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Determination of the Universality Class of Gadolinium
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We resolve a long-standing puzzle for the static and dynamic critical behavior of gadolinium by
a combined theoretical and experimental investigation. It is shown that the spin dynamics of a
ferromagnet with hcp lattice structure and a spin-spin interaction given by both exchange and dipole-
dipole interaction belongs to a new dynamic universality class, modelJp. Comparing results from
mode coupling theory with results from three different hyperfine interaction probes we find quantitative
agreement. [S0031-9007(97)04823-0]

PACS numbers: 75.40.Gb, 75.40.Cx, 76.75.+ i, 76.80.+y
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The spin dynamics of simple ferromagnets in t
vicinity of their Curie pointTc are archetypical example
of dynamic critical phenomena near second-order ph
transitions. Much experimental and theoretical effort h
been put into identifying the dynamic universality class
and assigning them to magnetic substances. Neverthe
experimental observations on Gd [1–6] remained a puz
up to now. Because of its large localized magne
moment, and the fact that it is anS-state ion, Gd
should have a very small magnetocrystalline anisotro
and therefore be much better a model system for
isotropic Heisenberg magnet than either Fe, Ni, or Eu
As a consequence it should belong to the modelJ
dynamic universality class in the classification scheme
Ref. [7]. The measured static and especially the dyna
critical exponents are, however, not at all compatib
with model J. The objective of this paper is to resolv
this longstanding seemingly contradictory situation by
combined theoretical and experimental study.

Early experimental observations [8] clearly demonstr
that Gd has an easy axis which coincides with the he
gonal axis of its hcp lattice. The origin of such an ea
axis cannot be understood from the magnetocrystal
anisotropy. But, based on a mean field theory [9], it h
been argued that a combined effect of the lattice struct
and dipolar interactions favors thec axis as the easy
direction. This view is supported by measurements [6]
thec axis and basal-plane susceptibility on a single crys
of Gd. It is found that the basal-plane susceptibil
crosses over from a singular behavior to a constant
a characteristic temperature scale which can be accou
for by dipolar effects. The analysis of the static critic
behavior [6] is, however, complicated by the fact th
all experiments are done in the nonasymptotic regi
where superposed crossover lead to complex tempera
dependences. This may not be easily interpreted in te
of one or the other universality class. This is ev
more so, as the static critical exponents for the vario
universality classes are of comparable magnitude.
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A surprising and yet unexplained observation w
made by a measurement of the critical dynamics us
hyperfine methods [1,2]. The critical exponentw for
the autocorrelation timetc, which should scale astc ~

sT 2 Tcd2w in the asymptotic regime, was found to b
w ø 0.5. The observed value is not consistent with eith
Heisenberg or Ising models, but considerably lower.

The purpose of this Letter is twofold. First, we giv
a theoretical description for a spin system with both e
change and dipolar interaction on a hcp lattice using mo
coupling theory. Next, we calculate the relaxation ra
observed in various hyperfine interaction measureme
where we account for the details of the coupling tensor
each of these methods. We also report on measurem
of the muon spin relationsmSRd rate in high purity single
crystal samples of Gd. A comparison of the theore
cal predictions with these and earlier [3,5]mSR measure-
ments as well as perturbed angular correlation (PAC) a
Mössbauer data [1,2] gives a coherent picture of the
namic and static critical behavior of Gd and resolves
puzzling situation described above.

Taking into account magnetocrystalline anisotropy
well as the dipolar interaction the spin system is describ
by the Hamiltonian

H ­ 2
X
ifij

fJ'
ij sSx

i Sx
j 1 S

y
i S

y
j d 1 J

k
ijSz

i Sz
j 1 D

ab
ij Sa

i S
b
j g .

The magnitude of the magnetocrystalline anisotropy
the system is characterized byD ­ JkyJ'. The dipolar
interaction is characterized by the tensor

D
ab
ij ­ 2

sgLmBd2

2

√
dab

jxijj3
2

3xa
ijx

b
ij

jxijj5

!
, (1)

with xij ­ xi 2 xj, gL is the Landé factor, andmB the
Bohr magneton. Dipole lattice sums,D

ab
q ­

P
ifij 3

D
ab
ij eiq?xi , can be evaluated by using Ewald’s metho

For infinite three-dimensionalcubic lattices the results
may be found in Refs. [10,11]. For Bravais lattices with
© 1997 The American Physical Society
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hexagonal-closed packed (hcp) structurethe dipole tensor
to leading order inq becomes [9]

Dab
q ­

sgLmBd2

2ya

∑
ba

4 dab 2 4p
qaqb

q2
1 O sq2d

∏
,

where ya is the volume of the primitive unit cell with
lattice constanta, and the parameters arebx

4 ­ 4.12
and b

x
4 ­ 4.32. Upon expanding the Fourier transform

of the exchange interactionJa
q ­

P0
i Ja

i0eiq?xi ø Ja
0 2

Jq2a2 1 O sq4d, and keeping only those terms which ar
relevant in the spirit of the renormalization group theor
one finds

H ­ J
X
q

∑µ
ma 2 Da

0 1 q2a2

∂
dab 1 g

qaqb

q2

∏
Sa

2qSb
q .

