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Effective Low-Energy Theory for Correlated Carbon Nanotubes
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The low-energy theory for single-wall carbon nanotubes including Coulomb interactions is derived
and analyzed. It describes two fermion chains without interchain hopping but coupled in a specific way
by the interaction. The strong-coupling properties are studied by bosonization, and consequences for
experiments on single armchair nanotubes are discussed. [S0031-9007(97)04654-1]
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The recent discovery of carbon nanotubes [1] hadow-energy theory found here is equivalent to two séin-
sparked a tremendous amount of activity. Nanotubes arermion chains coupled in a rather special way by the in-
nanoscale particles obtained by wrapping a single layeteractions but without interchain single-particle hopping.
of graphite into a cylinder. The electronic propertiesin that respect, our theory differs from the standard two-
of a (n,m) tube are determined by the integer indiceschain problem [9,10]. For simplicity, we consider van-
0 =m = n of the wrapping superlattice vector, and ishing contact resistances below (the general case will be
depending on the choice @f andn, the tube is either a discussed elsewhere [11]).
metal, a narrow-gap semiconductor, or an insulator [2]. The remarkable electronic properties of carbon nano-
Experimentally, nanotubes can be produced using th&ibes are due to the special band structure of the
carbon-arc technique [1] or by laser ablation [3] of Co-electrons in graphite [12,13]. The Fermi surface consists
or Ni-doped graphite targets. The latter method yieldsf two distinct Fermi pointsa K with K = (47 /3a,0)
metallic(n, n) “armchair” nanotubes with = 10inrather and o« = *; see Fig. 1. Here the axis points along
large quantities, usually deposited in triangular-packedhe tube direction and the circumferential variabl® is
ropes. Remarkably, the first transport measurements op < 27 R, whereR = /3 na/2 is the tube radius. The
a single 3um long (10, 10) nanotube have been reported |attice constant is = 2.46 A. Since the basis of graphite
recently [4]. contains two carbon atoms, there are two sublattices

Carbon nanotubes are perfect experimental realizations shifted by the vectod = (0,d) (whered = a/~/3),
of one-dimensional (1D) conductors. Interacting 1D elec-and hence two degenerate Bloch states (x,y) at each
trons usually exhibit Luttinger liquid rather than Fermi pormi pointa k. We follow Ref. [13] and choose these

liquid behavior characterized by, e.g., the absence of Laniates separately on each sublattice such that they vanish
dau quasiparticles, spin-charge separation, suppression gj the other (note that, = 0),

the electron tunneling density of states, and interaction-

dependent power laws for transport quantities [5]. So far ¢pal¥,y)¢—par(x,y) =0,
non-Fermi liquid behavior has been masked by charging _exp—iaKx)
effects due to large contact resistances between the nano- ¢palx.y) = 7R

tube and the attached leads [4]. Nevertheless, future

experiments are expected to reveal the anomalous con- -

ductance laws and related phenomena discussed here at A E(k)

higher temperature, suitable gate voltages, or smaller con- p=% p=1t

tact resistances. =- r=
The low-energy theory for uncorrelated nanotubes has \

r=- r=+
/ \ /
been given by Kane and Mele [6]. Here we extend their \/
approach and incorporate Coulomb interactions among the

electrons, focusing offn, n) tubes where interaction ef- 5 =
. . K K
fects are most pronounced [7]. Previously, this problem /

4 Y

has only been studied by the perturbative renormalization
group (RG) using a weak short-range (Hubbard) interac-
tion [8]. In this Letter, we discuss arbitrary interaction
potentials and, in particular, the strong-coupling regime
which emerges at low tem_pera;ures. This is of |mporta_ncg|G_ 1. Low-energy band structure of graphite. Fermi points
as the experiments described in Ref. [4] are characterizegte |abeled byr = +, and sublatticep = = combine to build
by long-ranged (unscreened) Coulomb interactions. Theght and left movergr = +).

