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Magnetization processes of sp%n-Heisenberg ladders are studied using strong-coupling expansions,
numerical diagonalization of finite systems, and a bosonization approach. We find that the
magnetization exhibits plateaux as a function of the applied field at certain rational fractions of the
saturation value. Our main focus is on ladders with three legs where plateaux with magnetization one
third of the saturation value are shown to exist. [S0031-9007(97)04782-0]

PACS numbers: 75.10.Jm, 75.60.Ej

Recently there has been considerable interest in coupledagnetization curves appear if there is a gamtmgnetic
Heisenberg antiferromagnetic (HAF) chains, so-callecexcitations.
“spin ladders,” where one of the fascinating discoveries However, there are other arguments which lead to (2)
is that the appearance of a gap depends on the numbas the quantization condition fgM) at a plateau. A
of chains being even or odd (for recent reviews see, e.gparticularly simple one is given by the limit of strong
[1]). In this Letter we study ladder systems at zero tem-coupling along the rungg’ > J (which has also proven
perature in a strong uniform magnetic field. This issueuseful in other respects [9]). A = 0 one has to
has so far only been addressed faro coupled chains deal only with Heisenberg chains of length and the
with a magnetization experiment on £0sH;2N,),Cl;  only possible values for the magnetization are precisely
[2] and theoretically using numerical diagonalization [3],the solutions of (2):(M) € {—1,—1 + 2/N,...,1 —
series expansions [4], and a bosonization approach [52/N, 1}.
These studies found a plateau at zero magnetization whoseFor N = 2 and J’ > J this consideration predicts a
width is given by the spin gap in the otherwise smoothplateau at(M) = 0. The boundary of this plateau is
magnetization curve. In this Letter we extend the theorelated to the spin gap simply by. = A. The strong-
retical approaches to three and more coupled chainsoupling series for this gap reads [10]
using strong-coupling expansions, numerical diagonaliza- 72 73 74

tion, and a bosonization approach. We find thatingeneral A =J' — J + — + - + 0%, 3
. . o . 2] 4]'2 8J/3
the magnetization curves exhibit plateaux also at certain
nonzero quantized values of the magnetization. where we have extended the result of [10] to fourth order

To be precise, we concentrate on the zero-temperatuighis further order is crucial to obtain a zero of the gap for
behavior of the following HAF spin ladder witlv legs  J/ = 0).

(kept fixed) and lengtlh (taken to infinity): For N =3 and small magnetic fields one has a
Lo N L degeneracy which makes already first-order perturbation
HY = J’Z Z SixSiv1x T J Z Z SixSix+1 theory nontrivial. For OBC and(M)| = 1/3, the low-
il i=lx=l lying spectrum is then given by a sph chain in a
— hZSfx, (1) magnetic field whose magnetization curve is well studied
ix (see [11] and references therein). On the other hand,

where theS; , are spin% operators and is a dimension- for PBC and [(M)| = 1/3, the first-order low-energy

less magnetic field. We assume periodic boundary corgffective Hamiltonian for (1) atv = 3 turns out to be
ditions along the chains but investigate both open (OBC§S€€ also [12])
and periodic boundary conditions (PBC) along the rungs.

J < _ _ -
The magnetizatioM) is given by the expectation value Hiﬁ”’” =3 Z(l + o0, + 0.0 )81
of the operato = % i Six x=1
Our main result is tha{M) as a function ofs has . i g 4
plateaux at the quantized values = (4)
%(1 - (M) EZ. (2) where the S, are SU(2) operators acting in the spin

space ando; act on another two-dimensional space
This condition also appears in the Lieb-Schultz-Mattiswhich comes from a degeneracy due to the permutational
theorem [6] and its generalizations [7,8]. There it issymmetry of the chains. In particular, the usual spin-
related to gaplessonmagneti@xcitations, but plateaux in rotation symmetry is enlarged by an U(1) coming from the
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XY -type interaction in the space of the Fourier transformgects are also small for the midpoints of the steps in the
along the rungs [first factor in (4)]. The Hamiltonian (4) magnetization curves [11]. From this one obtains an ex-
encodes the magnetization curve in the strong-couplingrapolation to infiniteL which is shown by the full line in
limit of the three-leg ladder with PBC fdtM)| = 1/3. Fig. 1.

