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Resistivity due to Domain Wall Scattering
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Domain walls in ferromagnetic metals are known to be a source of resistance since the e
experiments on iron whiskers. Recently it has been possible to identify this contribution from d
on cobalt and nickel films which display stripe domains in which the current is driven normal to
domain walls. With the same Hamiltonian as used to explain giant magnetoresistance in structures
collinear magnetic alignments we have determined the spin flip, as well as nonflip, scattering prese
domain walls. We calculate the resistivity in zero field, i.e., in the presence of striped domains,
at saturation to show the amount of magnetoresistance that is attributable to domain wall scatte
[S0031-9007(97)04820-5]

PACS numbers: 73.40.Cg, 73.50.Bk, 75.70.– i
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Since the early experiments on iron whiskers [1],
was recognized that walls between domains in ferrom
nets are a source of electrical resistance in addition
that present in the domains. By applying magnetic fie
to saturate magnetization, and thereby erase domain
an otherwise multidomain ferromagnet, the resistance
iron was found to drop significantly. Cabrera and Falic
[2] considered two mechanisms by which the walls p
duce additional scattering: paramagnetic effects from
reflection of incoming electron waves from the ferroma
netically ordered domains as they enter the twisted s
structure of a wall, and diamagnetic effects “due to t
zigzagging character of the electron orbits when going
tween up and down regions of the magnetization.”
metals with few impurities, such as iron whiskers, t
relaxation times are sufficiently long, and Cabrera a
Falicov concluded that these diamagnetic effects can
count for the observed negative magnetoresistance (M
[3]. Indeed, both Cabrera and Falicov, and Berger [
found that the reflection for an electron at the Fermi s
face from a180± wall which is 10 nm thick is negligible;
unless the walls are so abrupt to be of monolayer thi
ness, electron scattering from reflections do not contrib
to the electrical resistance.

While the resistivity of iron whiskers at low tempera
tures (about 4.2 K) is small, of the order of0.01 mV cm,
most of the ferromagnetic layers that are used in m
netoresistive elements, e.g., spin valves, have a con
erably higher resistivity due to inherent defects such
grain boundaries and roughness at the boundaries of t
thin layers. Recently Gregget al. [5] obtained the first di-
rect observation of ferromagnetic domain wall scatter
by passing a current that is nominally perpendicular t
striped domain structure in thin films of cobalt (1000 A
The resistivity of their films was about10 mV cm, so that
the diamagnetic effects that are putatively responsible
the negative MR in pure iron whisker cannot be resp
sible. Also, as the thickness of the walls is estima
to be 15 nm, reflections of impinging electrons with t
Fermi wavelength cannot account for the additional re
0031-9007y97y79(25)y5110(4)$10.00
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tivity due to domain walls which was estimated to be abo
0.52 mV cm. Gregget al. [5] propose that scattering of
conduction electrons by domain walls is due to a combin
tion of (1) how well the precessional behavior of the carri
spins allows it to track the changing local exchange fie
direction as it traverses the wall, and (2) the same ty
of spin dependent scattering due to impurities that giv
rise, interalia, to giant magnetoresistance. The ability
an electron spin to track the reorientation of the magne
zation in a domain wall is a necessary ingredient for u
derstanding the electron states produced by these wa
however, this mistracking is not asourceof scattering; of
and by itself it does not produce resistance. In this Let
we use the same Hamiltonian used to understand the g
MR (GMR) of magnetic multilayers, and show that whe
the spin dependent scattering due to defects present in
film is evaluated in the wave functions appropriate to t
spin structure in a domain wall we can reproduce the a
ditional resistivity observed by Gregget al.

The Hamiltonian used to describe GMR consists
two parts. The spin dependent electronic structure is
scribed by

H0 ­ 2
h̄2=2

2m
1 V srd 1 Js ? M̂srd , (1)

where J denotes the exchange splitting,V srd is the
nonmagnetic periodic potential, and the unit vectorM̂srd
points in the direction of the local magnetization. Th
scattering of electrons is given by

Vscatt ­
X

i

fy 1 js ? M̂srdgdsr 2 rid , (2)

where ri is the position of the impurities andj repre-
sents the spin dependence of the scattering. Its origin
be either the band structure, as given by Eq. (1), or t
intrinsic spin dependence of the defect-impurity scatte
ing potential. In homogeneous systems, where the m
netization is collinear,M̂srd ­ M̂, and it is natural to
choose this direction for the axis of quantization o
spin s. Alternately, if one prefers another axis, th
© 1997 The American Physical Society
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Hamiltonian Eq. (1) can be diagonalized by rotating t
spin operators to be parallel toM̂,

Csrd ­ Ru

µ
f"srd
f#srd

∂
, (3)

where Ru ; exps2i
u

2 n̂ ? sd and n̂ represents the axis
about which the magnetization rotates, so thatssud ?

