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We argue that long-range Coulomb forces convert an isolét&adv) armchair carbon nanotube
into a strongly renormalizetluttinger liquid At high temperatures, we find anomalous temperature
dependences for the interaction and impurity contributions to the resistivity, and similar power-law
dependences for the local tunneling density of states. At low temperatures, the nanotube exhibits
spin-charge separation, visible as an extra energy scale in the discrete tunneling density of states
(for which we give an analytic form), signaling a departure from the orthodox theory of Coulomb
blockade. [S0031-9007(97)04651-6]

PACS numbers: 71.10.Pm, 71.20.Tx, 72.80.Rj

The rapid experimental progress in controlled prepatemperatures, Coulomb blockade behavior sets it, but with
ration of long, single-walled nanotubes bodes well bothconsiderable deviations from the “orthodox theory” [8].
for applications and fundamental science [1]. Recent pron particular, the conductance peak spacing is character-
posals for their use include tips for scanning microscopyized by three energy scales in contrast to the usual two.
ultrastrong mechanical fibers, pinning sites for high- In addition to the usual charging ener@y and single-
superconductors, and inclusions in composites for bodyparticle level spacingy, a third energy scale, reflects
armor. One of the most exciting prospects from the pointhe separation of spin and charge in the 1D Luttinger lig-
of view of physics is that of a nearly ideal quantum wire.uid. Furthermore, a nontrivial ratio of peak heights is
“Buckytubes” promise to be smaller, longer, cleaner, ancexpected, arising from the collective nature of the low-
more chemically manipulable than their semiconductingenergy excitations and invalidity of the quasiparticle pic-
or metallic counterparts. For this purpose, probably isoture. A full quantitative expression (for the tunneling
lated single-walled nanotubes are most relevant, and density of states of a finite length nanotube) containing
thorough understanding of their electronic properties ighis physics, which holds away from half-filing and for
desirable. sufficiently short tubes in the undoped case, is given in

Previous papers by various authors have discussddg. (10). A discussion of the experimental situation is
the band structures in various geometries [2,3], as welgjiven at the end of the Letter.
as the effects of the electron-phonon [4] and short- We begin by reviewing the band structure of thg N)
range (Hubbard-like) electron-electron interactions [5,6]armchair tube, which has been discussed by several
These types of interactions have only weak effectsauthors. It is well captured by a simple tight-binding
leading to a small linear correction to the resistivity atmodel of p, electrons on the honeycomb lattice. For
high temperatures [7], more significant deviations fromthe armchair tubes, evaluating the resulting tight-binding
noninteracting behavior occurring only at a very lowband structure for the discrete set of allowed quantized
temperature scale of ordé&-e "V, whereEr is the Fermi  transverse momentg, leads to only two gaplesene-
energy andV is the circumference of the tube in units of dimensionalmetallic bands (withg, = 0) [2,3]. These
the graphene periodicity. While these treatments may bdominate the low-energy physics, disperse with the same
appropriate for arrays (“ropes”), they are inadequate fowelocity, vr, and can be described by the simple 1D free
isolated nanotubes, due to the unscreened nature of tl@rmion model,

Coulomb interaction in this situation. + ¢

In this Letter, we address the effects of the long-range Ho = Z f dx vp[YRiai0xPria — YLialdxPLial,
Coulomb potential on the most conducting “armchair” Lo 1)
tubes. Once these are included, we find that significant
deviations from noninteracting behavior should be obwherei = 1,2 labels the two bands, and = 1,| the
servableat all temperatures. At high temperatures, an electron spin.
isolated armchair nanotube should behave as a Luttinger We will make extensive use of the bosonized repre-
liquid, with an anomalous power-law dependence of thesentation of Eg. (1), obtained by writin@g/r.ia ~
resistivity and power-law tunneling density of states, scale/(®«*%) where the dual fields satisfy{¢;q(x),
ing differently at the end and center of the tube. Atlowé,z(y)] = —imd;;6,530(x — y). Expressed in these
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variables (1) takes the fordy = > o, Ho(0ia» Pia) H, = Ho(0,+, pp+) + Hin(6,+), and may be written
v
Hi0.) = [ dx3E@07 + 007 @ af, [ @22 60,0 + g0y @)