At least for OBC, the situation is a little more favorable A more compact representation is given by “magnetic
for the (M) = 1/3 plateau that one expects fof = 3.  phase diagrams” which show the projection of the conven-
It turns out that one can use nondegenerate perturbatidional magnetization curves as in Fig. 1 onto the axis of the
theory to compute the energy cost to flip one spin arounanagnetic field. We illustrate this in Fig. 2 with the case of
this plateau and thus its lower and upper boundaries,  atwo-leg ladder which has already been studied in [3]. On

22 9473 a finite lattice the possible values @) are quantized; the

hey =2J — Y EREYTYC + 0%, (5) values of the magnetic field/J where a transition from
one such value occurs to the neighboring one are shown

3 372 206573 by lines as a function af’/J. Regions without such lines

he, = 5J/ —-J+ 27 33882 O@J?*). (6) denote plateaux in the magnetization curve while regions
where they are close to each other correspond to smooth
Finally, it is straightforward to exactly compute the transitions in the thermodynamic limit.
upper critical field h,. for the transition to a fully The magnetization curves of [2,3] withf/J = 5 are
magnetized state for PBC, evénand arbitraryV; located somewhat beyond the right border of Fig. 2.
, Our figure contains additional information about the
hye = {Z(J R N-even 7y dependence oi'/J. Note that the numerically obtained
[1 = cod7 "5)lV’ + 2J, N odd. values for the transition to full magnetization do indeed
Actually, the result (7) aN = 3, h,. = 3/2J' + 2J also match with the version of (7) for the laddef:,. =
applies to OBC. 2J + J'. For the boundary of the plateau @) = 0
We now proceed with considerations that follow one observes that finite-size effects are not substantial for
closely classical work on single Heisenberg spin chaing’/J = 3/2, and in this region one observes also good
[11] and the 2D triangular HAF [13]. We have numeri- agreement with the approximation (3) for the transition
cally calculated the lowest eigenvalues as a function o¥alue of the magnetic field, = A. At weak coupling,
the magnetization, wave vectors, and coupling constantiéeld theoretic arguments [14] predict the gap to open
on finite systems with up to a total of 24 sites. linearly, A ~ J’. This is compatible with Fig. 2, though
Figure 1 illustrates our main results with a magnetiza-due to the large finite-size effects in this region much
tion curve forN = 3 atJ//J = 3 with OBC. The thin longer chains are needed to confirm this linear behavior
lines denote curves at finite system size and clearly exhibitonclusively [15].
a plateau withM) = 1/3. The strong-coupling approxi-  Figures 3 and 4 show the magnetic phase diagrams
mations (5) and (6) for the boundaries of this plateau aréor N = 3 with OBC and PBC, respectively (Fig. 1 is
in good agreement with the finite-size data. Finite-size efa section of Fig. 3 at/’/J = 3). Both figures clearly
exhibit a plateau withM) = 1/3 at least in the region
J' = 2J. The strong-coupling series (5) and (6) for the
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FIG. 1. Magnetization curve fov =3 at J'/J = 3 with 05 0 1 o2 3 4

OBC. The thin full lines are foi. = 8, the long-dashed lines
for L = 6, and the short-dashed lines far= 4. The thick FIG. 2. Magnetic phase diagram of the ladder wih= 2

full line indicates the expected form in the thermodynamiclegs. The thin full lines are fof. = 12, the long-dashed lines
limit. The two diamonds denote the series (5) and (6) for thefor L = 10, and the short-dashed lines far= 8. The thick

boundaries of the plateau. full line shows the gap (3).
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of plateaux for sufficiently strong coupling. To see if
the plateau persists in the weak-coupling regidn< J

we use Abelian bonsonization (see, e.g., [16,17]). The
computation to be presented below is similar to the ones
performed recently in [8,18], so we refer the interested
reader to these two references for more details.

