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A general approach for synchronizing pairs of unidirectionally coupled partial differential equations
(PDEs) with spatiotemporally chaotic dynamics is introduced. We show that for a large class of
PDEs, a pair of PDEs can be synchronized by driving the response system onlffinae aumber
of space points. We also discuss the relevance of our results for control of spatiotemporal chaos.
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Chaos synchronization has recently aroused a great deal LI —u1v12 + a(l — uy) + D,V?uy,
of interest in the light of potential applications in en- at
gineering [1]. Technigues based on the Pecora-Carroll dvq ’ ) 1)
[2] method have been very successful for synchroniz- T (a + b)vy + D, Vv,

ing chaos in low-dimensional systems [3,4]. Synchroniz-

ing spatiotemporal systems remains a challenge, howeveshere u; and v; represent the substrate and activator
because the chaotic states in such systems are typical@ncentration, respectively,andb are parameters of the
high dimensional, involving multiple stable and unstablereaction, and, andD, are the diffusion constants. Let
modes. Recently it was shown how to synchronize hyperk be the linear extension of the reactor tank, and=
chaotic systems with a scalar continuous signal [4,5][L/X] be the number of equidistant points. Equation (1)
while in [6] a method for synchronization of spatiotem- drives a similar PDE,

poral chaos of two arrays of coupled nonlinear oscillators

is discussed: _In thi_s Letter_V\_/e dgscribe a general mgthod duy _ —uv? + a(l — wy) + DVus,
for synchronizingpairs of unidirectionally coupled partial at
differential equations (PDEs) with spatiotemporal chaotic 4, 2)

dynamics. We mention a few examples where the study uv; — (a + b)vy + D,V + f(x,1).
of interaction between spatially extended systems is im-
portant: reentry initiation in coupled parallel fibers [7], LetT > 0 andX > 0 be real numbers. Lai(t — 0)
dynamics of multilayered natural and artificial neural net-be the value of the signal, immediately prior to the time
works [8], thermal convention in multilayered media [9], r. The driving functionf(x,¢) influences the response
and systems which consist of several spatially extendedystem in the following way: at each moment= kT
systems that are weakly coupled, an example being th& € Z), N space points = 0,X,2X,...,(N — 1)X are
electrohydrodynamical convention in liquid crystals [10]. simultaneously driven and their corresponding vari-

The Letter is organized as follows. First we illustrateables are set to new values(kT) = v(kT — 0) +
numerically how the method leads to synchronization ofe[v(kT) — v,(kT — 0)]. During the rest of the time
spatiotemporal chaos [11] of pairs of Gray-Scott equations # k7T PDEs (1) and (2) are not connected and oscil-
[12]. Then we give arguments why it can be expected thalate independently from each other. Th@isgdenotes the
the coupling mechanism used leads to synchronization fdime distance between the occurrence of the driving im-
a large class of pairs of PDEs, and finally we discuss th@ulses, andX is the space distance between the driven
relevance of our results for control of chaos. space points. Note that in the case wier= T = 0 and

To demonstrate spatiotemporal synchronization of = 1 this driving method becomes the Pecora-Carroll
PDEs, we use as an example the Gray-Scott cubiapproach for synchronization in PDEs. The motivation
autocatalysis model to simulate a 1D reaction-diffusionfor such a driving as in Eq. (2) is twofold: (i) to enable
system exhibiting mixed-mode spatiotemporal chaos [13]the synchronization where only fanite number of space

Jt

0031-900797/79(1)/51(4)$10.00 © 1997 The American Physical Society 51



VOLUME 79, NUMBER 1 PHYSICAL REVIEW LETTERS 7 JLy 1997

points are controlled; (ii) to make possible the synchro-The values of the parameters are [14} 0.028, b =
nization throughime-discontinuousnonitoring and influ-  0.053, D, = 1.0 X 1073, D, = 2D,,, andL = 2.5. The
encing the state variables. system is initiated withu(x) = 1 and v(x) = 0 with

The results of our numerical simulations are showna strong perturbation of the center region. Figure 1(a)
in Fig. 1. We have used an explicit Euler scheme andlepicts the spatiotemporal evolution of the PDEs (1).
periodic boundary conditions withf = 256 mesh points In the simulation we have used = 0.2, T = 20A¢,
in space, and a time integration step sizeAsf= 0.05. and X = (8/256)L = 0.03125L. In other words,N =
32 space points are driven. This number remains un-
changed even iM is increased taf = 512 and M =
1024. Moreover, we find that there exists a critical value
X, such that for allX < X, both systems (1) and (2)
are synchronized. For the above parameter valkigss=
(14/256)L, and this number also remains unchanged with
increasingM. This is a remarkable result: it shows that
two infinite dimensional systems can be synchronized
using a finite number of coupling points, or, in other words,
the synchronization can be achieved applyingvasimen-
sional vector as a driving signal.