(2)

There are two sources of uniaxial anisotropy, magne
crystalline anisotropy,Da

0 ­ Ja
0 yJ, and dipolar interac-

tion, ma ­ sgLmBd2b
a
4 y2Jya. In addition, the dipolar

interaction introduces an anisotropy of the spin fluctu
tions with respect to the wave vectorq which is reflected
by the term proportional toqaqbyq2. The magnitude
g of this anisotropy is given byg ­ 4psgLmBd2y2Jya.
We define a dimensionless quantitym ­ sgLmBd2sbk

4 2

b
'
4 dy2Jya proportional to the ratio between the

anisotropy energy and the exchange energy. Putt
in values for Gd the ratio of the dipolar contributio
to the termqaqbyq2 and to the uniaxial anisotropy isp

gym ­ 7.8738. In the following, we will show that all
available data for Gd can be explained by assuming t
the uniaxial anisotropy is solely due to the dipolar inte
action. Therefore, we will neglect the magnetocrystallin
anisotropy in the following.

Now we turn to an analysis of the critical statics. In th
Ornstein-Zernike approximation the susceptibility reads

x21
absqd ­ J

∑
sra 1 q2ddab 1 q2

D

qaqb

q2

∏
, (3)

where r2 ­ r ­ j22, rx,y ­ j22 1 q2
A, and we have

measured all length scales in units of the lattice co
stant a. The analysis of the critical behavior result
ing from the Hamiltonian is complicated by the fac
that besides the correlation lengthj ­ j0sTyTc 2 1d2n

there are two anisotropy length scalesq21
A ­ ay

p
m

and q21
D ­ ayp

g, both resulting from the dipolar in-
teraction. The eigenvalues of the inverse susceptib
ity matrix are given byl1sqd ­ q2 1 j22 1 q2

A and
l2,3sqd ­ q2 1 j22 1 fq2

D 1 q2
A 6 W gy2 where W ­

fsq2
D 1 q2

Ad2 2 4q2
Dq2

Aq2
z yq2g1y2; the eigenvectorseisqd

are given in a forthcoming publication [12]. It is inter
esting to note that, due to the combined effect of the dip
lar interaction and the uniaxial anisotropy of the lattic
the eigenvalues of the susceptibility matrix remain fini
in the limit q ! 0 and upon approaching the critical tem
perature. Only if the angleq between the easy axis (z
axis) of magnetization and the wave vector isq ­ 90±

the third eigenvalue becomes critical. To a good appro
,
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mation further static crossover effects can be incorpora
in an effective exponent of the correlation lengthj [13].

Mode coupling theory is a theoretical method which ha
been shown to give highly accurate results for the critic
dynamics of cubic ferromagnets [11]. Here we generali
this method to noncubic magnets. Starting from th
equations of motion for the componentssa

q of the spinSq

in the eigenvector basissa
q ­

P
i Si

qeaisqd, one can derive
the following set of coupled integral equations [12] for th
half-sided Fourier transformFasq, vd ­ ixasqdyfv 1

iGasq, vdg, of the Kubo relaxation functionFabsq, td.

Gasq, vd ­
4kBTJ2

xasqd

Z
k,v0

X
bg

Kbg
a sk, qd

3 Fbsk, vdFgsq 2 k, v 2 v0d , (4)

where
R

k,v ­
R

d3kys2pd3
R

sdvy2pd. The vertex func-

tions K
bg
a sk, qd for the decay of the modea into the

modesb andg are given by [12]

