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A general approach for synchronizing pairs of unidirectionally coupled partial differential equatio
(PDEs) with spatiotemporally chaotic dynamics is introduced. We show that for a large class
PDEs, a pair of PDEs can be synchronized by driving the response system only at afinite number
of space points. We also discuss the relevance of our results for control of spatiotemporal ch
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Chaos synchronization has recently aroused a great d
of interest in the light of potential applications in en
gineering [1]. Techniques based on the Pecora-Carr
[2] method have been very successful for synchroni
ing chaos in low-dimensional systems [3,4]. Synchroni
ing spatiotemporal systems remains a challenge, howev
because the chaotic states in such systems are typic
high dimensional, involving multiple stable and unstab
modes. Recently it was shown how to synchronize hype
chaotic systems with a scalar continuous signal [4,5
while in [6] a method for synchronization of spatiotem
poral chaos of two arrays of coupled nonlinear oscillato
is discussed. In this Letter we describe a general meth
for synchronizingpairs of unidirectionally coupled partial
differential equations (PDEs) with spatiotemporal chaot
dynamics. We mention a few examples where the stu
of interaction between spatially extended systems is im
portant: reentry initiation in coupled parallel fibers [7]
dynamics of multilayered natural and artificial neural ne
works [8], thermal convention in multilayered media [9]
and systems which consist of several spatially extend
systems that are weakly coupled, an example being
electrohydrodynamical convention in liquid crystals [10]

The Letter is organized as follows. First we illustrat
numerically how the method leads to synchronization
spatiotemporal chaos [11] of pairs of Gray-Scott equatio
[12]. Then we give arguments why it can be expected th
the coupling mechanism used leads to synchronization
a large class of pairs of PDEs, and finally we discuss t
relevance of our results for control of chaos.

To demonstrate spatiotemporal synchronization
PDEs, we use as an example the Gray-Scott cub
autocatalysis model to simulate a 1D reaction-diffusio
system exhibiting mixed-mode spatiotemporal chaos [13
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≠u1

≠t
­ 2u1y2

1 1 as1 2 u1d 1 Du=2u1 ,

≠y1

≠t
­ u1y2

1 2 sa 1 bdy1 1 Dy=2y1 ,
(1)

where u1 and y1 represent the substrate and activat
concentration, respectively,a andb are parameters of the
reaction, andDu andDy are the diffusion constants. Le
L be the linear extension of the reactor tank, andN ­
dLyXe be the number of equidistant points. Equation (
drives a similar PDE,

≠u2

≠t
­ 2u2y2

2 1 as1 2 u2d 1 Du=2u2 ,

≠y2

≠t
­ u2y2

2 2 sa 1 bdy2 1 Dy=2y2 1 fsx, td .
(2)

Let T . 0 andX . 0 be real numbers. Lety2st 2 0d
be the value of the signaly2 immediately prior to the time
t. The driving functionfsx, td influences the response
system in the following way: at each momentt ­ kT
(k [ Z), N space pointsx ­ 0, X, 2X, . . . , sN 2 1dX are
simultaneously driven and their correspondingy2 vari-
ables are set to new valuesy2skT d ­ y2skT 2 0d 1

´fy1skT d 2 y2skT 2 0dg. During the rest of the time
t fi kT PDEs (1) and (2) are not connected and osc
late independently from each other. Thus,T denotes the
time distance between the occurrence of the driving i
pulses, andX is the space distance between the driv
space points. Note that in the case whenX ­ T ­ 0 and
´ ­ 1 this driving method becomes the Pecora-Carr
approach for synchronization in PDEs. The motivatio
for such a driving as in Eq. (2) is twofold: (i) to enabl
the synchronization where only afinite number of space
© 1997 The American Physical Society 51
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points are controlled; (ii) to make possible the synchro
nization throughtime-discontinuousmonitoring and influ-
encing the state variables.

The results of our numerical simulations are shown
in Fig. 1. We have used an explicit Euler scheme an
periodic boundary conditions withM ­ 256 mesh points
in space, and a time integration step size ofDt ­ 0.05.

FIG. 1. Synchronization of spatiotemporal chaos. (a) Spatio
temporal evolution of theu variable of the PDE (1) as a
function of time t and spatial coordinatex. (b) The same as
in (a) for the differenceju1 2 u2j. The dashed line denotes
the time t ­ 5000 when the coupling between the PDEs is
switched on. (c) The synchronization error Eq. (3) versus time
52
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The values of the parameters are [14]a ­ 0.028, b ­
0.053, Dy ­ 1.0 3 1025, Du ­ 2Dy , andL ­ 2.5. The
system is initiated withusxd ­ 1 and ysxd ­ 0 with
a strong perturbation of the center region. Figure 1(a
depicts the spatiotemporal evolution of the PDEs (1).

In the simulation we have used́ ­ 0.2, T ­ 20Dt,
and X ­ s8y256dL ­ 0.031 25L. In other words,N ­
32 space points are driven. This number remains un
changed even ifM is increased toM ­ 512 and M ­
1024. Moreover, we find that there exists a critical value
Xcr such that for allX , Xcr both systems (1) and (2)
are synchronized. For the above parameter values,Xcr ­
s14y256dL, and this number also remains unchanged wit
increasingM. This is a remarkable result: it shows that
two infinite dimensional systems can be synchronize
using a finite number of coupling points, or, in other words
the synchronization can be achieved applying anN dimen-
sional vector as a driving signal.

