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We argue that long-range Coulomb forces convert an isolatedsN , Nd armchair carbon nanotube
into a strongly renormalizedLuttinger liquid. At high temperatures, we find anomalous temperatu
dependences for the interaction and impurity contributions to the resistivity, and similar powe
dependences for the local tunneling density of states. At low temperatures, the nanotube e
spin-charge separation, visible as an extra energy scale in the discrete tunneling density of
(for which we give an analytic form), signaling a departure from the orthodox theory of Coulo
blockade. [S0031-9007(97)04651-6]

PACS numbers: 71.10.Pm, 71.20.Tx, 72.80.Rj
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The rapid experimental progress in controlled prep
ration of long, single-walled nanotubes bodes well bo
for applications and fundamental science [1]. Recent p
posals for their use include tips for scanning microscop
ultrastrong mechanical fibers, pinning sites for high-Tc

superconductors, and inclusions in composites for bo
armor. One of the most exciting prospects from the po
of view of physics is that of a nearly ideal quantum wire
“Buckytubes” promise to be smaller, longer, cleaner, a
more chemically manipulable than their semiconducti
or metallic counterparts. For this purpose, probably is
lated single-walled nanotubes are most relevant, and
thorough understanding of their electronic properties
desirable.

Previous papers by various authors have discus
the band structures in various geometries [2,3], as w
as the effects of the electron-phonon [4] and sho
range (Hubbard-like) electron-electron interactions [5,6
These types of interactions have only weak effec
leading to a small linear correction to the resistivity
high temperatures [7], more significant deviations fro
noninteracting behavior occurring only at a very lo
temperature scale of orderEFe2N , whereEF is the Fermi
energy andN is the circumference of the tube in units o
the graphene periodicity. While these treatments may
appropriate for arrays (“ropes”), they are inadequate
isolated nanotubes, due to the unscreened nature of
Coulomb interaction in this situation.

In this Letter, we address the effects of the long-ran
Coulomb potential on the most conducting “armchai
tubes. Once these are included, we find that signific
deviations from noninteracting behavior should be o
servableat all temperatures. At high temperatures, an
isolated armchair nanotube should behave as a Luttin
liquid, with an anomalous power-law dependence of t
resistivity and power-law tunneling density of states, sc
ing differently at the end and center of the tube. At lo
0031-9007y97y79(25)y5086(4)$10.00
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temperatures, Coulomb blockade behavior sets it, but w
considerable deviations from the “orthodox theory” [8
In particular, the conductance peak spacing is charac
ized by three energy scales in contrast to the usual tw
In addition to the usual charging energyEC and single-
particle level spacinge0, a third energy scalér reflects
the separation of spin and charge in the 1D Luttinger li
uid. Furthermore, a nontrivial ratio of peak heights
expected, arising from the collective nature of the low
energy excitations and invalidity of the quasiparticle pi
ture. A full quantitative expression (for the tunnelin
density of states of a finite length nanotube) containi
this physics, which holds away from half-filling and fo
sufficiently short tubes in the undoped case, is given
Eq. (10). A discussion of the experimental situation
given at the end of the Letter.

We begin by reviewing the band structure of thesN , Nd
armchair tube, which has been discussed by seve
authors. It is well captured by a simple tight-bindin
model of pz electrons on the honeycomb lattice. Fo
the armchair tubes, evaluating the resulting tight-bindi
band structure for the discrete set of allowed quantiz
transverse momentaqy leads to only two gaplessone-
dimensionalmetallic bands (withqy ­ 0) [2,3]. These
dominate the low-energy physics, disperse with the sa
velocity, yF , and can be described by the simple 1D fre
Fermion model,

H0 ­
X
i,a

Z
dx yFfcy

Riai≠xcRia 2 c
y
Liai≠xcLiag ,

(1)

where i ­ 1, 2 labels the two bands, anda ­ ", # the
electron spin.