The starting point for this weak-coupling expansion
is the observation that at’ = 0 one hasN decoupled
spin% HAFs in a magnetic field whose low-energy
properties are described byca= 1 Gaussian conformal
............... n field theory [19]. This theory is characterized by the
radius of compactificatiomR ((M), A) which depends on
the magnetization as well as thEXZ anisotropy A
which we have here introduced for convenjence. At
ra zero magnetic field one has [17R*(0,A) = %(1 -
FIG. 3. Magnetic phase diagram of = 3 chains with OBC. 1;cos‘lA). In general, this radius can be computed using
The thin full lines are forL = 8, the long-dashed lines for the Bethe-ansatz solution [19] for the Heisenberg chain.
]{L II=Iir?’e sggntgt% ?Q)Og;%a?ge?egniit{%f 4. The two thick  For g qualitative understanding it may be helpful to notice

- resp y that the radius of compactificatidh decreases if eithek
becomes smaller or if the magnetizati@d) increases.
boundaries of this plateau are also shown in Fig. 3, and Now the low-energy properties of the Hamiltonian
in the aforementioned regioff = 2/, where finite-size (1) at small coupling are described by the following
effects are small, one observes good agreement betwedomonaga Hamiltonian with interaction terms:
the expansions and the numerical results.

Figures 3 and 4 differ at least in their details. ForH(N) =fdx|:% i{ﬂ?(x) + R2(M), A) [0, (0) 2}
i=1

bl 4

T M>=1/3

example, one observes that at the upper boundary of the
(M) = 1/3 plateau in Fig. 4 it becomes favorable to flip

two spins at once rather than one #8r= 3J which may + M Z[axd)i(x)] [0, di+1(x)]

be interpreted as one signal of the frustration introduced 27 4

into the system. + > {As : coddkpx + VaAm (¢ + disi)] :
At strong coupling the excitations above tléeplateau i

in Fig. 4 are described by (4) with all spins aligned along + A3 1 co§VAT (b — i)

the field (St = %). This is anXY chain and therefore N _

massless, providing us with an example of a plateau in the + A4 : cod/7 (i — biv1)] :}:|, (8)

magnetization curve with gapless nonmagnetic excitations

above it. with T1; = %ax&-, and A; ~ J'/J. It is convenient to

The strong-coupling expansions as well as the numerirescale the fields by the radius of compactificat®rin
cal results obtained so far clearly show the existenceg), i.e.,¢; — 47 Ro;.

For N = 3 chains with PBC we now change variables
N , | , from the fields¢;, ¢, 3 to (1/V3) (¢1 + ¢ + ¢3),

5 (1/4/2) (¢1 — #2), (1/4/6) (1 + 2 — 2¢3). Follow-
ing [16] one can show that the perturbation terms with
coefficientsAs or A4 in (8) give rise to a mass for the lat-
ter two fields.

Let us now consider the remaining fieldg;., :=
(1/~N)XY., ¢;. Radiative corrections to (8) generate
the interaction term co92¢gi.g/R) : [20]. ForN =3
and at{(M) = 0 this operator is irrelevant (in the region
of A close to 1), which confirms that three chains weakly
coupled in a periodic manner are massless.

Now we address the question of the appearance of
plateaux for{fM) # 0. Since this requires a gap for the
. . ,<M>=0 (magnetic) excitations, we expect such a plateau to occur
05 0 1 2 3 4 if the remaining field¢g;., acquires a mass. In fact, the

v
. . e _ additional interaction term
FIG. 4. Same as Fig. 3, but with periodic boundary condi-

tions. : €O Pgiag/R) : 9
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