In order to visualize the synchronization, we switch on
the coupling atr = 5000 as denoted by the dashed line.
Figure 1(b) shows the modulus of the difference of the
u variables of the drive and the response system. The
dark regions indicate the desynchronization of the PDEs,
in particular, during the time intervél < ¢ < 5000 when
the coupling is switched off. This effect can also be seen
in Fig. 1(c) that gives the global synchronization er¢or

;15000

L
. \/% J T = P + @ = wRlar, @

as a function of time. As can be seen, the synchronization
error tends to zero as soon as the coupling is switched on.
Figure 2 shows arX-T diagram: a region below the
curve is the region of synchronicity. In other words,
for each X (T) there exists a critical valud,, (X.)
such that for alll < T, (X < X,,) drive and response

10000 ;15000 systems are synchronized. In the case when At both
systems (1) and (2) are coupled at discrete times only. For
0 example, forX = (8/256)L, T., = 80At; therefore, for
1 T~ a!l At < T <T, thg synchronization is achieved with
e 1 discretely sampled signals.
0.0001 T
15
1e-08
1e-12 T 10
X
1e-16

0 5000 10000 { 15000

FIG. 1. Synchronization of spatiotemporal chaos. (a) Spatio-
temporal evolution of theu variable of the PDE (1) as a

function of time+ and spatial coordinate. (b) The same as 1 _ ) :

in (a) for the differenceu; — u,|. The dashed line denotes 0 10 20 30 1 40 50 60
the time ¢ = 5000 when the coupling between the PDEs is

switched on. (c) The synchronization error Eq. (3) versus time. FIG. 2. X-T diagram for the Gray-Scott model.
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We point out that the two PDEs can also be synchro- 1
nized in the following way: at time = kT only a single e |
space pointt = mX is influenced by setting the, vari-
able to a new valuay,(mX,kT) = vo(mX, kT — 0) +
elvi(mX,kT) — vo(mX, kT — 0)]. Then, at timer =
(k + 1)T, the space point = (m + 1)X is driven, etc.
Therefore, the driving signal is the sequence of samples
v1(0,0), vi(X, T), v1(2X,2T),...,v1(0,NT),vi(X, (N + T
D7), vi2X,(N + 2)T),.... For example, if X = 1e-121
(8/256)L, T = 5At, ande = 0.9, synchronization of two
infinite dimensional systems can be achieved tsingle
scalar signal. 1e-16 , | : ; ‘

The drive and the response systems synchronize, be- 0 5 10 15t 20 25 30
cause the spectrum of Lyapunov exponents [15] of the s@=|G_ 3. The synchronization error Eq. (3) versus time for the
lution generated by the response system has values whigbmplex Ginzburg-Landau equations (4) and (5).
are less than 0. Therefore, the synchronization mani-

fold ui(x, 1) = vix,7) andus(x, 1) = walx, 1) is linearly gy gnace points are continuously driven was considered,
stable. This is exactly the same condition for synchroy4tis the case whes = 7 = 0.

nization_ as for low-dimensional systems given in terms \va now discuss a possible application of the synchro-
of conditional Lyapunov exponents [2]. 'For example, for i, 41ion method introduced in this Letter. It is known that
the parameters from the synchronization region (Fig. 2} chronization of unidirectionally coupled systems and

all Lyapunov exponents of the response system are negganiro| of chaos are equivalent concepts [20]. Therefore,
tive. The fact that the response and drive systems are syfyig not surprising that one can use the above method for
chronized with a finite number of points can be used for a

simple and intuitive measure of degree of spatiotemporal
chaos in PDEs: if synchronization can be achieved with a
smaller number of space points, then spatiotemporal chaos
is weaker. We will elaborate this idea in detail elsewhere.

How general is this method for synchronization of spa-
tiotemporal chaos? We have performed numerical experi-
ments with different PDEs (complex Ginzburg-Landau
equation [15,16], one-dimensional nonlinear drift-wave
equation driven by a sinusoidal wave [17], Kuramoto-
Sivashinsky equation [18]), and below we present as a
second example the one dimensional complex Ginzburg-
Landau equation (CGLE) in the regime of spatiotemporal
amplitude chaos [15,16],

2

S a - =i lala + (0 + i S @

We use this equation to drive another CGLE, b)
2
% =a— (1 —iB)lafa + (1 + ia) aa—;’;
+ flx,0). 5)

For the numerical integration periodic boundary con-
ditions are imposed, i.eq;(x,r) = a;(x + 407,1). We
use an explicit Euler scheme witl)24 points, and time
steps equal t0.0002. The values of the parameters
area =4, B =4, e =08, X = (16/1024)407, and
T = 30At. The results are similar to the case of the
Gray-Scott model; namely, the synchronization error ap-
proaches zero as soon as the coupling is switched on (see
Fig. 3). Similar results have also been obtalned_wnh Othehe_ 4. (a) Control of the complex Ginzburg-Landau equa-
PDEs. We note here that very recently Sushchik [19] haﬁon; X = (10/1024)40m, T = 20A7, & = 0.8. (b) Sup-
investigated synchronization of spatiotemporal chaos in gression of chaos in the Gray-Scott modal;= (4/256)L,
pair of CGLEs. However, in his work only the case whenT = 10A¢, e = 0.2.
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