We will make extensive use of the bosonized repr
sentation of Eq. (1), obtained by writingcRyL;ia ,
eisfia6uiad, where the dual fields satisfyffiasxd,
ujbs ydg ­ 2ipdijdabQsx 2 yd. Expressed in these
© 1997 The American Physical Society
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variables (1) takes the formH0 ­
P

i,a H0suia , fiad

H0su, fd ­
Z

dx
yF

2p
fs≠xud2 1 s≠xfd2g . (2)

The slowly varying electronic density in a given chann
is given by ria ; c

y
RiacRia 1 c

y
LiacLia ­ ≠xuiayp.

The normal modes ofH0 describe long wavelength
particle-hole excitations which propagate with a dispe
sion v ­ yFq.

Turning to the interactions, a tremendous simplificatio
occurs whenN is large: the only couplings which survive
in this limit are forward scatteringprocesses which in-
volve small momentum transfer. Roughly speaking, th
can be understood as follows. “Interbranch” scatteri
processes (such as backscattering and umklapp) invo
a momentum transfer of order2kF , 1ya, where a is
the carbon-carbon bond length. The matrix elements
therefore dominated by theshort-rangepart of the inter-
action, at distancesr , a, where the interaction change
significantly from site to site. However, the electrons
the lowest subband are spread out around the circum
ence of the tube, and for largeN the probability of two
electrons to be near each other is of order1yN . For
the Coulomb interaction, the resulting dimensionless
teraction vertices are of orderse2yhyFd 3 1yN [4,5]. By
contrast forward scattering processes, in which electro
stay in the same branch, involve small momentum e
change. They are dominated by thelong-rangepart of
the Coulomb interaction, at distances larger than the
dius, and there is no1yN suppression.

ForN * 10 it is thus appropriate to consider aLuttinger
model, in which only forward scattering vertices are in
cluded. A further simplification arises because thesquared
moduli of the electron wave functions in the two bands a
identicaland spin independent. All the forward-scatterin
vertices can thus be written as asingle interaction, cou-
pling to the total charge densityrtot ­

P
ia ≠xuiayp .

We will suppose that the Coulomb interaction is exte
nally screened on a scaleRs, which is long compared to
the tube radiusR, but short compared to the length of th
tube. For simplicity, we model this by a metallic cylinde
of radiusRs, placed around the nanotube. From eleme
tary electrostatics, the energy to charge the nanotube w
an electron densityertot is

Hint ­ e2 lnsRsyRd
Z

dx r2
tot . (3)

Since Hint involves only rtot it is convenient to in-
troduce a spin and channel decomposition viaui,rys ­
sui" 6 ui#dy

p
2 and um6 ­ su1m 6 u2mdy

p
2 with m ­

r, s, and similar definitions forf. As defined, the new
fields ua and fa with a ­ srys, 6d satisfy the same
canonical commutatorsffasxd, ubs ydg ­ 2ipdabQsx 2

yd. In the absence of interactions the Hamiltonian
simply H0 ­

P
a

R
x,t H0sua, fad, which describes three

“sectors” of neutral excitations and one charged exci
tion. Including the interactions only modifies the charg
sector, which is described by the sum of two term
l
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Hr ­ H0sur1, fr1d 1 Hintsur1d, and may be written

Hr ­
Z

dx
yr

2p
f g21s≠xur1d2 1 gs≠xfr1d2g . (4)

This describes the 1D acousticplasmonwhich propagates
with velocity yr ­

p
yFfyF 1 s8e2yp h̄d lnsRsyRdg and

is characterized by the Luttinger parameterg ­ yFyyr.
With repulsive forward-scattering interactions, th

plasmon velocityyr is larger thanyF , exhibiting the well
known spin-charge separation of a 1D Luttinger liqui
Moreover, the Luttinger parameter,g, which equals one in
a Fermi liquid is reduced. Since these effects are com
from long-ranged Coulomb forces and the short-rang
contributions are smaller—down by1yN —it is pos-
sible to makesemiquantitativeestimates of Luttinger liq-
uid effects. Specifically, with a Fermi velocity estimate
from graphite band structure ofyF ­ 8 3 105 mys and
a screening length of, say,1000 Å, one findsg ø 0.2—
well below the Fermi liquid value,g ­ 1. This result
is relatively insensitive to the screening, depending on
logarithmically on the lengthRs.