The slowly varying elfctronic denJrsity in a given channeIThiS describes the 1D acoustitasmorwhich propagates
Is given by pia = ¢Ri%‘?i“ t PliaPLia = 0:0ia/ 7. \ith velocity v, = y/vr[vr + (8¢2/mh)In(R,/R)] and
The normal modes offf, describe long wavelength s characterized by the Luttinger parameger vy/v,.
particle-hole excitations which propagate with a disper- - \yith repulsive” forward-scattering interactions, the
slohw = vrq. . . plasmon velocity,, is larger tharv, exhibiting the well
Turning to the interactions, a tremendous simplificationy ,5n spin-charge separation of a 1D Luttinger liquid.
occurs whenv is large: the only couplings which survive Moreover, the Luttinger parameter, which equals one in

in this limit are forward scatteringprocesses which in- 5 permi liquid is reduced. Since these effects are coming
volve small momentum transfer. Roughly speaking, thigom jong-ranged Coulomb forces and the short-ranged
can be understood as follows. “Interbranch” scattering.,niributions are smaller—down by/N—it is pos-
processes (such as backscattering and umklapp) involvgy e 1o makesemiquantitativeestimates of Luttinger lig-

a momentum transfer of ord&y ~ 1/a, wherea is g effects. Specifically, with a Fermi velocity estimated
the carbon-carbon bond length. The matrix elements arggy, graphite band structure afr = 8 X 105 m/s and

therefore dominated by thehort-rangepart of the inter- screening length of, sayp00 A, one findsg ~ 0.2—
action, at distances ~ a, where the interaction changes ;o pelow the Fermi liquid valueg = 1. This result

significantly from site to site. However, the elect_rons iNjg relatively insensitive to the screening, depending only
the lowest subband are spread out around the C'rcumfefégarithmically on the lengti®
5-

ence of the tube, and for large the probability of two Physical properties can be readily evaluated from
electrons to be near each other is of ordgN. For  pqg (2) and (4). For example, consider the density of
the C_oulomb. interaction, thezresultlng dimensionless iNyiates to tunnel an electron into a long nanotube from
teraction vertices are of Qrdé" /hvr) X !/N [4’5]' BY a metallic electrode or perhaps a scanning tunneling
contrast forward scattering processes, in which electronﬁ]iCroSCOpy (STM) tip. Upon expressing the electron
stay in the same branch, involve small momentum exgperator in terms of the boson fields and evaluating the

change. They are dominated by tlung-rangepart of  gjactron Green’s function one fings., (€) ~ €%, with
the Coulomb interaction, at distances larger than the rasn exponenta = (g + ¢~' — 2)/8, which vanishes in

dius, and there is nd/N suppression. _ the Fermi liquid limit(g = 1), but is expected to be quite
ForN = 10itis thus appropriate to considetattinger appreciable,a ~ 0.4 for the nanotube. The resulting

model,in which only forward scattering vertices are in- tunneling current should be suppressed with/dV ~
cluded. Afurther simplification arises becausestigared o« and the linear conductanag(T) ~ T¢ vanishing

moduli of the electron wave functions in the two bands aryih temperature. This suppression is even more dramatic
identicaland spin independent. All the forward-scatteringq, tunneling into theend of a long nanotube. One finds
vertices can thus be written assangle interaction, cou- 5 larger exponenizeng = (¢~ — 1)/4 = 1.