a=- a=+
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At low-energy scales, the electron operator for spin=  The correctionéV, measures the difference between
*+ can be expanded in terms of the Bloch waves [6,13], intra- and intersublattice interactions. Because of the
periodicity of they integrals, expanding in powers of
Vo(6,3) = D @palt, ) )pac(x). (1) 4 implies 8V,(x) = 0. Since the potentialV, does
pa not discriminate among sublattices, the resultingS

Quantization of transverse motion gives the wave funCinteraction couples only the total 1D charge densities,

tion y(y) = exp(iMy) with the “mass”M specified in
Ref. [6]. Thereforey = 1 for armchair tubegM = 0); 1O = L[ dx dx' p()Volx — X )p(x),  (6)
see Eg. (1). Excitation of other transversal bands costs 2

the energy=10 eV/n, and hence a 1D situation arises. with p(x) = 2 pac ¢;M¢//,,M. For an unscreened
The conditions for the low-energy regime are met everCoulomb interactioria, = a),

at room temperature fofl10, 10) nanotubes. Neglecting o2
Coulomb interactions, the Hamiltonian is [6,13] Ulx,y) = \/ - , (D
Ky ag + x2 + 4R2sirt(y/2R)
Hy = — d t xV—pao > 2 .
0 v ,,%, pf ¥ Vpadxlp @ the potential (5) becomes
wherev = 8 X 10° m/sec is the Fermi velocity. . 2¢? 2R

Vo(x)

. . . . = K

Let us now examine Coulomb interactions mediated b 2 2
a (possibly screened) potentiéllx — x’,y — y’). Elec- Y KW‘/GO +x? + 4R? \/ao At AR
trons trapped in nonpropagating orbitals can be incorpowith the complete elliptic integral of the first kin& (z).
rated in terms of a dielectric constat but free charge The Fourier transfornVy(k) for |kR| < 1 is reminiscent
carriers in nearby gates could lead to an effectively shortef a 1D quantum wire [5],
ranged potential. For the experiments of Ref. [4], one _ 2
has an unscreened Coulomb interaction, and the dielectric Volk) = (/) [2lIn(kR)| + rIn2]. (8)
constant can be estimated as~ 1.4 [14]. From Eq. (1) For |x| > «, the above continuum argument leading to

the interaction contribution reads 8V,(x) = 0 safely applies. However, fofx| = a, an
1 op! additionala FS term beyond Eq. (6) arises due to the hard
H = > > j dx dx' Vig,(x — x') core of the Coulomb interaction,

pploo’ ajarazay

X ‘r//;;ra]a-(x)‘l’;’aza’(xl)wp’a3a"(x/)(l’pa4[r(x) (3) HSIZ“S = _f] dx Z ¢;aa¢rllipa/0’¢rll—palﬂ"¢pa0‘

with the 1D interaction potentials pacior

9)
, 27R
ViN(x = X)) =f dy dy' @’ (X, )@ 10, (X, ') with f/a = ye?/R. Evaluating §V,(x = 0) on the
0 wrapped graphite lattice using Eq. (7) yields
X Ulx —x',y =y + pdé, )
Ba | L |y (10)

vy =
X @p’oq(x/’y/)@poq(x»y)- (4) 27TKa() \/1 + a2/3a(2)

Here intersublattice interactions involve the shift vector Next we discus&BS contributions. Since Egs. (3) and

d = (0,d). It is natural to distinguish three ProCesSes 4) involve a rapidly oscillating factor efpik, (x — x')],

associated with the Fermi pointe = *. First, we  (heqe are [ocal processes which do not resolve sublattices,
have “forward scattering” {FS) wherea; = a4 and

a = a3. Second, we have “backscattering/§S) with = ﬁf tout e
@) = —a» = a3 = —ay. Finally, at halfilling there is Haps = 7 | dx p,,%m, Vpaolp—aapacbp-ao
an additional “umklapp” process characterized by = (11)
a, = —a3 = —ay. These processes are different from
the conventional ones [5] since they do not necessaril
mix right- and left-moving branches but rather involve
different Fermi points; see Fig. 1.
Let us start witha FS. We first define

