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Magnetization processes of spin-1
2

Heisenberg ladders are studied using strong-coupling expansi
numerical diagonalization of finite systems, and a bosonization approach. We find that
magnetization exhibits plateaux as a function of the applied field at certain rational fractions o
saturation value. Our main focus is on ladders with three legs where plateaux with magnetizatio
third of the saturation value are shown to exist. [S0031-9007(97)04782-0]
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Recently there has been considerable interest in cou
Heisenberg antiferromagnetic (HAF) chains, so-cal
“spin ladders,” where one of the fascinating discover
is that the appearance of a gap depends on the num
of chains being even or odd (for recent reviews see, e
[1]). In this Letter we study ladder systems at zero te
perature in a strong uniform magnetic field. This iss
has so far only been addressed fortwo coupled chains
with a magnetization experiment on Cu2sC5H12N2d2Cl4
[2] and theoretically using numerical diagonalization [3
series expansions [4], and a bosonization approach
These studies found a plateau at zero magnetization wh
width is given by the spin gap in the otherwise smoo
magnetization curve. In this Letter we extend the the
retical approaches to three and more coupled cha
using strong-coupling expansions, numerical diagonali
tion, and a bosonization approach. We find that in gene
the magnetization curves exhibit plateaux also at cert
nonzero quantized values of the magnetization.

To be precise, we concentrate on the zero-tempera
behavior of the following HAF spin ladder withN legs
(kept fixed) and lengthL (taken to infinity):

H sNd ­ J 0
X

i

LX
x­1

$Si, x
$Si11, x 1 J

NX
i­1

LX
x­1

$Si, x
$Si, x11

2 h
X
i, x

Sz
i, x , (1)

where the$Si, x are spin- 1
2 operators andh is a dimension-

less magnetic field. We assume periodic boundary c
ditions along the chains but investigate both open (OB
and periodic boundary conditions (PBC) along the run
The magnetizationkMl is given by the expectation valu
of the operatorM ­

2
LN

P
i, x Sz

i, x.
Our main result is thatkMl as a function ofh has

plateaux at the quantized values

N
2

s1 2 kMld [ Z . (2)

This condition also appears in the Lieb-Schultz-Mat
theorem [6] and its generalizations [7,8]. There it
related to gaplessnonmagneticexcitations, but plateaux in
0031-9007y97y79(25)y5126(4)$10.00
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magnetization curves appear if there is a gap tomagnetic
excitations.

However, there are other arguments which lead to
as the quantization condition forkMl at a plateau. A
particularly simple one is given by the limit of strong
coupling along the rungsJ 0 ¿ J (which has also proven
useful in other respects [9]). AtJ ­ 0 one has to
deal only with Heisenberg chains of lengthN and the
only possible values for the magnetization are precis
the solutions of (2): kMl [ h21, 21 1 2yN, . . . , 1 2

2yN , 1j.
For N ­ 2 and J 0 ¿ J this consideration predicts a

plateau atkMl ­ 0. The boundary of this plateau is
related to the spin gap simply byhc ­ D. The strong-
coupling series for this gap reads [10]

D ­ J 0 2 J 1
J2

2J 0
1

J3

4J 02
2

J4

8J 03
1 O sJ5d , (3)

where we have extended the result of [10] to fourth ord
(this further order is crucial to obtain a zero of the gap f
J 0 $ 0).

For N ­ 3 and small magnetic fields one has
degeneracy which makes already first-order perturbat
theory nontrivial. For OBC andjkMlj # 1y3, the low-
lying spectrum is then given by a spin- 1

2 chain in a
magnetic field whose magnetization curve is well studi
(see [11] and references therein). On the other ha
for PBC and jkMlj # 1y3, the first-order low-energy
effective Hamiltonian for (1) atN ­ 3 turns out to be
(see also [12])

H
sIII , pd
eff ­

J
3

LX
x­1

s1 1 s1
x s2

x11 1 s2
x s1

x11d $Sx
$Sx11

2 h
LX

x­1

Sz
x , (4)

where the $Sx are SU(2) operators acting in the spi
space ands6

x act on another two-dimensional spac
which comes from a degeneracy due to the permutatio
symmetry of the chains. In particular, the usual spi
rotation symmetry is enlarged by an U(1) coming from th
© 1997 The American Physical Society
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XY -type interaction in the space of the Fourier transform
along the rungs [first factor in (4)]. The Hamiltonian (4
encodes the magnetization curve in the strong-coupl
limit of the three-leg ladder with PBC forjkMlj # 1y3.

At least for OBC, the situation is a little more favorabl
for the kMl ­ 1y3 plateau that one expects forN ­ 3.
It turns out that one can use nondegenerate perturba
theory to compute the energy cost to flip one spin arou
this plateau and thus its lower and upper boundaries,

hc1 ­ 2J 2
2J2

9J 0
2

94J3

243J 02 1 O sJ4d , (5)

hc2 ­
3
2

J 0 2 J 1
3J2

4J 0
1

2065J3

3888J 02 1 O sJ4d . (6)

Finally, it is straightforward to exactly compute th
upper critical field huc for the transition to a fully
magnetized state for PBC, evenL and arbitraryN ;

huc ­

Ω
2sJ 1 J 0d, N even,
f1 2 cossp N21

N dgJ 0 1 2J, N odd. (7)

Actually, the result (7) atN ­ 3, huc ­ 3y2J 0 1 2J also
applies to OBC.

