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Revisiting the Theory of Finite Size Scaling in Disordered Systems:n Can Be Less than2yyyd

Ferenc Pázmándi, Richard T. Scalettar, and Gergely T. Zimányi
Physics Department, University of California, Davis, California 95616

(Received 18 April 1997)

For phase transitions in disordered systems, an exact theorem provides a bound on the finite size
correlation length exponent:nFS $ 2yd. It is believed that the intrinsicn satisfies the same bound.
We argue that the standard averaging introduces a noise and anewdiverging length scale. Forn # 2yd
self-averaging breaks down, disconnectingn from nFS, and the bound applies only for the latter. We
illustrate these ideas on two exact examples, withn , 2yd. We propose a new method of disorder
averaging, which is able to capture the intrinsic exponents. [S0031-9007(97)04880-1]

PACS numbers: 75.10.Nr, 05.70.Fh, 72.15.Rn, 75.40.Mg
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Using a very general formulation, Ref. [1] presented
exact theorem, which puts constraints on the finite s
correlation length exponentnFS of a large class of dis-
ordered systems:nFS $ 2yd, whered is the dimension.
This relation is often referred to as the quantum H
ris criterion [2]. While many investigations found expo
nents in accordance with this bound, there is an increas
number of results in contradiction with it. In particula
in a model for charge density waves exact calculatio
yieldedn ­ 1y2 below four dimensions [3], and numer
cal studies on 2D disordered Bose-Hubbard models fo
n . 0.7 [4]. Experimentally the Bose glass transition
helium in aerogel [5], and the localization transition
doped semiconductors [6] seem to violate this bound.
this paper we argue that the standard procedure of diso
averaging introduces a noise and anextrinsiclength scale,
resulting in thenFS $ 2yd bound. For models where th
intrinsic n is less than2yd therefore the two exponent
are necessarily different. The underlying physical mec
nism of this difference is thebreakdown of self-averaging
in systems withn , 2yd. In agreement with this picture
the equivalence of these exponents has been demonst
only in specific cases withn $ 2yd [1].

To start our considerations of random systems,
chose the same type of disorder used by Ref. [1]
binary distribution for, say, a disordered site energ
Typically, physical quantities are calculated by averag
over different disorder realizations. For calculation
convenience, the standard method is analogous to
“grand canonical” approach: impurities are put on ea
site with a given probabilityp and the averaging is carrie
out for all possible concentrations of impurities and th
configurations. An alternative method, which could
termed the “canonical” approach, keeps the number
impurities fixed, and the average is taken only over
possible configurations of these impurities. For infin
systems the two methods are equivalent. The den
fluctuations in the grand canonical method, howev
introduce an extra noise. This noise vanishes in
infinite system, but it may alter the results of the fini
size scaling. The “canonical averaging” strongly reduc
this noise by excluding density fluctuations.
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We now argue that the bound obtained in Ref. [1]
only generated by the noise introduced by the “gra
canonical averaging.” Different choices, such as us
canonical averaging, produce different bounds. The th
rem of Ref. [1] considers a random system where
phase transition is induced by changing the concentra
K of site (or bond) impurities. LetY be any event
depending on disorder realizations in a finite volume, w
probabilityP sKd. This P sKd is calculated byaveraging
over all disordered configurations, and selecting tho
compatible with Y . Averaging is performed in the
grand canonical way, since fluctuations in the density
impurities are allowed. From these premises the ex
statementjdP sKdydKj # const3

p
N follows, whereN

is the system size. A closer look at the proof revea
that this result is derived solely from the concentrati
fluctuations of the impurities, which wereexternally
introduced in the averaging process(see the last equation
of the proof in Ref. [1]). Thus the bound onjdP sKdydKj
does not relate to the intrinsic properties of the syste
under investigation. It only reflects the “resolution” o
the grand canonical averaging. In other words, beca
of the presence of the density fluctuations, the minim
resolvable change inK is dK ~ 1y

p
N . The probability

P can change at mostO s1d, immediately explaining the
above bound.

On the other hand, if one uses canonical averaging, t
the above inequality does not apply. For, in contrast
the previous case, the number of impurities is now w
defined. In the present binary example, the resolva
change ofK is bounded only by its minimum allowed
increment,1yN. Hence,jdP sKdydKj # N. Along the
lines of Ref. [1], the inequalitynFS $ 1yd now follows.
As before, this inequality is characteristic of the canonic
averaging only, and does not impose any restriction on
intrinsic exponentn of the physical system. The physica
reason behind this is that both averaging procedu
introduce anew characteristic length scale, which has the
potential to obscure the intrinsic correlation length of t
physical system.