M̂ ­ sz and the rotated Hamiltonian diagonal in sp
space is

Hu ; R21
u H0Ru ­ 2

h̄2

2m
=2 1 V 1 Jsz . (4)

The eigenstates of this Hamiltonian are referred to as
spin dependent band structures of ferromagnetic meta

When the magnetization is noncollinear, as in a dom
wall, its direction varies as a function of distance a
the angle of rotation in Eq. (3) is a function of positio
As position and momentum are noncommuting variab
the rotation operator for spin in a domain wall do
not commute with the kinetic energy operator, therefo
the spin Hamiltonian, Eq. (1), for a domain wall is n
diagonalized by the rotation as in Eq. (4). Rather, we fi

R21
u

h̄2=2

2m
Ru ­

h̄2=2

2m
1 Vpert , (5)

where

Vpert ­ R21
u fP2y2m, Rug

­
h̄2

2m
ss ? n̂d s=ud ? p 2

ih̄2

4m
ss ? n̂d=2u

1
h̄2

8m
j=uj2. (6)

The additional term generated by the rotation represe
corrections to the wave functions due to the twisti
of magnetization in domain walls. This term is th
stationary representation of the mistracking referred
by Gregg in Ref. [5]. The Hamiltonian for the wal
Eqs. (4) and (5), does not have pure spin eigensta
therefore the impurity potential, Eq. (2), scatters electro
from one eigenstate to another and thereby mixes the
channels of current that would be independent were
not for this additional term. The application of a fie
that is large enough to saturate the magnetization era
domains and the walls separating them. It produce
homogeneous sample whose eigenstates [see Eq. (4)
pure spin states. The impurity potential, Eq. (2), do
not scatter between states of different spin so that
spin current channels are independent of one another.
the resistivity of one channel in a ferromagnetic metal
usually lower than the other, the currents in the chann
are unequal, and a short circuit exists at saturation. Th
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partially removed when domains are present because
scattering in domain walls mixes the currents. This is t
origin of the additional resistance due to domain walls.

To estimate the size of this perturbation we consid
a 180± wall with the magnetization continuously rotating
over a distanced, i.e., usxd ­ pxyd for 0 , x , d and
s ? n̂ equalssx ssyd for a Bloch (Néel) wall. For these
walls the second term in Eq. (6) is zero, and the thi
term represents a constant shift in the potential whi
will not be relevant to the spin dependent scattering
domain walls. We believe this simplified wall profile
captures the essential physics. Other profiles, e.g.,usxd ­
2 arctansxydd, make=xu position dependent; they do no
produce new physics.

Up to the first order inVpert, the eigenstates ofH0 1

Vpert are

C"sk, rd ­ a22skxd
∑

Ru

µ
eik"?r

0

∂
2

ikx

kF
jRu

µ
0

eik"?r

∂∏
(7)

and

C#sk, rd ­ a22skxd
∑

Ru

µ
0

eik#?r

∂
1

ikx

kF
jRu

µ
eik#?r

0

∂∏
,

(8)

where the eigenstate energy iseks ­
h̄2k2

s

2m 1 sJ ss ­
6 or "#d, j ; p h̄2kFy4mdJ, and the coefficient
a2skxd ­ 1 1 sjkxykFd2. In an adiabatic approximation,
in which we retain only the first terms in Eqs. (7) and (8
the spin channels would also be decoupled even in
presence of the domain walls. It is the second terms
the right-hand side of Eqs. (7) and (8) which go beyon
such an adiabatic approximation. As we will present
see, the correction term is quite small for the walls w
consider, of the order of 0.03 for a180± wall with a wall
thickness of150 Å, and it is not necessary to conside
higher order terms of the perturbation Eq. (6).

