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We resolve a long-standing puzzle for the static and dynamic critical behavior of gadolinium by
a combined theoretical and experimental investigation. It is shown that the spin dynamics of a
ferromagnet with hcp lattice structure and a spin-spin interaction given by both exchange and dipole-
dipole interaction belongs to a new dynamic universality class, métlel Comparing results from
mode coupling theory with results from three different hyperfine interaction probes we find quantitative
agreement. [S0031-9007(97)04823-0]

PACS numbers: 75.40.Gb, 75.40.Cx, 76.75.+i, 76.80.+y

The spin dynamics of simple ferromagnets in the A surprising and yet unexplained observation was
vicinity of their Curie pointT. are archetypical examples made by a measurement of the critical dynamics using
of dynamic critical phenomena near second-order phadeyperfine methods [1,2]. The critical exponenmt for
transitions. Much experimental and theoretical effort haghe autocorrelation time,., which should scale as. «
been put into identifying the dynamic universality classedT — T.)™" in the asymptotic regime, was found to be
and assigning them to magnetic substances. Nevertheless,~ 0.5. The observed value is not consistent with either
experimental observations on Gd [1-6] remained a puzzléleisenberg or Ising models, but considerably lower.
up to now. Because of its large localized magnetic The purpose of this Letter is twofold. First, we give
moment, and the fact that it is af-state ion, Gd a theoretical description for a spin system with both ex-
should have a very small magnetocrystalline anisotropghange and dipolar interaction on a hcp lattice using mode
and therefore be much better a model system for acoupling theory. Next, we calculate the relaxation rates
isotropic Heisenberg magnet than either Fe, Ni, or EuOobserved in various hyperfine interaction measurements,
As a consequence it should belong to the model where we account for the details of the coupling tensor in
dynamic universality class in the classification scheme o€ach of these methods. We also report on measurements
Ref. [7]. The measured static and especially the dynamiof the muon spin relatiouSR) rate in high purity single
critical exponents are, however, not at all compatiblecrystal samples of Gd. A comparison of the theoreti-
with modelJ. The objective of this paper is to resolve cal predictions with these and earlier [3/65R measure-
this longstanding seemingly contradictory situation by aments as well as perturbed angular correlation (PAC) and
combined theoretical and experimental study. Mossbauer data [1,2] gives a coherent picture of the dy-

Early experimental observations [8] clearly demonstratenamic and static critical behavior of Gd and resolves the
that Gd has an easy axis which coincides with the hexapuzzling situation described above.
gonal axis of its hcp lattice. The origin of such an easy Taking into account magnetocrystalline anisotropy as
axis cannot be understood from the magnetocrystallingvell as the dipolar interaction the spin system is described
anisotropy. But, based on a mean field theory [9], it hasy the Hamiltonian
been argued that a combined effect of the lattice structure o
and dipolar interactions favors the axis as the easy H = —Z[Jl#(Sj‘Sj + Sij) + J,“]-S;"‘Sj + D{';-BS?S,@].
direction. This view is supported by measurements [6] of i#]
the c axis and basal-plane susceptibility on a single crystafhe magnitude of the magnetocrystalline anisotropy of
of Gd. It is found that the basal-plane susceptibilitythe system is characterized by = J!l/J-. The dipolar
crosses over from a singular behavior to a constant ointeraction is characterized by the tensor

a characteristic temperature scale which can be accounted 5 o« B
for by dipolar effects. The analysis of the static critical lelﬁ _ _(grus) Sap _ 3XijXij (1)
behavior [6] is, however, complicated by the fact that ! 2 Ixi 3 IxilP

all experiments are done in the nonasymptotic regime .. Xii = Xi — X;, g, is the Landé factor, angs the
where superposed crossover lead to complex temperature 4 Jr e , Y
dependences. This may not be easily interpreted in termBON" Magneton.  Dipole lattice sum®q” = 3;.; X

of one or the other universality class. This is evenD,f;Be"q‘Xf, can be evaluated by using Ewald’s method.
more so, as the static critical exponents for the variougor infinite three-dimensionatubic latticesthe results

universality classes are of comparable magnitude. may be found in Refs. [10,11]. For Bravais lattices with a
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hexagonal-closed packed (hcp) structtine dipole tensor mation further static crossover effects can be incorporated

to leading order ing becomes [9] in an effective exponent of the correlation lengtfl13].
N (grmn)?[ .. dadqp Mode coupling theory is a theoretical method which has
DyF = oy | Pidap — 4T = +0(q) |, been shown to give highly accurate results for the critical