In order to visualize the synchronization, we switch on
the coupling att ­ 5000 as denoted by the dashed line.
Figure 1(b) shows the modulus of the difference of th
u variables of the drive and the response system. Th
dark regions indicate the desynchronization of the PDE
in particular, during the time interval0 , t , 5000 when
the coupling is switched off. This effect can also be see
in Fig. 1(c) that gives the global synchronization errore

e ­

s
1
L

Z L

0
fsu1 2 u2d2 1 sy1 2 y2d2g dx , (3)

as a function of time. As can be seen, the synchronizatio
error tends to zero as soon as the coupling is switched o

Figure 2 shows anX-T diagram: a region below the
curve is the region of synchronicity. In other words,
for each X (T ) there exists a critical valueTcr (Xcr )
such that for allT , Tcr (X , Xcr ) drive and response
systems are synchronized. In the case whenT . Dt both
systems (1) and (2) are coupled at discrete times only. F
example, forX ­ s8y256dL, Tcr ­ 80Dt; therefore, for
all Dt , T , Tcr the synchronization is achieved with
discretely sampled signals.

FIG. 2. X-T diagram for the Gray-Scott model.
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We point out that the two PDEs can also be synchr
nized in the following way: at timet ­ kT only a single
space pointx ­ mX is influenced by setting they2 vari-
able to a new valuey2smX, kT d ­ y2smX, kT 2 0d 1

´fy1smX, kTd 2 y2smX, kT 2 0dg. Then, at timet ­
sk 1 1dT , the space pointx ­ sm 1 1dX is driven, etc.
Therefore, the driving signal is the sequence of samp
y1s0, 0d, y1sX, T d, y1s2X, 2T d, . . . , y1s0, NT d, y1sssX, sN 1

1dT ddd, y1sss2X, sN 1 2dT ddd, . . . . For example, if X ­
s8y256dL, T ­ 5Dt, and´ ­ 0.9, synchronization of two
infinite dimensional systems can be achieved by asingle
scalar signal.

The drive and the response systems synchronize,
cause the spectrum of Lyapunov exponents [15] of the s
lution generated by the response system has values wh
are less than 0. Therefore, the synchronization ma
fold u1sx, td ­ y1sx, td andu2sx, td ­ y2sx, td is linearly
stable. This is exactly the same condition for synchr
nization as for low-dimensional systems given in term
of conditional Lyapunov exponents [2]. For example, fo
the parameters from the synchronization region (Fig.
all Lyapunov exponents of the response system are ne
tive. The fact that the response and drive systems are s
chronized with a finite number of points can be used for
simple and intuitive measure of degree of spatiotempo
chaos in PDEs: if synchronization can be achieved with
smaller number of space points, then spatiotemporal cha
is weaker. We will elaborate this idea in detail elsewher

How general is this method for synchronization of spa
tiotemporal chaos? We have performed numerical expe
ments with different PDEs (complex Ginzburg-Landa
equation [15,16], one-dimensional nonlinear drift-wav
equation driven by a sinusoidal wave [17], Kuramoto
Sivashinsky equation [18]), and below we present as
second example the one dimensional complex Ginzbu
Landau equation (CGLE) in the regime of spatiotempor
amplitude chaos [15,16],

≠a1

≠t
­ a1 2 s1 2 ibd ja1j

2a1 1 s1 1 iad
≠2a1

≠x2
. (4)

We use this equation to drive another CGLE,
≠a2

≠t
­ a2 2 s1 2 ibd ja2j

2a2 1 s1 1 iad
≠2a2

≠x2

1 fsx, td . (5)
For the numerical integration periodic boundary con

ditions are imposed, i.e.,aisx, td ­ aisx 1 40p, td. We
use an explicit Euler scheme with1024 points, and time
steps equal to0.0002. The values of the parameters
are a ­ 4, b ­ 4, ´ ­ 0.8, X ­ s16y1024d40p, and
T ­ 30Dt. The results are similar to the case of th
Gray-Scott model; namely, the synchronization error a
proaches zero as soon as the coupling is switched on (
Fig. 3). Similar results have also been obtained with oth
PDEs. We note here that very recently Sushchik [19] h
investigated synchronization of spatiotemporal chaos in
pair of CGLEs. However, in his work only the case whe
o-
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FIG. 3. The synchronization error Eq. (3) versus time for t
complex Ginzburg-Landau equations (4) and (5).

all space points are continuously driven was consider
that is, the case whenX ­ T ­ 0.

We now discuss a possible application of the synch
nization method introduced in this Letter. It is known th
synchronization of unidirectionally coupled systems a
control of chaos are equivalent concepts [20]. Therefo
it is not surprising that one can use the above method

FIG. 4. (a) Control of the complex Ginzburg-Landau equ
tion; X ­ s10y1024d40p, T ­ 20Dt, ´ ­ 0.8. (b) Sup-
pression of chaos in the Gray-Scott model;X ­ s4y256dL,
T ­ 10Dt, ´ ­ 0.2.
53
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control [21] and suppression [22] of chaos as well. Fo
example, if the driving signala1 in Eq. (5) is replaced by
expsibtd the spatiotemporal solution of (5) quickly col-
lapses to oscillations that are homogeneous in space
periodic in time, as it is shown in Fig. 4(a). Similarly,
the functiony1 ­ 0.2 sins0.02td can be used to suppress
chaos and establish a regular pattern in the Gray-Sc
model [Fig. 4(b)].

To conclude, the synchronization method proposed
this Letter can be applied to a pair of unidirectiona
coupled PDEs of different types. The synchronizatio
is achieved by applying the driving signals only at a fi
nite number of space points. Our approach is very ge
eral and can be useful for practical applications whenev
one needs to synchronize spatiotemporal systems. S
chronization of chaos is currently suggested for comm
nication applications. We expect that the possibility o
coding information in both time and spatial chaotic state
will have much wider and deeper application prospec
than in temporal systems [3,4].
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