While these considerations were presented in the c
text of finite size scaling, our results are relevant
© 1997 The American Physical Society
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disordered mesoscopic experiments where finiteN is itself
of interest and the choice of grand canonical or canon
averaging is determined by the setup.

It is also important to note that the assumption
a binary disorder plays a crucial role in deriving th
above bounds. While the proof was extended to so
continuous distributions [1], exceptions exist too. To s
this, consider the following simple example, motivate
by the quantum phase transition between the so-ca
Mott-insulator and Bose-glass phases, which takes p
in interacting Bose systems with site disorder. At th
transition the renormalization group flows are controll
by a fixed point withzerohopping strength [7], thus the
system reduces to a collection of independent sites w
random energies. Let the distribution of the site ene
e [ f0, Kg be

Psed ­
a 1 1
Ka11

sK 2 eda , (1)

with a . 21. We generateN independentei (i ­
1, . . . , N) from the above distribution. We define th
finite-size eventY to occur, whenall ei ’s are smaller than
a given valuem [ s0, Kg. We fix the value ofm, and
drive the transition by changingK . As required by the
theorem of [1], the probabilityP of Y happening is finite
at the critical value of the disorder,Kc ­ m. It goes to
zero exponentially with the system sizeN for K . Kc.
Close to the transition, ford ­ sK 2 KcdyKc ø 1, this
probability is

P sN , dd . e2Nda11

. (2)

A characteristic length scalejf can now be defined as
a function of d. It is determined from the system siz
asNf ­ j

d
f , whereP sNf , ddyP sNf , 0d , 1ye. Defining

a critical exponent asjf ~ d2nFS one arrives atnFS ­
sa 1 1dyd. For a , 1, nFS is less than2yd. While we
considered a concrete example, we emphasize that
result can be relevant forany transition driven bylocal
singularitiesin the action.

Motivated by the above observations, we now attem
to construct a modified finite size scaling procedure.
contrast to the above described averaging methods,
new correlated averaginghas the potential to acces
the inherent exponents of the system. Let us s
by observing that anygiven disorder realization in a
finite systemcould have been generated from disord
distributions characterized by arange of parameters,
corresponding to arangeof the critical control paramete
valueKc. This raises the problem ofwhich Kc to usein
a finite size scaling analysis.

The standard procedure answers this question by
suming that one can use a singleKc for all samples gen-
erated from the same distribution. However, the abo
argument suggests that the very same sample may be
realization of distributions with different parameters, lea
ing to an inherent noise in the procedure, similar to t
above considered binary examples. Thecorrelated aver-
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aging procedure eliminates this noise by identifying th
critical value of the control parameterKr

c for each dis-
order realizationwhich it most likelycorresponds to. In
practice this might be difficult, and we return to this ques
tion later. For the moment, we only assume that it is po
sible to identify aKr

c . We propose that the natural contro
parameter of the critical behavior isD ­ sK 2 Kr

c dyKr
c .

The act of averaging should then be performed for th
samples with the sameD.

We propose to adopt the following finite size scalin
hypothesis for a generic physical quantityQ,

Q̄sL, Dd ­ L2yqsLDnd , (3)

where qszd is a universal scaling function, andy, n are
the critical exponents forQ, and the inherent correlation
length j ~ D2n . Here we assumed that the scaling
behavior ofQ is characterized by a single length scale
This is a reasonable assumption even for disorder
systems where the “typical” and “average” correlation
have different exponents [8]: in this case one has
choose a physical quantityQ which is connected to one
type of fluctuation only. Note that some aspects of Eq. (
are already practiced in numerical studies: sizable noi
reduction is customarily reached by adjusting the rando
variablesafter they are generated, for instance, to kee
their mean value constant.

Next we assume the validity of Eq. (3) and perform
the standard finite size scaling, to demonstrate how th
procedure’s inherent noise can mask the true critic
behavior. Some of the key results of the analysis ar
(i) we find that the exponent of the intrinsic correlation
length n might be different fromnFS. Therefore the
theorem of Ref. [1] does not provide constraints on th
intrinsic exponentn. (ii) In particular,n can beless than
2yd. In this case typicallynFS ­ 2yd.