Physical properties can be readily evaluated fro
Eqs. (2) and (4). For example, consider the density
states to tunnel an electron into a long nanotube fro
a metallic electrode or perhaps a scanning tunnel
microscopy (STM) tip. Upon expressing the electro
operator in terms of the boson fields and evaluating t
electron Green’s function one findsrtunsed , ea, with
an exponenta ­ sg 1 g21 2 2dy8, which vanishes in
the Fermi liquid limitsg ­ 1d, but is expected to be quite
appreciable,a ø 0.4 for the nanotube. The resulting
tunneling current should be suppressed withdIydV ,
V a , and the linear conductanceGsT d , Ta vanishing
with temperature. This suppression is even more drama
for tunneling into theendof a long nanotube. One finds
a larger exponent,aend ­ sg21 2 1dy4 ø 1.

These results were established under the assump
that the backward and umklapp interactions could
safely ignored. Since their bare values are small, of
der 1yN , this might seem very reasonable. However, t
presence of the strong forward scattering greatly modifi
the effects of the umklapp scattering at low energies,
caution is necessary. To estimate this effect we reco
sider the neglected interactions as perturbations upon
Luttinger model. We find that the momentum-conservin
backward-scattering vertices,ubs, are “marginal.” They
only become important at an exponentially small ener
scale,Dbs , EF exps2cyubsd with an order one constant
c. At half-filling, however, the unklapp scattering vertice
u grow much more rapidly at low energies due to the st
plasmon mode. Their renormalized strengths at energe

grow asused , usEFyed12g. This growth signifies the
development of a gap in the spectrum, with magnitu
D , EFu1ys12gd. The above Luttinger liquid results are
valid only on energy scales well above this gap, whe
the umklapp scattering can still be safely ignored. U
fortunately, a reliable quantitative estimate for this ga
5087
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is difficult. For nanotubes doped away from1y2 filling,
umklapp processes suffer a momentum mismatch at
Fermi surface, thereby becoming ineffective. In partic
lar, for a doped tube with Fermi energy shifted away fro
the band center by an energyd which satisfiesusdd ø 1
(d ¿ EFyN1ys12gd for e2yh̄yF of order one), the validity
of the Luttinger model should be limited only by the ex
ponentially low backscattering scaleDbs.

In an undoped tube, at temperatures above the ene
gap, one expects the unklapp interactions to cause w
backscattering and lead to a nonzero resistivity [9]. T
resistivity should be proportional to the electron backsc
tering rate, varying asrsT d , usTd2T , where usTd ,
Tg21 is the energy (temperature) dependent umklapp sc
tering strength. The resulting nonlinear power-law b
havior, rsT d , T 2g21, valid over a temperature range
above the gap, is a clear signature of the Luttinger liqu
For temperatures below the gap, this should cross o
into an activated form, diverging exponentially asT ! 0.
Backscattering mediated by twiston phonons (if unpinn
by the substrate) should lead to the same tempera
dependence. Impurities also have dramatically enhan
effects in the Luttinger liquid [10]. Like umklapp and
twiston scattering, disorder leads to a high-temperatu
power-law resistivity, but withrsTd , T2s12gdy2.

