0 2
2
p

3
X̀
l­0

cl sindl sindl11 sinsdl 2 dl11d . (9)

Herecl ­ 2l 1 1 or sl 1 1d2 in d ­ 2 or d ­ 3, respec-
tively, while

V0 ­
Z

ddx e2i $k?$xV s $xdcks $xd (10)

is essentially the exact forward scattering amplitud
SinceV0 reduces toV sq ­ 0d in Born approximation, the
first term in (9) is the obvious generalization of the linea
response result of Pines and Nozieres [3] to arbitrary ord
in the scattering potential. It is convenient to also expre
this contribution in terms of the phase shiftsdl via

h
s1d
0 ­ 2

1
2p

X̀
l­0

al sin2dl , (11)

where al ­ 2 2 dl,0 or 2l 1 1 in d ­ 2, 3. In addi-
tion to h

s1d
0 there is a second contribution which is a

least of orderV 3. It arises from the interference term
skFx̂yrdd s2 Refpf2d between the first and next-to-leading
contribution to the outgoing wave. The additional term
odd underdl ! 2dl as is the first one, but vanishes in
the case ofs-wave scattering only.

Including both the radial and dipolar contributions to th
backflow current, the scalar functionhsqd defined in (1) has
the general form

lim
q!0

hsqd ­
h21

q
1 h0 1 . . . (12)

with h21 ­ s2, 3py4dnstr in d ­ s2, 3d. Since

str ­
4

kd21
F

X̀
l­0

bl sin2sdl 2 dl11d (13)

with bl ­ 1 or psl 1 1d in d ­ 2, 3, both leading coef-
ficientsh21 andh0 can be expressed completely in term
of the densityn , kd

F and the scattering phase shiftsdl.
In the particular case ofd ­ 3 ands-wave scattering with
scattering lengtha, we haveh21 ­ skFad2kFy2 andh0 ­
kFayp. With kF as the typical scale forq, this shows
that the strength of the leading radial term is then a fact
kFa ø 1 smaller than the dipolar contribution. Never
theless, at long distances it is always the radial term whi
dominates.

In a Fermi liquid the interacting state develops adiaba
cally from the noninteracting one. The resulting quasipa
5272
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ticle states in a local and centrally symmetric potential a
characterized by phase shiftsdl. In general, these are func
tionals of both the energy and the quasiparticle distributi
nks $xd [9]. By Galileian invariance the asymptotic distri
bution is again a Fermi sphere shifted byd $k ­ m $yyh̄,
with m the bare mass. AtT ­ 0 the energy is fixed ateF ,
and there are no collisions other than with the impurit
Moreover, since the deviation ofnk from equilibrium is
already linear in$y, we may neglect the dependence ofdl

both on energy and onnk . The resulting values ofdl then
define an effective force$Fk on the quasiparticles which
appears in the corresponding transport equation [3]. I
fully quantum mechanical treatment of the Wigner fun
tion nks $xd, the associated local particle current must th
be equal to$jks $xd ­

h̄
m Im c

p
k =xck , whereck are the exact

scattering states in an effective potential with phase sh
dl. As was shown above,h21 and h0 can be expressed
completely in terms ofkF and the scattering phase shift
dl. The generalization of our results to the interacting ca
is therefore rather obvious, provided that the collision ter
in the transport equation is irrelevant. Indeed, sincekF is
unchanged, one only needs to replace the phase shifts
those for quasiparticles. The general form of the bac
flow as determined by (1) and (12) thus applies also in t
interacting case, however, with renormalized paramet
h21 and h0. For a charged impurity in an electron liq
uid, the perfect screening condition must hold to all orde
in V . As we have seen, this implies a universal dipol
backflow characterized byhc

0 ­ 2Z for an impurity with
chargeZ. Sinceh0 is completely determined by thedl

via (9) and (11), perfect screening gives a nontrivial co
dition on the scattering phase shifts at a charged impur
In the limit dl ø 1 it reduces to the well-known Friede
sum rule [5] which fixes the number of bound states. T
novel sum rule shows that even forZ ­ 1 no purelys-
wave scattering potential can account for the backflow
the charged case. Regarding the dominant radial contri
tion, the transport cross section appearing in the coeffici
h21 has to be replaced by its value for the screened pot
tial V sqdyesqd. In contrast toh0, the strength of the radial
backflow is therefore not universal.