The standard finite size scaling procedure [9] in dis
ordered systems calls for calculating a physical quanti
Q, such as the critical susceptibility, for different val-
ues ofN and K , the system size and control paramete
each time performing the calculations for a number o
disorder realizations. Averaging over the disorder yield
kQsKdl, and the critical couplingKc is then identified, for
instance, from a crossing pattern [10]. Requiring the co
lapse of the data when plotted as a function ofL1ynd,
whered ­ sK 2 KcdyKc, determines the exponents.

To make contact between the standard scaling proc
dure and Eq. (3), a relation between the uniqueKc and the
fluctuatingKr

c has to be constructed. A simple represen
tation of the inherent noise, or uncertainty, is to assum
the validity of the central limit theorem forKr

c

D ­ d 1
D

Ldy2 x , (4)

wherex is a random variable with a distribution width of
O s1d. Here D measures the scatter inKr

c , andd is the
distance from the average critical pointKc.
5131
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The standard procedure neglects the fluctuations ofKr
c ,

which is equivalent to averaginḡQ over the random
variablex of Eq. (4),

kQl ­ L2y

*
q

√
DnL12dny2

µ
x 1

dLdy2

D

∂n
!+

. (5)

Here thex average is denoted byk· · ·l, corresponding to
the standard averaging procedure, as opposed toQ̄, the
correlated averaging of the new procedure in Eq. (3).

First we analyze the critical point itself, then we sha
proceed to extract the critical behavior of the correlati
length. Atd ­ 0 the scaling form forQ is

kQl ­ L2ykqsDnxnL12dny2dl . (6)

For n . 2yd the argument of the scaling function ap
proaches zero with increasing system size, and theL de-
pendence of theaveragedquantitykQsLdl is characterized
by the intrinsic exponenty. Here we use the customar
assumption that the universal scaling functionqszd ap-
proaches a finite value asz ! 0.

In the n , 2yd case, however, the argument ofqszd
goes to large values, probing deeply noncritical regio
even though the system is assumed to beat criticality.
To highlight the consequences of this, we proceed w
a generic form for the asymptotic behavior of the scali
function, adoptingqszd ~ z2b . From Eq. (6)kQl ~ L2g ,
where g ­ y 1 bs1 2 dny2d. Clearly the L depen-
dence ofkQl is governed by an exponentg, differentfrom
the intrinsicy.

Next we develop an understanding of the region
the proximity of the critical point, i.e., the case of finit
d. Let us first focus onn , 2yd. From Eq. (5) one
identifies two scaling regions, governed bytwo different
characteristic diverging length scales.

For large system sizes inevitablyDnL12dny2 ¿ 1, so
the argument ofqszd again extends to large value
Utilizing the previous asymptotic model form,

kQl ­ L2g q̂sdLdy2d , (7)

from which a length scale can be identified, characteriz
the finite size scaling ofkQl, averaged in the standar
way. It diverges with an exponentnFS ­ 2yd even
though the intrinsic exponentn is less than2yd. This
result now demonstrates, in general, what has b
observed earlier for the binary example: the standard
grand canonical averaging introduces a noise, which
turn generates a new length scale and a corresponding
exponent into the analysis.

The other scaling region is reached whendLdy2yD ¿

1. In this limit

kQl ­ L2yqsdnLd . (8)

As is known, for large values ofdnL, the n exponent
is not accessible by finite size scaling [9], hencednL
should be kept around unity. Therefore the determinat
of n requires the study of the regionaway from the
5132
ll
n

-

s,

th
g

n

.

g

en
or
in
ew

n

asymptotics: large d and small system sizes. For wea
disorder (D ø 1) this window, in fact, might be wide
enough for practical purposes. To reiterate, howev
studies concentrating on the asymptotic region are bou
to seenFS ­ 2yd.

In the case ofn . 2yd the standard procedure is
capable of accessing the intrinsicn: it can be obtained
from kQl by increasing the system size to the exte
of dLdy2yD ¿ 1, but keepingdnL ~ O s1d. This again
implies avoiding the “nonscaling” region aroundd ­ 0.
For strong disorder and small available system siz
one can end up again with large arguments ofqszd,
and consequently in the scaling regime described bynFS

and g [Eq. (7)]. There are several additional crossov
regimes which can be studied based on Eq. (5).

