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The low-energy theory for single-wall carbon nanotubes including Coulomb interactions is deri
and analyzed. It describes two fermion chains without interchain hopping but coupled in a specific
by the interaction. The strong-coupling properties are studied by bosonization, and consequence
experiments on single armchair nanotubes are discussed. [S0031-9007(97)04654-1]
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The recent discovery of carbon nanotubes [1] h
sparked a tremendous amount of activity. Nanotubes
nanoscale particles obtained by wrapping a single la
of graphite into a cylinder. The electronic properti
of a sn, md tube are determined by the integer indic
0 # m # n of the wrapping superlattice vector, an
depending on the choice ofm andn, the tube is either a
metal, a narrow-gap semiconductor, or an insulator [
Experimentally, nanotubes can be produced using
carbon-arc technique [1] or by laser ablation [3] of C
or Ni-doped graphite targets. The latter method yie
metallicsn, nd “armchair” nanotubes withn ­ 10 in rather
large quantities, usually deposited in triangular-pack
ropes. Remarkably, the first transport measurements
a single 3mm long s10, 10d nanotube have been reporte
recently [4].

Carbon nanotubes are perfect experimental realizati
of one-dimensional (1D) conductors. Interacting 1D ele
trons usually exhibit Luttinger liquid rather than Ferm
liquid behavior characterized by, e.g., the absence of L
dau quasiparticles, spin-charge separation, suppressio
the electron tunneling density of states, and interacti
dependent power laws for transport quantities [5]. So
non-Fermi liquid behavior has been masked by charg
effects due to large contact resistances between the n
tube and the attached leads [4]. Nevertheless, fut
experiments are expected to reveal the anomalous c
ductance laws and related phenomena discussed he
higher temperature, suitable gate voltages, or smaller c
tact resistances.

The low-energy theory for uncorrelated nanotubes h
been given by Kane and Mele [6]. Here we extend th
approach and incorporate Coulomb interactions among
electrons, focusing onsn, nd tubes where interaction ef
fects are most pronounced [7]. Previously, this proble
has only been studied by the perturbative renormalizat
group (RG) using a weak short-range (Hubbard) inter
tion [8]. In this Letter, we discuss arbitrary interactio
potentials and, in particular, the strong-coupling regim
which emerges at low temperatures. This is of importan
as the experiments described in Ref. [4] are character
by long-ranged (unscreened) Coulomb interactions. T
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low-energy theory found here is equivalent to two spin-1
2

fermion chains coupled in a rather special way by the i
teractions but without interchain single-particle hoppin
In that respect, our theory differs from the standard tw
chain problem [9,10]. For simplicity, we consider van
ishing contact resistances below (the general case will
discussed elsewhere [11]).

The remarkable electronic properties of carbon nan
tubes are due to the special band structure of thep

electrons in graphite [12,13]. The Fermi surface consis
of two distinct Fermi pointsa $K with $K ­ s4py3a, 0d
and a ­ 6; see Fig. 1. Here thex axis points along
the tube direction and the circumferential variable is0 #

y # 2pR, whereR ­
p

3 nay2p is the tube radius. The
lattice constant isa ­ 2.46 Å. Since the basis of graphite
contains two carbon atoms, there are two sublatticesp ­
6 shifted by the vector$d ­ s0, dd (where d ­ ay

p
3 ),

and hence two degenerate Bloch stateswpasx, yd at each
Fermi pointa $K. We follow Ref. [13] and choose these
states separately on each sublattice such that they va
on the other (note thatKy ­ 0),

wpasx, ydw2pa0sx, yd ­ 0 ,

wpasx, yd ­
exps2iaKxxd

p
2pR

.

FIG. 1. Low-energy band structure of graphite. Fermi poin
are labeled bya ­ 6, and sublatticesp ­ 6 combine to build
right and left moverssr ­ 6d.
© 1997 The American Physical Society
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At low-energy scales, the electron operator for spins ­
6 can be expanded in terms of the Bloch waves [6,13],

Cssx, yd ­
X
pa

wpasx, ydcpassxd . (1)

Quantization of transverse motion gives the wave fun
tion xsyd ­ expsiMyd with the “mass” M specified in
Ref. [6]. Thereforex ­ 1 for armchair tubessM ­ 0d;
see Eq. (1). Excitation of other transversal bands co
the energyø10 eVyn, and hence a 1D situation arises
The conditions for the low-energy regime are met eve
at room temperature fors10, 10d nanotubes. Neglecting
Coulomb interactions, the Hamiltonian is [6,13]