pling to the total charge densipor = > 9x0ia/ 7 These results were established under the assumption
We will suppose that the Coulomb interaction is exter-yha; the backward and umklapp interactions could be
nally screened on a scalg, which is long compared 10 g4tely ignored. Since their bare values are small, of or-
the tube radius, but short compared to the length of the yer 1/ this might seem very reasonable. However, the
tube. For simplicity, we model this by a metallic cylinder resence of the strong forward scattering greatly modifies
of radiusR;, placed around the nanotube. From element,e effects of the umklapp scattering at low energies, so
tary electrostatics, the energy to charge the nanotube Witlh tion is necessary. To estimate this effect we recon-
an electron densitypi is sider the neglected interactions as perturbations upon the
2 2 Luttinger model. We find that the momentum-conserving
Him = e ln(RS/R)] dx Pior 3) backward-scattering vertices,,, are “marginal.” They
Since Hj,, involves only pi it is convenient to in- only become important at an exponentially small energy
troduce a spin and channel decomposition #i3,, =  scaleA,, ~ Er exp(—c/uys) with an order one constant,
(04 = 0:)/V2 and 0,+ = (01, = 62,)/v/2 with w =  ¢. At half-filling, however, the unklapp scattering vertices
p, o, and similar definitions fogp. As defined, the new u grow much more rapidly at low energies due to the stiff
fields 0, and ¢, with a = (p/o, =) satisfy the same plasmon mode. Their renormalized strengths at energy
canonical commutatofsp, (x), 0,(y)] = —imd.,,0O(x —  grow asu(e) ~ u(Er/e)' 4. This growth signifies the
y). In the absence of interactions the Hamiltonian isdevelopment of a gap in the spectrum, with magnitude
simply Hy = X, [, Ho(04. $.), which describes three A ~ Eru'/('"8). The above Luttinger liquid results are
“sectors” of neutral excitations and one charged excitavalid only on energy scales well above this gap, where
tion. Including the interactions only modifies the chargethe umklapp scattering can still be safely ignored. Un-
sector, which is described by the sum of two termsfortunately, a reliable quantitative estimate for this gap
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is difficult. For nanotubes doped away fram2 filling, AgNy+ + €capN,—, Where we have included a chemical

umklapp processes suffer a momentum mismatch at thgotential . controlled by external gates, a Zeeman split-

Fermi surface, thereby becoming ineffective. In particu-ting A, andec,, = mvré,- /4L [11]. Moreover,

lar, for a doped tube with Fermi energy shifted away from %

the band center by an energywhich satisfies:(6) <« 1 H, = 8—“1\13 + Z megb! bam (7)

(6 > Ep/NY1-% for ¢2/Fvy of order one), the validity 884

of the Luttinger model should be limited only by the ex-

ponentially Igw backscattering scale,. Y where e, = mhv,/L and e, = g9 = mhvr/L for the
In an undoped tube, at temperatures above the energﬂ?unal Sectors. . .

gap, one expects the unklapp interactions to cause we Cona?erthe iocal tnneling denS|t'y Of. stat,e(sx,s_) -

backscattering and lead to a nonzero resistivity [9]. The=s (s1gT(x) [0)I8(E; — Eo — &), which is proportional

resistivity should be proportional to the electron backscat® di/dv measured in a 'tunne_llng experiment. - This
tering rate, varying a(T) ~ u(T)2T, where u(T) ~ probes many body states in which one electron has

g1 )een added to the systemaat The zero mode changes
T¢~ ' is the energy (temperature) dependent umklapp sca by =1 depending on the spin and band of the added

tering strength. The resulting nonlinear power-law be- " .
havior, p(T) ~ T2, valid over a temperature range electron. In addition, any number of collective modes
above the gap, is a clear signature of the Luttinger quuid.ma)./t bt? ex0|teq[. Beca(;’fﬁ Off tk:?hst{ltjr(]:ture ?Ehe bosonic
For temperatures below the gap, this should cross ovércrtation spectrum and the fact that three o e lalis

into an activated form, diverging exponentially Bs— 0. are equal, many of these gxcited states will be degenerate.

Backscattering mediated by twiston phonons (if unpinnecf\(s) thus consists of a series of peaks,

by the substrate) should lead to the same temperature |

dependence. Impurities also have dramatically enhancedA (&) = Z Cu,nO[Ec + &0no + 3) + gpn, — &l,

effects in the Luttinger liquid [10]. Like umklapp and Bplto (8)

twiston scattering, disorder leads to a high-temperature o

power-law resistivity, but withp (T) ~ 7-(178)/2, where ny and n, are non-negative integers and the
The above discussion has implicitly assumed that th€oulomb energy is given byEc = (e?/L)InR,/R =

nanotube ignfinitely long. For a tube with finite length, .. 7/iva/8Lga — &0/2. For simplicity we have set =

L, many interesting mesoscopic effects are expected. Féks = &cap = 0. Since these terms couple only to the

temperatures and/or voltages well above the level spacingefo modesV,, their effect is to introduce a constant shift

mwhvgp/L, the above results (fak = o) should be valid. in energy of all of the peaks for a givew,,. Each of the

We now turn to a discussion of the mesoscopic effect§eaks will thus in general be split into four hy; and

on smaller energy scales. For simplicity, we assume thatcap, and varyingu causes a constant shift in the energies