] T ) ) dynamics of cubic ferromagnets [11]. Here we generalize
where v, is the volume of the primitive unit cell with  hijs method to noncubic magnets. Starting from the
lattice constanta, and the parameters ajg; =4.12  equations of motion for the components of the spinS,
and B; = 4.32. Upon expanding th/e Fourier transform ;. iha eigenvector basig = S Sfle (q), one can derive

. . a a _iq-x; ~ [ - . 1 al 1 X
of 2th2e exchaznge interactiorlg = 3; Jipe' Jo the following set of coupled integral equations [12] for the
Jg7a® + O(q"), and keeping only those terms which are hgif-sided Fourier transforn®, (q, w) = iy.(q)/[w +

relevant in the spirit of the renormalization group theory,;_ (q, )], of the Kubo relaxation functior® 5(q,1).
one finds T e

4kpTJ?
o Gads o Fuge) = 2200 [ S kv,
H= JZ[(m —Af + q2a2>5a5 +g qzﬁ :|SqS('f. Xa(qQ) k,w’%
q

There are two sources of uniaxial anisotropy, magnetowhere [, , = [d*k/Q2m)* [(dw/27). The vertex func-

crystalline anlsotrozpyaAO = Jo/J, and dipolar interac- jong 57 (k, q) for the decay of the moder into the

tion, m® = (g up)* B4 /2Jv,. In addition, the dipolar modesg andy are given by [12]

interaction introduces an anisotropy of the spin fluctua-

tions with respect to the wave ve/ct(grwhich is reflected KPP (k,q) = TP (k,q) Ufﬁ(k, Q) [A5(k) — Ag(q — k)],

by the term proportional ta.qg/q~. The magnitude By _ By By

g of this anisotropy is given by = 47 (g, ug)*/2Jv,. Ko7k q) =T (k. Q)T (k@) B # v, (5)

Wf define a dimen_sionless quant'rty=. (gL/LB)Z(BJ;I — with Ugﬁ(k,q) =D gijreai(k)egi(@eyi(q — k),

Bi)/2Jv, proportional to the ratio between the where ¢;j is the Levi-Cevita symbol, and’(k,q) =

anisotropy energy and the exchange energy. Puttingi(k)Ug‘ (k,q) Téj(k q) = [Ak) — A;(q — k)]Uj %

in values for Gd the ratio of the dipolar contribution | - lfgr Pty and T (k.q) = 0 ;or o mFor

to the termg.gs/q* and to the uniaxial anisotropy is ‘>4 0 t=J 0 th N ’qt'_ q ! Jth o th

Jg/m = 7.8738. In the following, we will show that all gp = OFga > 0 IESE equations reduce erner 1o the
8/ : y U . niaxial or to the isotropic dipolar ferromagnet [11,14].

available data for Gd can be explained by assuming th e have solved the above mode coupling equations

the uniaxial anisotropy is solely due to the dipolar inter-. | Jrentzian approximation [12]. It is found that the

action. Th(_arefore, we WI|| neglect the magnetocrystallmemode coupling equations obey a generalized dynamic
anisotropy in the following.