The above discussion has implicitly assumed that t
nanotube isinfinitely long. For a tube with finite length,
L, many interesting mesoscopic effects are expected.
temperatures and/or voltages well above the level spac
p h̄yFyL, the above results (forL ­ `) should be valid.
We now turn to a discussion of the mesoscopic effe
on smaller energy scales. For simplicity, we assume t
L is sufficiently small so that the energy gaps induc
by umklapp and backward scattering satisfyD, Dbs ø
h̄yFyL. In this limit, it is valid to employ the Luttinger
model.

For a finite tube it is convenient to expressua, fa

in terms of creation and annihilation operators for th
discrete bosonic excitations. At the tube ends, these fie
must satisfy the boundary conditions≠xfsx ­ 0, Ld ­ 0
and uasLd 2 uas0d ­ spNa 1 dady2, where Na is the
integer charge in thea sector andda is a sum of phase
shifts associated with the tube ends [11]. Expanding in
Fourier series gives

uasxd ­
X̀

m­1

r
ga

m
i sin

µ
mpx

L

∂
sbam 2 by

amd 1 us0d
a sxd ,

(5)

fasxd ­
X̀

m­1

s
1

gam
cos

µ
mpx

L

∂
sbam 1 by

amd 1 2Fa ,

(6)

where the zero-mode termu
s0d
a ; x

2L spNa 1 dad. The
bam satisfy fbam, b

y
a0m0g ­ daa0dmm0 and the operatorsNa

and Fa satisfy fNa, Fa0g ­ idaa0. Here we adopt the
notationgr1 ­ g and ga ­ 1 for the three neutral sec-
tors. Substituting (5) and (6) into (2) and (4), we ma
express the Hamiltonian asH ­

P
a Ha 2 mNr1 2
5088
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DBNs1 1 ´capNr2, where we have included a chemica
potentialm controlled by external gates, a Zeeman spl
ting DB, and´cap ­ pyFdr2y4L [11]. Moreover,

Ha ­
´a

8ga
N2

a 1
X̀

m­1

m´aby
ambam , (7)

where ´r ­ p h̄yryL and ´a ­ ´0 ­ p h̄yFyL for the
neutral sectors.

Consider the local tunneling density of states,Asx, ´d ­P
s jksjcysxd j0lj2dsEs 2 E0 2 ´d, which is proportional

to dIydV measured in a tunneling experiment. Th
probes many body statess in which one electron has
been added to the system atx. The zero mode changes
Na by 61 depending on the spin and band of the add
electron. In addition, any number of collective mode
may be excited. Because of the structure of the boso
excitation spectrum and the fact that three of the four´a ’s
are equal, many of these excited states will be degener
As´d thus consists of a series of peaks,

As´d ­
X
nrn0

Cnrn0 dfEC 1 ´0sn0 1 1
2 d 1 ´rnr 2 ´g ,

(8)

where n0 and nr are non-negative integers and th
Coulomb energy is given byEC ­ se2yLd ln RsyR ­P

a p h̄yay8Lga 2 ´0y2. For simplicity we have setm ­
DB ­ ´cap ­ 0. Since these terms couple only to th
zero modesNa, their effect is to introduce a constant shif
in energy of all of the peaks for a givenNa. Each of the
peaks will thus in general be split into four byDB and
´cap , and varyingm causes a constant shift in the energie
of all the peaks.

The amplitudes of the peaks inAsx, ´d may be deter-
mined by computing the local Green’s functionGsx, td ­
kcsx, 0dcysx, tdl ­

R`

0 d´ Asx, ´dei´t. Expressingcsxd
in terms of the boson operators, this takes the for
Gstd ­

Q
a Gastd, where Gastd ­ kOastdOy

a s0dl, with
Oa ­ expfisfa 6 uady2g. We then find

Ga ­

∑
spyLdei´aty2

1 2 ei´at

∏2g1
a
∑

4 sin2spxyLdei´at

s1 2 zei´atd s1 2 zpei´atd

∏g2
a

,

(9)

where g6
a ­ sg21

a 6 gady16 and z ­ exp2pixyL. By
formally expandingGsx, td in powers ofei´at it is then
straightforward to extract the ratios

Cnrn0 yC00 ­ c
n0

3y4

X
0#i#j#nr

c
nr2j

2g1 c
j2i
g2 ci

g2 zj22i , (10)

wherecn
g ­ Gsg 1 ndyGsgdGs1 1 nd.