L is sufficiently small so that the energy gaps inducecPf all the peaks.

m=1

by umklapp and backward scattering satigfy A,, < The amplitudes of the peaks ilx, ¢) may be deter-
Fur/L. In this limit, it is valid to employ the Luttinger Mined by computing the local Green's functioitx, 1) =
model. ((x, 004 (x, 1)) = [y de Alx, e)e’*’. Expressingi(x)

For a finite tube it is convenient to expreds, ¢, In terms of the boson operators, this takes the form

in terms of creation and annihilation operators for theG(t) = I1, Ga(r), where G,(1) = (0,(N0}(0)), with
discrete bosonic excitations. At the tube ends, these fieldd« = exfi(¢. * 6,)/2]. We then find

must satisfy the boundary conditioag¢(x = 0,L) = 0 (7 /L)eicat/2 i 4 Sirt(mx/L)ei! g
and 6,(L) — 6,(0) = (#N, + 8,)/2, where N, is the G, = [ 1 — eieat } [(1 — zeiea) (1 — *eiau,)} )
integer charge in the sector ands, is a sum of phase ¢ ¢ 9)
shifts associated with the tube ends [11]. Expanding in a

Fourier series gives where g= = (g, ' = g.)/16 and z = exp2mix/L. By

_ S |8a . [MTX _pty a4 O formally expandingG(x,t) in powers ofe’®: it is then
0a(x) Z m lSIn( L >(b”’” ban) + 0a7(6), straightforward to extract the ratios
®)

S ! Ch ny/Coo = Cn0 Cizpjr'fc‘jjici7 j*Zi’ 10
bar) = Y | cos(mz)‘)(bam + bl,) + 20, 10/ Coo 3/“03;,-5” el (10)
m=1 8am p

o . ©) " wherec = I'(g + n)/T(g)T(1 + n).
where the zero-mode tertw” = 5z(7wN, + 8,). The In Fig. 1 we plot the resulting density of states for
bum satisfy[bam,b;r/m,] = S84uOmny @nd the operatord/, tunneling into the end and the middle of a tube for
and @, satisfy [N,, ®,] = id,». Here we adopt the u = B = g, = 0. The tunneling spectrum is charac-
notationg,+ = g andg, = 1 for the three neutral sec- terized by three energy scales. As in the orthodox theory
tors. Substituting (5) and (6) into (2) and (4), we mayof the Coulomb blockadeE. sets the minimum energy
express the Hamiltonian ag{ =Y, H, — uN,+ — for adding an electron to the tube. The excited states
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12 - power-law resistivityp (T) ~ u?T%~! + poT~(178/2 s

(a) perhaps the most easily testable prediction. A potentially
more rewarding experiment would be to measure the tun-
nel conductance of an isolated nanotube with an STM,
as a function of bias, external gate potential, and position
along the tube, which we expect to be directly propor-
tional to A(x, ). Clustering into families, as shown in
Fig. 1, would give direct and dramatic experimental evi-
dence for the elusive charge-spin separation of a Luttinger
liquid. In addition to Coulomb blockade behavior, the
current-voltage curves observed by Tatsl. [8] display
interesting structure, with signatures of a discrete energy
level spacing: = 0.4 meV and an addition& meV step
which may be related to the lowest plasmon excitation.
However, a detailed comparison with the simple Luttinger
model may be complicated, since the predicted form re-
2t ‘ ! quires (1) negligible impurities; (2) sufficiently short tubes
and/or doping such that, A,; < €j; and (3) large-scale

10

1.5¢
1l uniformity of the gate potential and other external pertur-
] bations. Nonetheless, a systematic study of the tunneling
0.5¢ 1 characteristics would be most useful at both low and high
¢t 10 13 11 voIt_ages ar_1d temperatures. We encourage mesqscopic ex-
¢ (meV) perimentalists to rise to the challenge of tunneling mea-

FIG. 1. Local tunneling density of states (a) at the end and (bfurements in the Luttinger regime.

in the center of the nanotube, shown for a nanotube of Iengt? Itis a plea_sure t_o thank A.T. Joh_nson and E.J. Mele
L =3 um andg = 0.18. We have phenomenologically intro- T0r helpful dlscusslons, anq especially C. Dekl_<er and
duced a rounding to the spectral peaks, as would appear due ¥ Tans for sharing experimental results. This work
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