H0 ­ 2y
X

pas

p
Z

dx cy
pas≠xc2pas , (2)

wherey . 8 3 105 mysec is the Fermi velocity.
Let us now examine Coulomb interactions mediated

a (possibly screened) potentialUsx 2 x0, y 2 y0d. Elec-
trons trapped in nonpropagating orbitals can be incorp
rated in terms of a dielectric constantk, but free charge
carriers in nearby gates could lead to an effectively sho
ranged potential. For the experiments of Ref. [4], on
has an unscreened Coulomb interaction, and the dielec
constant can be estimated ask ø 1.4 [14]. From Eq. (1)
the interaction contribution reads

HI ­
1
2

X
pp0ss0

X
a1a2a3a4

Z
dx dx0 V

pp0

haijsx 2 x0d

3 cy
pa1ssxdcy

p0a2s0sx0dcp0a3s0 sx0dcpa4ssxd (3)

with the 1D interaction potentials

V
pp0

haijsx 2 x0d ­
Z 2pR

0
dy dy0 wp

pa1
sx, ydwp

p0a2
sx0, y0d

3 Usx 2 x0, y 2 y0 1 pddp,2p0 d

3 wp0a3sx
0, y0dwpa4 sx, yd . (4)

Here intersublattice interactions involve the shift vecto
$d ­ s0, dd. It is natural to distinguish three processe
associated with the Fermi pointsa ­ 6. First, we
have “forward scattering” (aFS) where a1 ­ a4 and
a2 ­ a3. Second, we have “backscattering” (aBS) with
a1 ­ 2a2 ­ a3 ­ 2a4. Finally, at half-filling there is
an additional “umklapp” process characterized bya1 ­
a2 ­ 2a3 ­ 2a4. These processes are different from
the conventional ones [5] since they do not necessar
mix right- and left-moving branches but rather involv
different Fermi points; see Fig. 1.

Let us start withaFS. We first define

V0sxd ­
Z 2pR

0

dy
2pR

Z 2pR

0

dy0

2pR
Usx, y 2 y0d , (5)

whence from Eq. (4) thehaij-independent 1D potential
readsV

pp0

aFSsxd ­ V0sxd 1 dp,2p0dVpsxd with

dVp ­
Z 2pR

0

dydy0

s2pRd2

3 fUsx, y 2 y0 1 pdd 2 Usx, y 2 y0dg .
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The correctiondVp measures the difference betwee
intra- and intersublattice interactions. Because of t
periodicity of the y integrals, expanding in powers o
d implies dVpsxd ­ 0. Since the potentialV0 does
not discriminate among sublattices, the resultingaFS
interaction couples only the total 1D charge densities,

H
s0d
aFS ­

1
2

Z
dx dx0 rsxdV0sx 2 x0drsx0d , (6)

with rsxd ­
P

pas cy
pascpas . For an unscreened

Coulomb interactionsa0 . ad,

Usx, yd ­
e2

k

q
a2

0 1 x2 1 4R2 sin2syy2Rd
, (7)

the potential (5) becomes

V0sxd ­
2e2

kp

q
a2

0 1 x2 1 4R2
K

0BB@ 2Rq
a2

0 1 x2 1 4R2

1CCA
with the complete elliptic integral of the first kindKszd.
The Fourier transformV0skd for jkRj ø 1 is reminiscent
of a 1D quantum wire [5],

V0skd ­ se2ykd f2j lnskRdj 1 p ln 2g . (8)

For jxj ¿ a, the above continuum argument leading t
dVpsxd ­ 0 safely applies. However, forjxj # a, an
additionalaFS term beyond Eq. (6) arises due to the ha
core of the Coulomb interaction,

H
s1d
aFS ­ 2f

Z
dx

X
paa0ss0

cy
pasc

y
2pa0s0 c2pa0s0cpas

(9)

with fya ­ ge2yR. Evaluating dVpsx ­ 0d on the
wrapped graphite lattice using Eq. (7) yields

g ­

p
3 a

2pka0

2641 2
1q

1 1 a2y3a2
0

375 ø 0.1 . (10)

Next we discussaBS contributions. Since Eqs. (3) and
(4) involve a rapidly oscillating factor expf2iKxsx 2 x0dg,
these are local processes which do not resolve sublattic

HaBS ­
b
2

Z
dx

X
pp0ass0

cy
pasc

y
p02as0cp0as0 cp2as .

(11)

Estimating the coupling constantb from Eq. (4) for the
unscreened interaction (7) results inb ø f, while for
well-screened short-ranged interactions,b ¿ f. Experi-
mentally, by using additional gates, one can easily tu
away from half-filling [4]. Therefore we disregard al
umklapp scattering effects in this paper.