Kbb
a sk, qd ­ T bb

a sk, qdUb
absk, qd flbskd 2 lbsq 2 kdg ,

Kbg
a sk, qd ­ T bg

a sk, qdT bg
a sk, qd , b fi g , (5)

with U
g
absk, qd ­

P
ijk ´ijkeaiskdebjsqdegksq 2 kd,

where ´ijk is the Levi-Cevita symbol, andTii
a sk, qd ­

liskdUi
iask, qd, T

ij
a sk, qd ­ fliskd 2 ljsq 2 kdgUj

ia 3

sk, qd for i , j and T
ij
a sk, qd ­ 0 for i . j. For

qD ! 0 or qA ! 0 these equations reduce either to th
uniaxial or to the isotropic dipolar ferromagnet [11,14
We have solved the above mode coupling equatio
in Lorentzian approximation [12]. It is found that the
mode coupling equations obey a generalized dynam
scaling law where the linewidth depend on three scali
variables,x1 ­ 1yqj, x2 ­ qDyq, and x3 ­ qAyq, and
the angle q . The explicit functional form, which is
implicitly contained in the damping rates for the hyperfin
interaction probes discussed below, is too complicated
be presented in this Letter, and we refer the reader to
forthcoming publication [12].

Now we compare the above theoretical results wi
experiments. We have performed zero fieldmSR experi-
ments on Gd [15] using a high momentum muon bea
at the facility of the Paul Scherrer Institut. Spin polarize
muons were implanted in order to measure the distributi
and the dynamics of the internal magnetic field at th
muon site via the temporal loss of the initial spi
polarization. The sample was a spherical Gd sing
crystal with diameter 2.5 cm. The temperature could
stabilized better than60.05 K. We could describe the
temporal loss of the initial muon spin polarization by a
exponential decay functionPstd ­ exps2lztd. Taking
into account anisotropic dipolar fields as well as th
isotropic Fermi contact field to the local field at the muo
site the muon damping rate can be written as [12,16,17

lẑ ­
pD

V 2

Z
q

X
b̂ĝ

fGx̂b̂
q Gx̂ĝ

2q 1 Gŷb̂
q Gŷĝ

2qgFb̂ĝsq, 0d ,
5143
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where D ­ g2
msm0y4pd2sgLmBd2 and the hatted vari-

ables indicate that the corresponding quantities have
be evaluated in the muon reference frame. The coup
of the muon spin and the spins of the host magnet
described in terms of the coupling matrixGx̂b̂

q , which
reflects the particular symmetry of the lattice sites occ
pied by the muons. The most dominant contribution
the damping rate comes from wave vectors close to
Brillouin zone center [12,17] where one findsG

ab
q!0 ­

24pfqaqbyq2 2 pag, with pa ­ da 1 nmHmy4p.
With the Fermi contact field BFC ­ 26.98 kG
at T ­ 0 K [18], one gets nmHmy4p ­ 20.278
[17], and consequently for octahedral sitespx ­
py ­ 0.0705 and pz ­ 0.0250 [17], and for tetrahedral
sites px ­ py ­ 0.0338 and pz ­ 0.0984 [12]. The
muon relaxation ratelz depends on the material pa
rametersqAj0 and qDj0. Since we assume that bot
anisotropies result from the dipolar interaction the ra
qDyqA ­ 7.8738 is known and the number of material pa
rameters is reduced to one. In comparing our theory w
mSR experiments at a polarizationa ­ 90± we get the
best fit to the data withqDj0 ­ 0.13 (see Fig. 1). This
gives qA ­ 0.0165yj0 and qD ­ 0.13yj0. The corre-
sponding crossover temperatures areTA ­ Tc 1 0.43 K
and TD ­ Tc 1 16.54 K, suggesting the following
crossover scenario. ForT ¿ TD we expect critical
behavior dominated by the Heisenberg fixed point [1
The relaxation rate shows power law behaviorl ~ t2w ,
with an exponentw ø 1. For temperatures in the interva
TD . T . TA the dipolar interaction becomes importan
But, from the analysis of the uniaxial crossover [1
it turns out that the uniaxial crossovers in dynami
sets in at wave vectors much larger than expected fr
an analysis of the static quantities. Therefore, ev
for T . TA we expect to observe effects from dipola
interaction as well as uniaxial anisotropy. Finally, fo
T , TA the critical dynamics is determined by the un
axial dipolar fixed point. Then the static susceptibiliti
do no longer diverge forq ! 0 andT ! Tc except when
the wave vector is perpendicular to the easy axis. Si
the relaxation ratelz is given by an integral over the
whole Bouillon zone, the relative weight of the critica
axis along which the susceptibility diverges becom
vanishingly small. As a consequence, the relaxation r
lz no longer diverges forT ! Tc, i.e.,w ! 0.