Our discussion up to now has been restricted to t
zero temperature limit, where only properties right at th
Fermi energy are relevant. For the noninteracting pro
lem, the generalization to finite temperatures is trivial. I
deed, in this case, the basic result (12) remains valid
arbitrary temperatures; however, the coefficientsh21 and
h0 are averaged over energy with the negative derivative
of the Fermi distribution. In the interacting case the situ
tion is more complicated since, for nonzero temperatur
the quasiparticles have a finite mean free path, ­ yFt ,
T 22 leading to a nonvanishing kinematic viscosityn ø
yF, of the liquid. The local particle current can therefor
be obtained from effective single particle eigenstates o
if scattering between quasiparticles is negligible. In
Fermi liquid, our results are thus valid only in the low
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temperature, collisionless regime, ¿ R, whereR is the
size of the impurity. At higher temperatures, one event
ally enters the hydrodynamic regime, ø R, where colli-
sions between the fermions play a crucial role. At prese
there seems to be no solution of the backflow problem
this regime, except in the extreme limit of a classical an
incompressible liquid with kinematic viscosityn. In this
case, the problem may be treated by using the lineariz
Navier-Stokes equation with boundary condition$y ­ 0 at
the surface of the impurity. Taking a sphere of radiusR,
one finds [1] thatd$js $xd has a contribution proportional to
1yr and a dipolar one. The associated functionhsqd as
defined in (1) is thus of the form

lim
q!0

hclsqd ­
h22

q2
1 h0 1 . . . . (14)

The coefficient of the1yr contribution ish22 ­ 6pRn
while the strength of the dipolar backflow is negative an
given byh0 ­ 2pR3n (the corresponding problem in two
dimensions has no solution, which is known as the Stok
paradox). In a classical viscous liquid, the1yr2 backflow
found for a Fermi liquid at low temperatures is thus abse
and replaced by a1yr contribution. It is an interesting
open problem to study how the backflow changes from t
quantum result (12) to the quite different expression (1
for the classical, incompressible case.

Finally, we calculate the systematic force$F due to
the transfer of momentum between liquid and scatter
Taking the gradient of the interaction energy with respe
to the impurity position, it is straightforward to see that

$F ­ 2
Z

ddx ns $xd=xV . (15)

Clearly, at zero current$y ­ 0, this force vanishes al-
though the fermion density is not uniform even in thi
case. Therefore only the current induced density chan
dns$xd contributes to$F. For simplicity we consider again
a Fermi gas atT ­ 0 with scattering statesj $k1l. To low-
est order in$y, the force can then be written as

$F ­
kd21

F

s2pdd

Z
dVk k̂ ? $y

m
h̄

k $k 1 j 2 =xV j $k1ljk­kF

(16)

similar to (2). Now the relevant matrix element of=xV
between the exact scattering states is equal to2eFstrskFd ?

k̂. Thus (16) immediately gives a conventional friction
force $F ­ 2hF $y with hF ­ h̄kFnstr [6]. The
fermionic friction coefficient hF is proportional to
the transport cross section which appears in the rad
contributionh21 to the backflow. It is this term which
determines the single impurity contribution to the residu
resistivity [4,8]. This is a simple example of the so-calle
Das-Peierls theorem [10] in electromigration, whic
states that the total force on the impurity is proportion
u-
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to the additional resistivity is causes. The fact that
the dipolar contributionh0 to the backflow does not
contribute to the friction force can be understood most
easily by considering the linear response regime. Indeed
to linear order inV the response at low velocities is
purely reactive [3], while a finite resistivity can only
appear at orderV 2. More generally, the coefficienth0 is
odd in dl, while the force must be an even function of
the phase shifts. This situation is, in fact, very similar to
the case of a classical, incompressible, and viscous liquid
Calculating the frictional force$F ­ 2hS $y in a fluid
with kinematic viscosityn which is associated with the
corresponding backflow pattern (14), it turns out [1] that
only the leading termh22 contributes tohS ­ 6pRnmn

while the dipolar backflow again drops out. Comparing
the Stokes result with that for a Fermi liquid, we see
that the fermionic friction coefficient for a scattering
potential with characteristic rangeR such thatstr ­ pR2

is equal to that of a classical liquid with finite kinematic
viscosity nF ­ yFRy6. With typical valuesR ­ 2 Å
and yF ­ 1.5 3 108 cmys for electrons in metals, we
obtain nF ­ 0.5 cm2ys which is about fifty times the
viscosity of water. From this point of view, therefore,
electrons in metals behave like a rather viscous liquid.

In summary, we have calculated the backflow and the in-
duced force due to a fixed impurity in a Fermi liquid at low
velocities and temperature. Similar to the related concep
of the Landauer resistivity dipole, our calculation provides
a microscopic understanding of the basic phenomenon o
residual resistance. It would therefore be very interesting
if scanning microscopy, which has been successfully used
[7] to detect the Landauer dipole, could also monitor lo-
cal current distributions. Recent progress in this direction
[11] shows that this may be possible in the near future.
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