. " . scaling law where the linewidth depend on three scalin
Now we turn to an analysis of the critical statics. In the g P g

. . A . variables,x; = 1/¢¢, x2 = qp/q, andxs = ¢ga/q, and
Ornstein-Zernike approximation the susceptibility reads the angled. The explicit functional form, which is

“1(p) — 2 2 9ad4B } implicitly contained in the damping rates for the hyperfine
=J| (rqo + Sap + , 3 X ) . X 4
Xap(@ [( a T4 )%ap b~ ®) interaction probes discussed below, is too complicated to
s . 2 be presented in this Letter, and we refer the reader to a
where r, =r = £7°, ro, = 7 + g4, and we have : S
. . . forthcoming publication [12].
measured all length scales in units of the lattice con- Now we compare the above theoretical results with
stant a. The analysis of the critical behavior result- . b . .
; AN ; experiments. We have performed zero figl8R experi-
ing from the Hamiltonian is complicated by the fact ments on Gd [15] using a high momentum muon beam
. . - AN
:EZiebe:rlgetsvvtgea%ci)sr,getlriuon Ileeg]gf: sci'gl(T’/T < /13/_ at the facility of the Paul Scherrer Institut. Spin polarized
dap' = a/ both by i 9 ; ?hﬁ (; al ™ muons were implanted in order to measure the distribution
and gp° = a/,/g, both resulting from the dipolar in- o4 e gynamics of the internal magnetic field at the
teraction. The eigenvalues of the inverse Sgscept'b'lfnuon site via the temporal loss of the initial spin
i i i - 2 -2
ity matEX are given by2/\1(q) ;d + & h+‘1A an_d polarization. The sample was a spherical Gd single
A23(q) A ¢t qu;Ll/gA = W1/2 where W = oruqial with diameter 2.5 cm. The temperature could be
[(ap + q4)° — 4qpgaq;/q°]"~; the eigenvectorei(a)  gpilized better thart0.05 K. We could describe the

are given in a forthcoming publication [12]. It is inter- gmpora Joss of the initial muon spin polarization by an
esting to note that, due to the combined effect of the d'po'exponential decay functio(r) = exp(—A,7). Taking
21).

lar interaction and the uniaxial anisotropy of the lattice,j 1, account anisotropic dipolar fields as well as the
the eigenvalues of the susceptibility matrix remain finit€jgotropic Fermi contact field to the local field at the muon

in the limit g — 0 and upon approaching the critical tem- gjte the muon damping rate can be written as [12,16,17],
perature. Only if the angléd between the easy axis (

axis) of magnetization and the wave vectords= 90° A = g[ Z[Ga?/?(;fjl + GéBGifl]@B?(q,O),
the third eigenvalue becomes critical. To a good approxi- V= Jq By
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where D = y7 (uo/4m)* (g np)* and the hatted vari- - '

ables indicate that the corresponding quantities have to " -
be evaluated in the muon reference frame. The coupling 8;2
of the muon spin and the spins of the host magnet is 0.7

described in terms of the coupling matrz;?, which

reflects the particular symmetry of the lattice sites occu-
pied by the muons. The most dominant contribution to
the damping rate comes from wave vectors close to the

Brillouin zone center [12,17] where one fin(dE';_B.O =

- = = octahedral sites
tetrahedral sites

A(90°) [MHz]

_477[61aq,8/q2 - pa]a with Pa = da + n,uH,u/47T- 0.2 o measurement 94

With the Fermi contact field Bgc = —6.98 kG v measurement 89/92

at T=0K [18], one gets n,H,/4m = —0.278

[17], and consequently for octahedral sitgs, = T,

py = 0.0705 and p, = 0.0250 [17], and for tetrahedral 08‘001 0.'01 011 1 o 100 10'00

