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Operation of a Highly Overmoded, Harmonic-Multiplying, Wideband Gyrotron Amplifier
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Experiments on a unique, high-power, millimeter wave amplifier (a phase-coherent, harmonic-
multiplying, inverted gyrotwystron) are reported. Superior stability resulted from two factors: (1) inter-
action between a relatively low order waveguide md@@iEy,) and the beam wave at the fundamental
cyclotron frequency in the input section, and (2) an internal mode filter in the highly overn(oEgd,
second harmonic output cavity. Bandwidth was 1.3% with peak gain of 33 dB around 31.8 GHz. The
gain-bandwidth performance is a significant advance for gyrotron amplifiers operating in such high
order modes. [S0031-9007(97)03586-2]

PACS numbers: 84.40.1k, 52.75.Ms

Recently there has been considerable interest in thiges were encountered in developing such amplifier with
development of compact, high-power millimeter wavemore than two cavities; the product of voltage gain and
amplifiers, for advanced radar and communication applibandwidth was 2000 MHz.
cations. Gyrotron oscillators operating in very high or- One path to enhance stability is suggested by studies
der modes have been capable of generating unprecedentafdthe harmonic multiplying, gyroklystron amplifier [11].
levels of average power in the millimeter and submillime-Here the input cavity was operated at one half the output
ter wavelength range [1]; however, they have the disfrequency in the Tl mode while output was at the sec-
advantage of a high magnetic field requirement. Thesend harmonic cyclotron frequency in the gEnode. The
two factors have largely dictated the trends of gyrotrorharmonic-multiplying gyroklystron amplifier has been ex-
amplifier research in recent years. Significant effort haperimentally demonstrated at frequencies near 19.76 GHz
been devoted toward the realization of the high-power cain the high-energy pulse-power regime (437 kV, 232 A),
pability of the gyrotron by utilizing high order modes. with performances pushing the state of the art for am-
On the other hand, harmonic operation has also been trgifiers in terms of the microwave pulse energy divided
subject of active research in order to alleviate the magby output wavelength squared [11,20]; gain was 30 dB in
netic field requirement. However, the extra degrees o& two-cavity configuration although bandwidth was only
freedom provided by both the high order modes and a-0.1%. The harmonic-multiplying gyroklystron has also
multitude of cyclotron harmonics tend to generate spuribeen extensively treated theoretically [21,22].
ous interactions. Mode competition thus constitutes the This Letter reports on the experimental study of a novel
principal physics and technology issue common to hightype of gyrotron amplifier which is hybrid of gyrotron
power and high harmonic gyrotron research and developraveling wave tubggyro-TWT) and a phase-locked gy-
ment. Studies of multimode interaction processes undeawoklystron oscillator with subharmonic injection [23] in a
various conditions have shed much light on the physicgonfiguration of inverted gyrotwystron. Compared to the
of mode competition [2—9] and major advances in high-gyroklystron, it may have significantly wider bandwidth
power and high harmonic gyrotrons have been reportedhile maintaining large gain due to replacing the input
[10-18]. Good performance has been achieved for gyeavity with a traveling wave interaction structure. The
rotron amplifiers operating in relatively low order modesproduct of gain and bandwidth is an index of vital impor-
TEp [3,4,18,19] or Tk, [13]. However, interest in very tance especially for radar applications.
high average power, millimeter-wave amplifiers has led The configuration of the inverted gyrotwystron is
to studies of Tk, mode, two-cavity, gyroklystron ampli- shown schematically in Fig. 1. The device uses a mag-
fiers operating at 35 GHz; this frequency corresponded taetron injection gun (MIG) to produce its electron beam.
the second harmonic of the electron cyclotron frequencyhe drive signal is applied via a Ku-band (14-20 GHz)
in one study [16] and to the first harmonic in anotherinput coupler. By amplification of the drive wave through
study [17]. In the case of the TF second harmonic gy- fundamental harmoni¢s = 1) cyclotron maser interac-
roklystron, performance was limited by instabilities, andtion in the gyro-TWT section, the signal at harmonics of
only modest gain and bandwidth were achieved,; i.e., gaithe drive frequency is nonlinearly generated in the elec-
of 17 dB, bandwidth of 0.1%, and product of voltage gaintron beam. The amplified wave is absorbed in a matched
and bandwidth= 200 MHz. For the Tk, gyroklystron load at the end of the gyro-TWT section, but all harmonic
operating at the fundamental of the electron cyclotron frecomponents in the beam current continue through into the
quency, bandwidth was better (0.6%) but gain was limitedrift section and further develop by ballistic bunching.
to 20 dB in the two-cavity circuit, and practical difficul- Tuning is such that the second harmonic component
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FIG. 1. Two stage, phase-coherent, harmonic-multiplying, inverted gryotwystron (phigtron). Overall length 1.2 m. Arrows
indicate input and output microwave signals.

reaches an optimum value when the beam reaches theBy simple nonlinear arguments, we obtained a relation
output cavity; there a cavity mode is excited which isbetween the drive signal phasg,, and the output signal
resonant at twice the frequency of the driving signal. Thigphaseg,.;, given by

cavity mode rapidly grows through the second harmonic

(s = 2) cyclotron maser interaction. The Ka-band (28— Ap = dou — 2da = const. 1)

40 GHz) output power is axially extracted and travelsthys the output radiation of the inverted gyrotwystron
to the vacuum window while the spent beam dumps incan he phase controlled by the drive source. When
the collector region. The growth process of harmonicyperating conditions are tuned below start oscillation,

components in the beam current is a nonlinear aspeghe device operates as a frequency multiplying amplifier,
of cyclotron maser bunching, and provides the basis fobtherwise, it is a phase-locked oscillator.