We now proceed with considerations that follow
closely classical work on single Heisenberg spin cha
[11] and the 2D triangular HAF [13]. We have numer
cally calculated the lowest eigenvalues as a function
the magnetization, wave vectors, and coupling consta
on finite systems with up to a total of 24 sites.

Figure 1 illustrates our main results with a magnetiz
tion curve forN ­ 3 at J 0yJ ­ 3 with OBC. The thin
lines denote curves at finite system size and clearly exh
a plateau withkMl ­ 1y3. The strong-coupling approxi-
mations (5) and (6) for the boundaries of this plateau a
in good agreement with the finite-size data. Finite-size

FIG. 1. Magnetization curve forN ­ 3 at J 0yJ ­ 3 with
OBC. The thin full lines are forL ­ 8, the long-dashed lines
for L ­ 6, and the short-dashed lines forL ­ 4. The thick
full line indicates the expected form in the thermodynam
limit. The two diamonds denote the series (5) and (6) for t
boundaries of the plateau.
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fects are also small for the midpoints of the steps in t
magnetization curves [11]. From this one obtains an e
trapolation to infiniteL which is shown by the full line in
Fig. 1.

A more compact representation is given by “magnet
phase diagrams” which show the projection of the conve
tional magnetization curves as in Fig. 1 onto the axis of t
magnetic field. We illustrate this in Fig. 2 with the case o
a two-leg ladder which has already been studied in [3]. O
a finite lattice the possible values ofkMl are quantized; the
values of the magnetic fieldhyJ where a transition from
one such value occurs to the neighboring one are sho
by lines as a function ofJ 0yJ. Regions without such lines
denote plateaux in the magnetization curve while regio
where they are close to each other correspond to smo
transitions in the thermodynamic limit.

The magnetization curves of [2,3] withJ 0yJ ­ 5 are
located somewhat beyond the right border of Fig.
Our figure contains additional information about th
dependence onJ 0yJ. Note that the numerically obtained
values for the transition to full magnetization do indee
match with the version of (7) for the ladder:huc ­
2J 1 J 0. For the boundary of the plateau atkMl ­ 0
one observes that finite-size effects are not substantial
J 0yJ $ 3y2, and in this region one observes also goo
agreement with the approximation (3) for the transitio
value of the magnetic fieldhc ­ D. At weak coupling,
field theoretic arguments [14] predict the gap to ope
linearly, D , J 0. This is compatible with Fig. 2, though
due to the large finite-size effects in this region muc
longer chains are needed to confirm this linear behav
conclusively [15].

Figures 3 and 4 show the magnetic phase diagra
for N ­ 3 with OBC and PBC, respectively (Fig. 1 is
a section of Fig. 3 atJ 0yJ ­ 3). Both figures clearly
exhibit a plateau withkMl ­ 1y3 at least in the region
J 0 $ 2J. The strong-coupling series (5) and (6) for th

FIG. 2. Magnetic phase diagram of the ladder withN ­ 2
legs. The thin full lines are forL ­ 12, the long-dashed lines
for L ­ 10, and the short-dashed lines forL ­ 8. The thick
full line shows the gap (3).
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FIG. 3. Magnetic phase diagram ofN ­ 3 chains with OBC.
The thin full lines are forL ­ 8, the long-dashed lines for
L ­ 6, and the short-dashed lines forL ­ 4. The two thick
full lines denote (5) and (6), respectively.

boundaries of this plateau are also shown in Fig. 3, a
in the aforementioned regionJ 0 $ 2J, where finite-size
effects are small, one observes good agreement betw
the expansions and the numerical results.

Figures 3 and 4 differ at least in their details. Fo
example, one observes that at the upper boundary of
kMl ­ 1y3 plateau in Fig. 4 it becomes favorable to flip
two spins at once rather than one forJ 0 $ 3J which may
be interpreted as one signal of the frustration introduce
into the system.

At strong coupling the excitations above the1
3 plateau

in Fig. 4 are described by (4) with all spins aligned alon
the field sSz

x ­
1
2 d. This is anXY chain and therefore

massless, providing us with an example of a plateau in t
magnetization curve with gapless nonmagnetic excitatio
above it.

The strong-coupling expansions as well as the nume
cal results obtained so far clearly show the existen

FIG. 4. Same as Fig. 3, but with periodic boundary cond
tions.
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of plateaux for sufficiently strong coupling. To see
the plateau persists in the weak-coupling regionJ 0 ø J
we use Abelian bonsonization (see, e.g., [16,17]). T
computation to be presented below is similar to the on
performed recently in [8,18], so we refer the intereste
reader to these two references for more details.