In Fig. 1 we plot the resulting density of states fo
tunneling into the end and the middle of a tube fo
m ­ B ­ ´cap ­ 0. The tunneling spectrum is charac
terized by three energy scales. As in the orthodox theo
of the Coulomb blockade,EC sets the minimum energy
for adding an electron to the tube. The excited stat



VOLUME 79, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 22 DECEMBER 1997

e

I

o

h
l
h

lly
n-

M,
ion
r-

i-
ger
e

rgy

n.
er
re-
s

r-
ling
gh

ex-
a-

le
nd
rk
tion
2,

,
.

.

ess

gle

th

ture
FIG. 1. Local tunneling density of states (a) at the end and (
in the center of the nanotube, shown for a nanotube of leng
L ­ 3 mm andg ­ 0.18. We have phenomenologically intro-
duced a rounding to the spectral peaks, as would appear du
the Fermi distribution in the leads in a tunneling experiment.

fall into two categories: The quantized spinyflavor ex-
citations have energý 0 ­ p h̄yFyL—the unrenormal-
ized level spacing of the single electron states. The
correspond toneutral collective excitations which are
unaffected by the long-range Coulomb interaction.
addition, however, there are charged “quantized pla
mon” excitations, which have an energýr ­ ´0yg ­p

´0s8EC 1 ´0d. This third energy scale is a signature o
charge-spin separation—the hallmark of a Luttinger liq
uid. Since´r . ´0, the peaks in Fig. 1 fall into distinct
families with different plasmon excitations. In particular
the lowest family corresponds to tunneling into the groun
state of the charge sector. The next family corresponds
exciting a single quantum of the lowest energy plasmo
a dipole resonance.

The ratios of the peak heights contain detaile
information about the interactions. Within a given fam
ily, Cnrn0 yCnr0 ­ c

n0

3y4, which is 3y4 for n0 ­ 1 and

approachesn
21y4
0 yGs3y4d for n0 * 3. The amplitude

ratios between families depends on the tunneling locati
x. For the first plasmon excitation,C10yC00 ­ 2f g1 1

g2 coss2pxyLdg. Thus, as shown in Fig. 1(b), the
amplitude of the dipole resonance is suppressed wh
tunneling into the middle of the tube.

It should be interesting in the future to explore bot
the low- and high-temperature regimes experimental
We expect that in a fairly clean experimental system, t
b)
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power-law resistivityrsT d , u2T2g21 1 n0T2s12gdy2 is
perhaps the most easily testable prediction. A potentia
more rewarding experiment would be to measure the tu
nel conductance of an isolated nanotube with an ST
as a function of bias, external gate potential, and posit
along the tube, which we expect to be directly propo
tional to Asx, ´d. Clustering into families, as shown in
Fig. 1, would give direct and dramatic experimental ev
dence for the elusive charge-spin separation of a Luttin
liquid. In addition to Coulomb blockade behavior, th
current-voltage curves observed by Tanset al. [8] display
interesting structure, with signatures of a discrete ene
level spacinǵ 0 ø 0.4 meV and an additional2 meV step
which may be related to the lowest plasmon excitatio
However, a detailed comparison with the simple Lutting
model may be complicated, since the predicted form
quires (1) negligible impurities; (2) sufficiently short tube
and/or doping such thatD, Dbs ø e0; and (3) large-scale
uniformity of the gate potential and other external pertu
bations. Nonetheless, a systematic study of the tunne
characteristics would be most useful at both low and hi
voltages and temperatures. We encourage mesoscopic
perimentalists to rise to the challenge of tunneling me
surements in the Luttinger regime.
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