harmonic multiplication. This nonlinear behavior has The input coupler/mode launcher shown in Fig. 1

been predicted by both particle-in-cell simulation andincorporates a rectangular-coaxial structure and a novel
analysis (to be published elsewhere [24,25]). Figure Zomplex helix antenna made by winding silver wire
shows the growth of harmonic components along the tUb?diameterz 0.3 mm) on a ceramic substrate with a
axis Which is pre_dicted by a self-c_:or_lsistent large Sign"’_‘bradually changing pitch angle froms°® — 0°. Theo-
code with operating parameters similar to those used ifiically, this structure can excite the coaxial waveguide
the experiment. The fast growth of the third harmonlcTE(C;1 and TE, modes [26], but when the drive frequency
compo.ner!t(s = 3) gives promise of higher harmonic is pelow 16.38 GHz, only the T& can be excited.
multiplication in future studies. The input coupler feeds the gyro-TWT section which
consists of a slotted wall section supporting mixed modes
followed by a smooth waveguide of diameter 40.88 mm
ous b ] o { where the Tk, mode propagates for frequencies above
) OyroTWISection i Drift Section /Ouput its cutoff of 15.65 GHz. The overall length of the
5 : gyro-TWT interaction region is 14 cm.

The radiation-free drift section is constructed by stack-
ing a series of lossy metal and ceramic washers as well
as two honeycomblike absorbers (sprayed with FeNiCr-
CoAl alloy) inside the housing with total length of 14 cm
and minimum diameter of 1.75 cm. The output cavity,
9 cm in length, is derived from a previously studied Ka
- : . ; . band, second harmonic, free running, gyrotron oscilla-
0 008 °“Axi " D(iléleslnce (mf-z 02 03 tor [10,27] with changes made only to the tapered cutoff

waveguide on the input side and the output coupling aper-
FIG. 2. Calculated spatial evolution of harmonic componentsyre. In this new version, the cutoff section is a gradual,
in the beam current. The phigtron utilizes a,Tigyro-TWT 555y taper in place of the tapered smooth waveguide, and

as prebunch section with assumed values of the parameter 7. : .
as follows: beam voltage 58 kV, current 12 A, velocity ratio ?he diameter of the coupling hole is enlarged from 2.75

(v, /vy) 1.5, input power 10 W, and TE mode in the gyro- O 2_.83 cm. These changes re(_JIuce @g‘actor of the
TWT section. cavity from 1500 to~600 for various axial modes, and
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broadband operation is expected. Since the output cawhe output signal is also characterized by a spectrum
ity contains an internal mode filter with eight radial con- analyzer.
ducting vanes arranged periodically around the azimuth Although the inverted gyrotwystron was initially de-
which are consistent witfTE4;); modes (axial eigen- signed as a phase-locked oscillator, it can be operated
number! = 1,2,3,4,5...). The resonant frequency for as an amplifier by modifying the magnetic field pro-
(TE4); modes is in the range from 31.5 to 32.4 GHz withfile so that the output cavity is detuned below threshold
I = 1-6. These axial modes of the output cavity togetherof oscillation in the absence of an input signal. Mea-
with the gyro-TWT broadband prebunching allow the am-sured saturated output power is plotted as a function of
plifier to operate over a wide frequency range. We noteutput frequency at the applied voltage of 58 kV and
that the following theoretical condition [22] is satisfied: beam current of 9.2 A in Fig. 4(a). Measurement gives
~33 dB gain and 1.3% continuous bandwidth (410 MHz)
simy = samyp, (2)  around 31.8 GHz as well as an amplification range of
820 MHz from 31.33 to 32.15 GHz but with two nar-
Sow gaps each about 50 MHz. Measured power is also
plotted as a function of beam current at the same opera-
ting voltage of 58 kV for the sharp, high-power spectral
peak at 31.525 GHz giving a value ef160 kW with

wheres is the harmonic number; is the azimuthal index
of the interacting TE mode, and the subscripts 1 and
refer to the input gyro-TWT section and the output cavity,
respectively.

The inverted gyrotwystron is powered by a modulator
which provides a flat pulse of 30-60 kV with a pulse
length of 7.7 us and a variable repetition rate of 20— (a)

300 Hz. The MIG produces a beam current up to

12 A. Five independent dc current supplies power the 10 60
water-cooled solenoid magnets that allow for considerable
variation in the axial magnetic field profile. The field in
the interaction region is increased from 0.56 to 0.68 T
over a 35 cm distance. Computer simulation indicates
that the velocity ratio typically achieved in the experiment
is =1.5. The corresponding axial velocity spread is in the
~8%—-10% range and depends on the beam current and
the voltage applied to the intermediate anode. A Ku-band,
pulsed, helix TWT provides the input power. Output
power is measured by a calibrated calorimeter. Details
of the diagnostic setup are shown in Fig. 3. A harmonic 0 ,
mixer/phase detector is used to compare the input and 312 314 816 318 % %22 324
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FIG. 4. Experimental and theoretical results of phigtron am-
plifier with TE;, mode output. (a) Dependence of measured
saturation power and small signal gain on operation frequency
for a fixed beam voltage of 58 kV and current of 9.2 A. (b)
FIG. 3. Schematic of the experimental setup for the phigtrorPeak power and efficiency measured as well as calculated as a
diagnostic. function of beam current for a fixed beam voltage at 58 kV.
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