Estimating the coupling constant from Eq. (4) for the
Yinscreened interaction (7) results n= f, while for
well-screened short-ranged interactiohsy> f. Experi-
mentally, by using additional gates, one can easily tune
away from half-filling [4]. Therefore we disregard all

I e — umklapp scattering effects in this paper.
Volo) = | . Ulx,y =), (5)

27R 2mR _ To study this effective low-energy model, we employ
whence from Eq. (4) théa;}-independent 1D potential standard Abelian bosonization [5,10]. For that purpose
readsV gs(x) = Vo(x) + 8, - ,16V,(x) with we first switch to right and left movers = =),
5 _ 27 R dydyl ~ NT ~
Vv, = Ny Vpao = ZU,,,:,//W, whereUto,U = o,
X [Ulx,y =y + pd) — Ux,y — y]. which then allow for straightforward bosonization,
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Urao(x) = jﬂ igprx + i g (et +r0.y +adp.— +rab.- + o+ +roby. + acd,— + racrHS)i|.
(12)
Phase fields for the total and relatiy6 = *) charge ! &iray(x). Here j = 1,2 corresponds tds—), j = 3,4
(j = ¢) and spin(j = s) channels obey the algebra to (¢c—), and R(L) denotes the right-/left-moving part.
) 0N = —(i/2)8 1855 — ) Remarkably, refermionization shows that the last term in

[5(x). 675 (x)] W/ _) 1ee0 Sgn(_x *) Eq. (16) vanishes identically and we are left with

Thus ¢;s and 0;s are dual fields. Density and current

operators can be written in terms of the field, H(c—,s—) = —— Z f dx(€r EjR — EL92EiL)

px) = 2/Jm)d0c+(x), I = (2e/JV7)3:0.+(0).

The wave vectoy is related to deviation§p = 4qr/m — 2bf dx(&pésr + Earéar)é1RENL

of the average electron density from half-filling and can be

tuned by gates. Finally, thg,,, are Majorana fermions (17)