The starting point for this weak-coupling expansio
is the observation that atJ 0 ­ 0 one hasN decoupled
spin- 1

2 HAFs in a magnetic field whose low-energy
properties are described by ac ­ 1 Gaussian conformal
field theory [19]. This theory is characterized by th
radius of compactificationRskMl, Dd which depends on
the magnetization as well as theXXZ anisotropy D

which we have here introduced for convenience. A
zero magnetic field one has [17]:R2s0, Dd ­

1
2p s1 2

1
p cos21Dd. In general, this radius can be computed usin
the Bethe-ansatz solution [19] for the Heisenberg cha
For a qualitative understanding it may be helpful to notic
that the radius of compactificationR decreases if eitherD
becomes smaller or if the magnetizationkMl increases.

Now the low-energy properties of the Hamiltonia
(1) at small coupling are described by the followin
Tomonaga Hamiltonian with interaction terms:

H̄sNd ­
Z

dx

"
p

2

NX
i­1

hP2
i sxd 1 R2skMl, Dd f≠xfisxdg2j

1
l1

2p

X
i

f≠xfisxdg f≠xfi11sxdg

1
X

i

hl2 : cosf4kFx 1
p

4p sfi 1 fi11dg :

1 l3 : cosf
p

4p sfi 2 fi11dg :

1 l4 : cosf
p

p sf̃i 2 f̃i11dg :j

#
, (8)

with Pi ­
1
p ≠xf̃i, and li , J 0yJ. It is convenient to

rescale the fields by the radius of compactificationR in
(8), i.e.,fi !

p
4p Rfi.

For N ­ 3 chains with PBC we now change variable
from the fieldsf1, f2, f3 to s1y

p
3 d sf1 1 f2 1 f3d,

s1y
p

2 d sf1 2 f2d, s1y
p

6 d sf1 1 f2 2 2f3d. Follow-
ing [16] one can show that the perturbation terms wi
coefficientsl3 or l4 in (8) give rise to a mass for the lat-
ter two fields.

Let us now consider the remaining fieldfdiag :­
s1y

p
N d

PN
i­1 fi. Radiative corrections to (8) generat

the interaction term: coss2fdiagyRd : [20]. For N ­ 3
and atkMl ­ 0 this operator is irrelevant (in the region
of D close to 1), which confirms that three chains weak
coupled in a periodic manner are massless.

Now we address the question of the appearance
plateaux forkMl fi 0. Since this requires a gap for the
(magnetic) excitations, we expect such a plateau to oc
if the remaining fieldfdiag acquires a mass. In fact, the
additional interaction term

: cossfdiagyRd : (9)
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survives in the continuum limit on a plateau [21]. Th
operator (9) can appear only if (2) holds, as can easily
inferred from translational invariance of the origin
Hamiltonian (1) and the fact thatkF ­

1
2 s1 2 kMldp

and a one-site translation of the lattice Hamiltonian (
translates into the internal symmetry transformati
fdiag ! fdiag 1 2NRkF .

For N ­ 3, Eq. (2) requires thatkMl ­ 1y3. If one
now estimates the radius of compactificationRs 1

3 , 1d fol-
lowing, e.g., [18], one finds that atJ 0 ­ 0 the operator (9)
is slightly irrelevant forD ­ 1. The dimension of this
operator decreases withJ 0 implying that the 1

3 plateau in
Fig. 4 extends down into the region of smallJ 0. It should
be noted that the appearance of the plateau for a gi
small J 0 crucially depends on the value ofD, explaining
why the numerical evidence in Fig. 4 is not conclusive
this region. For simplicity we have concentrated on PB
The case of OBC is qualitatively similar but more sub
in the details and will be discussed in [21].

In this Letter we have shown that spin ladders exhi
plateaux in their magnetization curves when subjected
strong magnetic fields. We have mainly concentrated
the plateau withkMl ­ 1y3 in three coupled chains, bu
also other rational values can be obtained by vary
the number of chainsN. Quantum fluctuations (i.e.
the choice of the spinS ­

1
2 ) do play an important

role—the plateaux disappear in general when one ins
classical spins into (1). Nevertheless, by analogy to
two-dimensional triangular antiferromagnet [22] it seem
likely that such plateaux would appear in first-order sp
wave theory. Also with Ising spins the behavior of (1)
different: At zero temperature the magnetization chan
only discontinuously between plateaux values (i.e.,
smooth transitions occur), and a gap opens for both
and even numbers of chains.

It would be highly interesting to check experimental
whether the plateaux can indeed be observed, in partic
since nowadays materials with a given number of le
can be engineered. The first nontrivial check would
to look for the kMl ­ 1y3 plateau in a three-leg ladde
Here, the material Sr2Cu3O5 [23] comes to mind, which
is, however, not very well suited for these purposes sin
the necessary order of magnetic fields is not access
today due to its large coupling constants. Howev
there are at least two-leg ladder materials such as
conventionalsVOd2P2O7 [24] or Cu2sC5H12N2d2Cl4 [2]
with much weaker coupling constants. A three-leg ana
of such materials could provide a testing ground for o
predictions, in particular if such a material can be fou
with J 0 $ 2J where we would expect a clearly visibl
plateau in the magnetization curve at sufficiently lo
temperatures (cf. Fig. 1).
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