To calculate the resistivity of a domain wall we
evaluate the spin dependent electron scattering poten
Eq. (2), in states ofH0 1 Vpert, Eqs. (7) and (8), i.e.,
calculate the matrix elements

V ss0

kk0 ;
Z

C1
s sk, rdVscattCs0 sk0, rd d3r . (9)

As the walls are thick compared to the Fermi wave
length, we neglect scattering due to reflections of ele
trons as they go from the collinearly aligned domain in
the twisted wall between domains [2,4]. Adopting th
Boltzmann transport approach, the nonequilibrium dist
bution function for each eigenstate ofH0 1 Vpert satisfies
the following:
evs ? EdseF 2 eksd ­
1

8p3

Z
Wss

kk0 ffsskd 2 fssk0dg d3k0 1
1

8p3

Z
Ws2s

kk0 ffsskd 2 f2ssk0dg d3k0 , (10)
5111
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where the scattering rates W are given by

Wss0

kk0 ­
2p

h̄
jV ss0

kk0 j2dseks 2 ek0s0d , (11)

and the matrix elements of the scattering potential are

jV ss
kk0 j2 ­ cia

2skxda2sk0
xd

3

"
sy 1 sjd 1

kxk0
x

k2
F

j2sy 2 sjd

#2

(12)

and

jV
"#
kk0 j2 ­ cia

2skxda2sk0
xd

£
sy 1 jdk0

x 2 sy 2 jdkx

§
2

3 j2yk2
F , (13)

whereci is the impurity concentration Here the indexs

doesnot represent pure spin states; rather it denotes
eigenstates ofH0 1 Vpert in spin space, i.e., the spinor
[see Eqs. (7) and (8)].

For current parallel to the domain walls (CIW), rem
niscent of the current in the plane of the layer (CIP) g
ometry for multilayers, there are no “scattering in” term
for the following reason. The distribution functionfskd
can be written asfskd ­ f0skd 1 k ? Egskd where
f0skd is the equilibrium distribution function andgskd
is an even function ofk ? E. Since the scattering rates
Eqs. (12) and (13) depend on the component of mom
tum parallel to=xu, the integration overk0 for the scatter-
ing in terms vanish identically. Thus we obtain a simp
solution of the distribution function, [from Eq. (10)],

fsskd ­ f0skd 2 eys
y EdseF 2 eksdtsskd , (14)

where the relaxation timets is given by

ftsskdg21 ­ s1y2pd3
Z

d3k0 sWss
kk0 1 W

"#
kk0d (15)

and the conductivity issCIW ­
P

s

R
eys

y fsskd d3k. By
using Eqs. (11)–(15) and carrying out the integratio
over momenta we find, up to second order inj [note that
one also needs to expanda2skxd and a2sk0

xd to second
order in j], the CIW resistivity rCIW ­ 1ysCIW of a
domain wall is

rCIW ­ r0

"
1 1

j2

5
sr"

0 2 r
#
0d2

r
"
0r

#
0

#
, (16)

where r
s
0 is the resistivity for spins of the ferromag-

net, r
21
0 ­ 1yr

"
0 1 1yr

#
0 is the conductivity of the fer-

romagnet without domain walls, and we have used f
simplicity the same Fermi wave vector for spin up an
spin down. The first term in Eq. (16) comes from tw
independent current channels and the second term re
sents resistance due to the wall, which is inversely p
portional to the squares of the wall thickness.

The extra resistivity due to domain walls, i.e., secon
term in Eq. (16), is dependent on the spin dependence
the resistivity. If the two spin channel resistivities ar
the same, i.e.,r

"
0 ­ r

#
0, domain walls do not contribute
5112
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additional resistance. This is quite understandable: T
role of domain walls is to “mix” two current channels
and thereby partially remove the “short circuit” effect i
a perfectly ferromagnetic aligned domain. Without sp
dependence of the resistivity to start with, mixing h
no effect on the resistivity. The spin orbit coupling i
the domains themselves has an analogous effect on
resistivity [6]. Although the spin-orbit coupling energy i
very small compared to exchange and Coulomb energ
in electronic structure calculations, its effect on th
resistivity is significant because the scattering, Eq. (
mixes the two current channels [6].