It is far from trivial to identify the infinite system’sKr
c

from the finite sample. A solution might be suggested
recalling that for ordered classical magnets, the maximu
of the susceptibility of a finite size sample is shifted a
TcsLd 2 Tcs`d ~ L21yn . Scaling then can be performed
in terms ofTcsLd, resulting in the correct exponents. I
is natural to expect that the same holds true forKr

c :
Kr

c sLd 2 Kr
c s`d ~ L21yn , whereKr

c sLd is extracted from
a specific feature of a critical quantity of thefinite-size
system. Using thisKr

c sLd in our new scaling approach
should provide the correct exponentn.

We are thus left with the task of identifyingKr
c sLd of

a finite system. For many quantum systems atT ­ 0 a
reasonable proposition forKr

c sLd might be the value of
K , where the gap to the first excitation vanishes or ha
minimum. For classical systemsKr

c sLd may be identified
where a critical susceptibility exhibits a maximum.

To demonstrate the above ideas, consider strongly
teracting bosons in a random potential at zero tempe
ture. In Ref. [7] renormalization flows were generated b
integrating out the sites with highest excitation energie
For infinite range hopping the renormalization group (RG
equations areexact. In particular, at the Mott-insulator
to superfluid transition weak disorder is irrelevant an
n ­ 1yd.

We carried out the finite size scaling analysis of the a
erage local susceptibility at weak but finite disorder f
system sizesN ­ 64, 128, and 256. First we used th
standard averaging procedure (inset of Fig. 1), and we
tainednFS . 3yd after averaging over 1024 realization
of a uniform disorder distribution of the random poten
tial. The higher-than-expected value ofnFS is related to
the singularity of the scaling function. Figure 1 show
the same quantity scaled by usingKr

c sLd extracted from
the divergence of the susceptibility for each sample se
rately. The scaling is convincing, and yields the exact e
ponentn ­ 1yd. The exhibited curves were obtained b
averaging over much fewer samples than before, only
yet the scaling region extends by more than an order
magnitude further in terms of the scaling variable,ND,
demonstrating a very effective noise reduction.
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FIG. 1. Scaling plot of the inverse susceptibility using th
novel and the standard (inset) averaging procedure for sys
sizesN ­ 64, 128, and 256.

In some numerical studies, such as in Ref. [4], anFS ,

2yd has been reported, using the traditional averagi
procedure. We would like to emphasize that this findin
can be perfectly accommodated in the present theo
First, our analysis doesnot suggest thatnFS must be
greater or equal to2yd: this is only the most likely
scenario. If, for instance, the fluctuations ofKr

c scale
as L21yn , then the above analysis yieldsnFS ­ n, and
thus can be less than2yd. Apparently, this is the case in
the example of the Mott-insulator to Bose-glass transiti
in Eq. (2). Second, as emphasized after Eq. (8), if t
fluctuations ofKr

c are small and the sample size is not to
big, then the intrinsicn can and will be observed in finite-
size scaling. Finally, this theory isnot addressingthe
problems associated with distributions with long powe
law tails [8] or multicritical fixed points [11].

What is then a possible physical framework to thin
about the casen , 2yd? The usual approach imagine
dividing the sample to roughly independent blocks
uniform size j [12]. For n , 2yd the fluctuations
of the “local” Tc ’s of the blocks are bigger than the
distance from the trueTc, therefore a self-consisten
picture of a sharp transition was believed to be impossib
However, an appropriate modificationcan restorethe self-
consistency as follows. On the disordered side of such
assumed transition the correlation length must be fin
everywherein the sample. Therefore even atn , 2yd
it should be possible to divide the sample tofinite but
unequalboxes by choosing their sizes to be the same
the local correlation length. These variable size boxe
e
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will be roughly independent. However, if a uniform
partitioning is forced on the system, those boxes exte
across the variable partitioning, and thus will exhib
strong correlations. Thus the uniform boxescannot be
assumedto be independent realizations of the disorder
system. Since this assumption is the foundation of t
standard disorder averaging procedure, we conclude
for n , 2yd the central phenomenon is thebreakdown of
self-averaging. This manifests itself, for instance, in the
broadness of the distribution of some (not all) physic
quantities. A similar conclusion was reached for sho
length scales in [13].

In summary, we reinvestigated the theory of finit
size scaling in disordered systems. We found that t
standard averaging procedure introduces a new diverg
length scale into the problem, therefore the finite si
scaling exponentnFS may be unrelated to the intrinsic
n. We constructed two explicit examples, whereexact
calculations proved that the intrinsicn , 2yd. We
proposed an alternative averaging, which achieves
remarkable noise reduction and therefore is capable
accessing the intrinsic exponents of the physical proble
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