To study this effective low-energy model, we emplo
standard Abelian bosonization [5,10]. For that purpo
we first switch to right and left moverssr ­ 6d,

cpas ­
X

r

eUpr cras where eUysy
eU ­ sz ,

which then allow for straightforward bosonization,
5083
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crassxd ­
hrasp
2pa

exp

∑
iqFrx 1 i

p
p

2
sfc1 1 ruc1 1 afc2 1 rauc2 1 sfs1 1 rsus1 1 asfs2 1 rasus2d

∏
.

(12)
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Phase fields for the total and relativesd ­ 6d charge
sj ­ cd and spinsj ­ sd channels obey the algebra

ffjdsxd, uj 0d0sx0dg ­ 2siy2ddjj0ddd0 sgnsx 2 x0d .

Thus fjd and ujd are dual fields. Density and curren
operators can be written in terms of thec1 field,

rsxd ­ s2y
p

p d≠xuc1sxd, I ­ s2ey
p

p d≠tuc1s0d .

The wave vectorqF is related to deviationsdr ­ 4qFyp

of the average electron density from half-filling and can
tuned by gates. Finally, thehras are Majorana fermions
ensuring anticommutation relations among differentras.
Since the Hamiltonian contains only the combinatio
A66 ­ hrash6r6as, these can be represented usi
standard Pauli matrices. BesidesA11 ­ 1, we have
A12 ­ iasx , A21 ­ irasz, andA22 ­ 2irsy. Us-
ing Eq. (12), the bosonized expressions then read

H0 ­
y

2

Z
dx

X
jd

fs≠xfjdd2 1 K22
jd s≠xujdd2g , (13)

H
s0d
aFS ­

2
p

Z
dx dx0 ≠xuc1sxdV0sx 2 x0d≠x0uc1sx0d ,

(14)

H
s1d
aFS ­

f
spad2

Z
dx f2coss

p
4p uc2d coss

p
4p us2d

2 coss
p

4p uc2d coss
p

4p us1d

1 coss
p

4p us1d coss
p

4p us2dg

(15)

HaBS ­
b

spad2

Z
dx fcoss

p
4p uc2d coss

p
4p us2d

1 coss
p

4p uc2d coss
p

4p fs2d

1 coss
p

4p us2d coss
p

4p fs2dg .

(16)

Although bosonization of Eq. (2) givesKjd ­ 1, interac-

tions renormalize these parameters. In particular,H
s0d
aFS

can be incorporated intoH0 by putting Kc1 ­ K ­
1y

p
1 1 4V0sk . 0dypy , 1, while for all other chan-

nels, Kjd ­
p

1 1 fypy . 1. For the long-ranged in-
teraction (7), one hasK ­ consty

p
jlnfmaxsT , yyLdgj [5]

such that at zero temperature,K vanishes in a very long
tube. Velocity renormalizations are ignored here as th
do not change exponents.

From the perturbative RG equations [11], it follows th
around the Gaussian pointf ­ b ­ 0, H

s1d
aFS is irrelevant,

while HaBS scales to strong coupling,b ! `. Let us
first examine short-ranged interactions such thatf ø b.
For f ­ 0, the relative charge and spin channels c
be refermionized in terms of four Majorana fermion
5084
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jjRsLdsxd. Here j ­ 1, 2 corresponds toss2d, j ­ 3, 4
to sc2d, and RsLd denotes the right-/left-moving part
Remarkably, refermionization shows that the last term
Eq. (16) vanishes identically, and we are left with

Hsc2, s2d ­ 2
i
2

4X
j­1

Z
dxsjjR≠xjjR 2 jjL≠xjjLd

2 2b
Z

dxsj3Rj3L 1 j4Rj4Ldj1Rj1L .

(17)

The Majorana fermionj2 stays massless, i.e., thess2d
sector carries one massive and one massless branch.
behavior is due to the symmetric appearance of the d
fields us2 and fs2 in Eq. (16) which does not permit
complete pinning due to the Heisenberg uncertain
relation [10]. Thesc2d sector is fully gapped, and we can
put uc2 ­ 0. The masses of the three massive Majo
ana fermionsj1,3,4 at this strong-coupling point are
approximately equalsømbd and can be estimated from
mean-field theory asmb ø vc exps2pyy

p
2 bd, where

vc ­ 7.4 eV is the bandwidth of thep electrons [2]. Cor-
relation functions for thess2d sector follow from the corre-
spondence between two Majorana fermions and the ord
disorder operators of the 2D Ising model [10]. In particu
lar, one has scaling dimensionh ­ 1y8 for sins

p
p us2d

and sins
p

p fs2d, while correlation functions of
coss

p
p us2d and coss

p
p fs2d decay exponentially.