sites p, = py, = 0.0338 and p, = 0.0984 [12]. The
muon relaxation rater, depends on the material pa- T-Tc K]
rametersg, &y and gpéo. Since we assume that both FIG. 1. Experimental and theoretical results of the relaxation
anisotropies result from the dipolar interaction the ratiorate A for tetrahedral and octahedral muon sites with= 90°.
gp/qa = 71.8738 is known and the number of material pa- Data taken from Refs. [3,5] and measured at&R facility at
rameters is reduced to one. In comparing our theory Witﬁhe PSI (see inset) [15]. The statistical errors of the relaxation
. . 2 rates are comparable to the size of the symbols.
#SR experiments at a polarizatian = 90° we get the
best fit to the data witlyp &y = 0.13 (see Fig. 1). This
gives g4 = 0.0165/¢, and gp = 0.13/¢,. The corre- experiment is closer to the latter, strongly suggesting that
sponding crossover temperatures @ye= 7. + 0.43 K muons occupy tetrahedral sites within the Gd lattice.
and Tp = T. + 16.54 K, suggesting the following The coupling tensor in PAC and Mossbauer measure-
crossover scenario. Fof > Tp we expect critical ments reduces to a Fermi contact coupling. Hence the
behavior dominated by the Heisenberg fixed point [19].observed relaxation rate is a sum over the eigenmodes
The relaxation rate shows power law behavioe 1, 7. = (kgT/3v,) Y, fq xa(q)/T'+(q). Important infor-
with an exponenty = 1. For temperatures in the interval mation about the behavior of the autocorrelation time can
Tp > T > T, the dipolar interaction becomes important. be gained from a scaling analysis. An effective dynami-
But, from the analysis of the uniaxial crossover [12]cal exponent.; may be defined by, o« (T — T,.) "
it turns out that the uniaxial crossovers in dynamicswith weg = vese(zegs — 1), Where we have neglected the
sets in at wave vectors much larger than expected frorfisher exponentp. If dipolar interactions and uniax-
an analysis of the static quantities. Therefore, evenal anisotropy were absent, one would expect= 1.0.
for T > T, we expect to observe effects from dipolar The dipolar interaction is known to be a relevant per-
interaction as well as uniaxial anisotropy. Finally, for turbation. It leads to asymptotic static critical exponents
T < T, the critical dynamics is determined by the uni- which are only slightly different from the corresponding
axial dipolar fixed point. Then the static susceptibilitiesHeisenberg values. But, since the dipolar interaction im-
do no longer diverge fog — 0 and7 — T, except when plies a nonconserved order parameter, the asymptotic dy-
the wave vector is perpendicular to the easy axis. Sincaamic exponent becomesg =~ 2 resulting in a crossover
the relaxation rate\, is given by an integral over the fromw =~ 1.0towp = 0.7. A uniaxial interaction is also
whole Bouillon zone, the relative weight of the critical known to be a relevant perturbation. Again, the static
axis along which the susceptibility diverges becomesritical exponents are not changed very much, e.g., one
vanishingly small. As a consequence, the relaxation ratfinds that Ising (1) valuer; = 0.63, but the dynamic ex-
A, no longer diverges fof — T, i.e.,w — 0. ponent becomes; = 4 if the order parameter is con-
Figure 1 shows a comparison between the theoreticalerved ¢; = 2 otherwise). The corresponding exponent
and experimental results for an initial polarization inclinedfor the hyperfine relaxation rate would g =~ 1.89 and
by 90° with respect to the easy axis. The solid and dashed; = 0.63 for conserved and nonconserved order parame-
line are the theoretical result for the muon relaxationter, respectively. According to these scaling arguments it
rate if the muons penetrating the sample are located @ hard to think of any dynamic universality class which
tetrahedral and octahedral interstitial sites, respectivelycould lead to an effective exponemt smaller than
The comparison between theory and experimental favorabout 0.6. Actually, Méssbauer and PAC measurements
tetrahedral sites. This is confirmed SR experiments on Gd show distinctly anomalous low values= 0.5,
with the initial polarization along the easy axis. Thewhich cannot be explained by either of the above sce-
ratio A;(90°)/A,(0°) for T — T, becomes 1.2 and 0.7 for narios. This experimental puzzle can be resolved if one
tetrahedral and octahedral sites, respectively [15]. Theonsiders the combined effect of the dipolar interaction
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FIG. 2. Experimental and theoretical results of the autocorreFIG. 3. Experimental and theoretical results of the autocorre-
lation time . for PAC experiments. Data from [1]. lation time 7. from Mossbauer spectroscopy [2].
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