Figure 1 shows a comparison between the theoret
and experimental results for an initial polarization incline
by 90± with respect to the easy axis. The solid and dash
line are the theoretical result for the muon relaxati
rate if the muons penetrating the sample are located
tetrahedral and octahedral interstitial sites, respectiv
The comparison between theory and experimental fav
tetrahedral sites. This is confirmed bymSR experiments
with the initial polarization along the easy axis. Th
ratio lzs90±dylzs0±d for T ! Tc becomes 1.2 and 0.7 fo
tetrahedral and octahedral sites, respectively [15]. T
5144
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FIG. 1. Experimental and theoretical results of the relaxatio
ratel for tetrahedral and octahedral muon sites witha ­ 90±.
Data taken from Refs. [3,5] and measured at themSR facility at
the PSI (see inset) [15]. The statistical errors of the relaxati
rates are comparable to the size of the symbols.

experiment is closer to the latter, strongly suggesting th
muons occupy tetrahedral sites within the Gd lattice.

The coupling tensor in PAC and Mössbauer measu
ments reduces to a Fermi contact coupling. Hence
observed relaxation rate is a sum over the eigenmod
tc ­ skBTy3yad

P
a

R
q xasqdyGasqd. Important infor-

mation about the behavior of the autocorrelation time c
be gained from a scaling analysis. An effective dynam
cal exponentzeff may be defined bytc ~ sT 2 Tcd2weff

with weff ­ neffszeff 2 1d, where we have neglected the
Fisher exponenth. If dipolar interactions and uniax-
ial anisotropy were absent, one would expectw ø 1.0.
The dipolar interaction is known to be a relevant pe
turbation. It leads to asymptotic static critical exponen
which are only slightly different from the correspondin
Heisenberg values. But, since the dipolar interaction im
plies a nonconserved order parameter, the asymptotic
namic exponent becomeszD ø 2 resulting in a crossover
from w ø 1.0 to wD ø 0.7. A uniaxial interaction is also
known to be a relevant perturbation. Again, the stat
critical exponents are not changed very much, e.g., o
finds that Ising (I) valuenI ­ 0.63, but the dynamic ex-
ponent becomeszI ø 4 if the order parameter is con-
served (zI ø 2 otherwise). The corresponding exponen
for the hyperfine relaxation rate would bewI ø 1.89 and
wI ø 0.63 for conserved and nonconserved order param
ter, respectively. According to these scaling arguments
is hard to think of any dynamic universality class whic
could lead to an effective exponentweff smaller than
about 0.6. Actually, Mössbauer and PAC measureme
on Gd show distinctly anomalous low valuesw ø 0.5,
which cannot be explained by either of the above sc
narios. This experimental puzzle can be resolved if o
considers the combined effect of the dipolar interactio
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FIG. 2. Experimental and theoretical results of the autocor
lation timetc for PAC experiments. Data from [1].

and uniaxial anisotropy. As we have seen in the abo
analysis of the static critical behavior of uniaxial dipola
ferromagnets,all eigenvalues of the susceptibility matrix
remain finite upon approaching the critical temperatu
except when the wave vector of the spin fluctuations
perpendicular to the easy axis. Since this is only a regi
of measure zero in the Brillouin zone one actually expec
that the relaxation rate does no longer diverge upon a
proachingTc.

Let us now compare the results of our mode couplin
theory with hyperfine experiments on Gd mentione
above [1,2]. The autocorrelation timetc is shown in
Figs. 2 and 3 for PAC experiments and Mössbau
spectroscopy, respectively. Both sets of data are
excellent agreement with the results from mode coupli
theory forT 2 Tc , 10 K. Note that besides the overal
frequency scale there is no fit-parameter, since we ha
used the same set of values for the dipolar and uniax
wave vector as for our comparison withmSR experiments.

In summary, we have outlined a mode coupling theo
for uniaxial dipolar ferromagnets, where the uniaxialit
solely results from the dipolar interaction. We have als
reported measurements on a high purity single crys
sample of Gd in the paramagnetic regime. From t
quantitative agreement between this theory and ourmSR
and previous PAC and Mössbauer measurements
following conclusions can be drawn: (i) The universalit
class of Gd is the uniaxial dipolar ferromagnet, whe
both the isotropic dipolar and the uniaxial contributio
to the spin Hamiltonian are due to a combined effect
dipolar interaction and noncubic-lattice structure. Th
corresponds to a new anisotropic modelJp. (ii) The
dominant factor for the uniaxial anisotropy in Gd is th
dipolar interaction. (iii) Muons in Gd are located a
tetrahedral interstitial sites close toTc.

We acknowledge helpful discussions with A. Yaouan
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FIG. 3. Experimental and theoretical results of the autocorr
lation timetc from Mössbauer spectroscopy [2].
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