In the sc2d sector, correlations of coss
p

p uc2d show
long-range order while all other operators lead to exp
nential decay.

While H
s1d
aFS is irrelevant atf ­ b ­ 0, it becomes

relevant at the new strong-coupling point which ther
fore describes only an intermediate fixed point. The te
,coss

p
4p us1d coss

p
4p us2d in Eq. (15) stays marginal,

but the two other terms become relevant with scali
dimension h ­ 1. Therefore j2 as well as thess1d
field acquires the massmf ø sfybdmb . At the emerg-
ing strong-coupling fixed point, we have long-range o
der in the operators coss

p
p us1d, coss

p
p uc2d, and

sins
p

p fs2d, with exponential decay in all other opera
tors except those of thesc1d sector.

This analysis for a screened interaction potent
predicts that the exponents corresponding to the fi
(intermediate) strong-coupling point should be observa
on temperature scalesmf , T , mb with a crossover
to a regimeT , mf dominated by the trueT ­ 0 fixed
point. For long-ranged interactions, we havemf ø mb ,
and the intermediate fixed point and the associa
crossover phenomenon are then absent [15].

With the strong-coupling solution discussed above, w
can now examine temperature-dependent susceptibili
and other experimentally accessible quantities of intere
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At temperaturesT . mb, the dominant correlations come
from the intersublattice charge-density wave (CDW) an
spin-density wave (SDW) operators

ÔCDW ,
X

pas

cy
pasc2pas ,

ÔSDW ,
X

pas

scy
pasc2pas ,

with kÔsxdÔs0dl , coss2qFxdx2sK13dy2 for both [16].
Because of a larger prefactor, SDW correlations will b
more pronounced. Formf , T , mb, this decay is
changed into the slowerx2s2K13dy4 law. Both the CDW
and SDW correlations decay exponentially at very lo
temperaturesT , mf . However, there is also a4qF CDW
component effectively coming from̂O2

CDW [10], which
leads to a slow coss4qFxdx22K decay atT , mb. This is
in fact the dominant instability at temperaturesT , mb

and strong correlations,K , 1y2. Remarkably, it is not
Kx but qF which determines the period of all the domi
nating correlations. SinceaqF ø 1, one has pronounced
ferromagneticcorrelations. This offers an explanation fo
the ferromagnetic tendencies observed in Ref. [4].

Superconductivity (SC) has been predicted to be qu
a robust feature of two-chain models [8–10]. In th
nanotube, the dominant SC correlations come from t
intrasublattice singlet SC pairing operator

ÔSC ,
X

pas

scpascp2a2s ,

while triplet SC plays no role. ForT . mb , correla-
tions decay faster thanx22, and formf , T , mb, their
x2s2yK13dy4 decay is subdominant to the CDW and SDW
correlations. Finally, at very low temperatures,T , mf ,
we obtainkÔSCsxdÔSCs0dl , x21y2K . Therefore SC be-
comes the dominant instability only at very low tempera
tures and for short-ranged interactionssK . 1y2d.

The properties of the above strong-coupling points al
determine conductance laws. In the absence of impu
ties, one has perfect conductance quantization,G ­ G0 ­
4e2yh, and experimentally measured resistances are c
tact resistances. There are nevertheless various sou
for impurities, e.g., structural imperfections, charge d
fects in the substrate, topological defects (dislocati
pairs) [1], or twists [6]. They lead to mass-term-like pe
turbations [6] of the generic form

Himp ­ y
Z

dx Msxd
X

pas

cy
pasc2pas .

Assuming a single static pointlike impurity center, i
order M2 the following temperature dependence of th
correctionsdG to G0 is found. ForT . mb , we obtain
dG , T sK21dy2, which is turned intodG , T s2K25dy4 at
mf , T , mb . At even lower temperature,T , mf ,
from perturbation theory inM2, one would getdG ,
d

e
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TK22. For extremely low temperatures, however, b
invoking the usual duality argument [5], this is turne
into GsT ! 0d , T2214yK , i.e., a vanishing conductance
similar to the Luttinger liquid case. For long-range
interactions, this leads to a pseudogap behavior at v
low temperatures.

To conclude, the effective low-energy theory for corre
lated single-wall nanotubes has been given. Our the
explains the ferromagnetic tendencies observed in rec
experiments and predicts the temperature dependenc
various susceptibilities and the conductance in the pr
ence of impurities.
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