ensuring anticommutation relations among differeftr.  The Majorana fermiong, stays massless, i.e., tiie—)
Since the Hamiltonian contains only the combinationssector carries one massive and one massless branch. This
Asx = NragN+r=ao, these can be represented usingpehavior is due to the symmetric appearance of the dual
standard Pauli matrices. Besides., = 1, we have figlds 0, and ¢, in Eq. (16) which does not permit
Ai- =iaoy, Ay =irac;, andA__ = —iro,. Us- complete pinning due to the Heisenberg uncertainty
ing Eq. (12), the bosonized expressions then read relation [10]. The(c—) sector is fully gapped, and we can
v _ put 8. = 0. The masses of the three massive Major-
Ho = 7[ dx Z[(axd’ﬁ)z + Kjéz(axe.f5)2]’ 13)  ana fermions ¢34 at this strong-coupling point are
i approximately equal=m,;) and can be estimated from
H,(,%S _ gf dx dx' 8,0,4(x)Volx — x)a,00: (1), mean-field theory asn, ~ o, exp(—mv/+/2b), where
T w. = 7.4 eVisthe bandwidth of the- electrons [2]. Cor-
(14)  relation functions for thés —) sector follow from the corre-
¥ spondence between two Majorana fermions and the order/
Y = 5 ] dx [—cog~/4m 6._) cod\/4m 6,_) disorder operators of the 2D Ising model [10]. In particu-
ma) lar, one has scaling dimension = 1/8 for sin(\/7 6,-)
— cos/4m 6,._) cod4am 6,.) and sify/7 ¢,-), while correlation functions of
cod/70H;,-) and co$/7 ¢,—) decay exponentially.
+ COSV47 ;) Cod V4 0;-)] In th\/e—(c—) sector, c(c;)\{r;ations of cogm 6.-) show
(15) long-range order while all other operators lead to expo-
nential decay.
fdx [cosv/4m 6. ) cos\4m 6,_) While H ) is irrelevant atf = b = 0, it becomes
relevant at the new strong-coupling point which there-
+ cosv4m 6, ) codam ¢, ) fore die/sEibes onlyjn_intermediate fixed point. The term
~cog+4m 0,4+ ) codv4m 0,-) in Eq. (15) stays marginal,
+ codV4m 0,_) codam ¢-)]. but the two other terms become relevant with scaling
(16) dimensionn = 1. Therefore ¢, as well as the(s+)
field acquires the masa; ~ (f/b)m;,. At the emerg-
tions renormalize these parameters. In particdﬂ(fgs I;egr Sitr:oTﬁ;%%ﬂ;g?;g?é%g;:?{e Ci;e;{v\t;}loﬁrzgj)r,ar;%% or
can_be incorporated intdd, by putting K =K = gy /77 ) with exponential decay in all other opera-
1/y/1 + 4Vo(k = 0)/7v < 1, while for all other chan-  yorg except those of the +) sector,
nels,Kjs = /1 + f/mv > 1. For the long-ranged in-  Thjs analysis for a screened interaction potential
teraction (7), one hak = consf+/lIn[max7,v/L)]| [5]  predicts that the exponents corresponding to the first
such that at zero temperatut€, vanishes in a very long (intermediate) strong-coupling point should be observable
tube. Velocity renormalizations are ignored here as theyn temperature scales; < T < m;, with a crossover
do not change exponents. to a regimel < m; dominated by the tru@ = 0 fixed
From the perturbatlve RG equatlons [11] it follows thatpomt For |0ng ranged interactions, we hm@ = my,
around the Gaussian poifit= b = 0, Han isirrelevant, and the intermediate fixed point and the associated
while H,gs scales to strong coupling; — . Let us crossover phenomenon are then absent [15].
first examine short-ranged interactions such thak b. With the strong-coupling solution discussed above, we
For f = 0, the relative charge and spin channels carcan now examine temperature-dependent susceptibilities
be refermionized in terms of four Majorana fermionsand other experimentally accessible quantities of interest.
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Although bosonization of Eq. (2) gives;s = 1, interac-
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At temperature§” > m;, the dominant correlations come TX~2. For extremely low temperatures, however, by
from the intersublattice charge-density wave (CDW) andnvoking the usual duality argument [5], this is turned

spin-density wave (SDW) operators into G(T — 0) ~ T2k j.e., a vanishing conductance
similar to the Luttinger liquid case. For long-ranged
Ocpw ~ Z tﬂ;agtﬁfpw, interactions, this leads to a pseudogap behavior at very
pav low temperatures.
. To conclude, the effective low-energy theory for corre-
Ospw ~ Z Utﬂ;aglﬁ—paa, lated single-wall nanotubes has been given. Our theory
pac explains the ferromagnetic tendencies observed in recent

experiments and predicts the temperature dependence of

with (O(x)0(0)) ~ cog2gpx)x~K*+3/2 for both [16]. . R _
BecaL<Jse( ())f ; ?;rger ;(re?gct)or SDW correlations[ W%” pevarious susceptibilities and the conductance in the pres-

more pronounced. Fom, < T < my, this decay is en\(/:veeo':‘hi;nniuz\i;ie: Devoret, D. Esteve, H. Grabert, and
changed into the slower~2+3/4 Jaw. Both the CDW Cf o Lo '

and SDW correlations decav exponentially at verv lo A.A. Nersesyan for helpful discussions. This work has
n correlations decay exponentially at Very 1oW,eqp, partly carried out during an extended stay of R. E. at

temperatures < ;. Howeyer, ther£a2|s also®y CD,W the Imperial College funded by the EPSRC of the United
component effectively coming frond¢cpw [10], which Kingdom.

leads to a slow cd$qrx)x 2K decay atl’ < my;. Thisis

in fact the dominant instability at temperaturés< m;,
and strong correlation& < 1/2. Remarkably, it is not
K, but gr which determines the period of all the domi-
nating correlations. Sincggr < 1, one has pronounced
ferromagneticcorrelations. This offers an explanation for Phys. Todayt9, No. 6, 26 (1996).
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