To estimate the MR due to walls we choose com
monly accepted values ofkF ­ 1 Å21, J ­ 0.5 eV, and
r

"
0yr

#
0 ­ 5 20 for typical ferromagnetic materials of Co

Fe and Ni. With these parameters, we find the mag
toresistance ratioR, which is defined as

RCIW ;
rCIW 2 r0

r0
­

j2

5
sr"

0 2 r
#
0d2

r
"
0r

#
0

, (17)

ranges from 0.3% to 1.8% for a wall150 Å thick, which
is the estimated thickness for the cobalt films used
Ref. [5].

We now turn to the calculation for currents perpe
dicular to the domain walls (CPW); this is reminisce
of the current perpendicular to the plane (CPP) of t
layer in magnetic multilayers. In this geometry, the sc
tering in terms in the Boltzmann equation, Eq. (10), d
not vanish, and it is necessary to introduce an appro
mation to solve the integral equation. We take the d
tribution function in the “scattering in terms” in the form
fsskd ­ f0skd 1 k0

xgs (fs denotes the angular aver
age over the momentum variable), so that the scatterin
terms become

2
V

8p3

Z
Wss

kk0 fssk0dd3k0 2
V

8p3

Z
Ws2s

kk0 f2ssk0d d3k0

­
f2sskd 2 fsskd

t0
, (18)

where the “spin mixing” relaxation time is defined as

1yt0 ­
2mci

3p h̄2 sy2 2 j2dj2. (19)

By placing this into the Boltzmann equation, Eq. (10
and by some algebraic manipulations, we find that t
resistivity for CPW is

rCPW ­ r0

26641 1
j2

5
sr"

0 2 r
#
0d2

r
"
0r

#
0

0BB@3 1
10

q
r

"
0r

#
0

r
"
0 1 r

#
0

1CCA
3775 .

(20)

By comparing with the resistivity of CIW, we find that th
ratio of CPW and CIW magnetoresistance due to dom
wall scattering is
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r

RCPW yRCIW ­ 3 1
10

q
r

"
0r

#
0

r
"
0 1 r

#
0

. (21)

To compare our results with experimental data f
cobalt, we choose the same parameters as before,
kF ­ 1 Å21, J ­ 0.5 eV and r

"
0yr

#
0 in the range of

5–20; this range of values hold is for a variety
impurities and at room temperature as well as for lo
temperatures, because for cobalt the contributions fr
phonon and magnon scattering produces spin depen
scattering as the electron density of states at the Fe
level depends on the spin direction [7]. We find th
the CPW magnetoresistance is between 2% and 1
which is consistent with the 5% found by Gregg [5] fo
cobalt at room temperature. For nickel, the values
r

"
0yr

#
0 at low temperatures can be as large as for cob

however at room temperature they are smaller beca
the temperature dependent spin scattering is weake
nickel [8]. In iron the temperature dependent scatter
seems to be independent of spin [8], so that, ev
though there is some spin dependent scattering due
impurities at low temperatures of the order ofr

"
0yr

#
0 1y11

to 3, at room temperature this ratio may be not far from
In this case, contributions to the resistivity from scatteri
in domain walls in iron will be considerably smaller a
room temperature than at low temperatures [4.2 K].

In summary, we have taken into account the admixt
of spin states due to the noncollinearity of the magn
tization in domain walls; we find that impurities scatt
electrons between eigenstates and thereby mix hereto
independent channels of current. We calculated the re
tivity for currents parallel and perpendicular to the wa
and find we are able to reproduce the additional resista
due to domain walls found in recent experiments on cob
films. The inability of an electron spin to track the reor
entation of magnetization in a domain wall, epitomized
the ratioj introduced in Ref. [5], shows up in our Eqs. (7
and (8) as admixing states with opposite spins. It is no
r
i.e.,
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source of scattering or resistance; rather the impurity sc
tering, Eq. (2), produces the resistance.

Note added—Since completion of this work, Tatara
and Fukuyama [9] have published a study in whic
they focus on quantum transport in magnetic wire
where it is found that the effect of domain walls is t
reduce resistivity [10]. In particular, they stress that a
magnetic field removes domain walls that break the we
localization that is otherwise present when the wire
uniformly magnetized. In our study we are intereste
in explaining the observedincreaseof resistivity in thin
magnetic films due to domain walls that comes from th
spin dependence of the scattering from impurities; th
effect was not considered in Ref. [9].
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