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Unlocking of an Elastic String from a Periodic Substrate
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The unlocking of a linear defect (like a lattice dislocation or a magnetic flux line is a type-ll
superconductor) from a periodic substrate is modeled by a damped elastic string subjected to a
washboard potential. At low temperatures running solutions are shown to set in for tilt amplitudes
larger than a certain threshold value, sensitive to the damping constant. Close to the unlocking threshold
the motion of a string segment is characterized by a logarithmic transient dynamics; as a consequence,
hysteresis effects become observable for forcing periods much longer than any predicted time scale.
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Linear defects in solid state physics are often modeledvashboard potential retains a multistable structure for
by a damped elastic string pinned to a periodic substrati| < F; = w§ (static unlocking threshold [12]). The
potential. Two popular examples are the lattice dislocaelastic string (x, z) can glide perpendicularly to tHel ¢ |
tions in pure crystalline metals [1,2] and the magnetic fluxvalleys through two distinct mechanisms:
lines through type-1l superconducting films [3,4]. In a (a) Thermal nucleatior—A string segment lying along
number of experimental circumstances linear defects arene SG valley, sayp(x,0) = 0, is unstable against the
driven by external forces, whence, e.g., the plastic flownucleation of thermal kink-antikink pairs [2,6]. Thermal
of a metallic lattice [5,6] or the dynamical melting of an fluctuations, /(x,7) in Eq. (1), trigger the process by
Abrikosov lattice [7]. The crucial question then arisesactivating a critical nucleus. FoF <« F3 an unstable
as how to characterize the steady-state dgnamica) nucleus is well reproduced by the linear superposition
transition between docked phase, where linear defects of a kink and an antikink, each of sizé = ¢y/w, and
diffuse thermally on the substrate, andumning phase, energyE, = 8cowo [2]. Each nucleus wall experiences
where, due to inertia, the same defects may be driven ovéwo contrasting forces: an attractive force due to the
the substrate barriers at the cost of a relatively weakicinity of the nucleating partner and a repulsive force
bias [8—11]. due to either the uniform forck itself, or the pre-existing

The main result of the present Letter is that the thresh¢equilibrium) gas of kinks and antikinks [13,14]. On
old value of the driving force at which the dynamical un- balancing the two forces, one determines the size of the
locking occurs is determined by theambinedaction of  critical nucleus, whose energy fét < F; is thus of the
damping and fluctuations. Moreover, in the underdampedrder of2E,. At low temperatur&? < E, the unlocking
limit the unlocking of a string segment is signaled by atime T, namely the time a driven string takes to jump
logarithmic slowing down of its transient dynamics. Fi- out of ¢(x,0) = 0, is minimum fora < wy; according
nally, the notion of dynamical unlocking is applied to to the transition-state-theory formula [15]
settle a longstanding controversy about the experimental _
estimate of an important lattice parameter, the so-called Ty = (/2 @0) expEo/KT), (3)
Peierls stress [5]. (almost) independently or and F. Hence, a locked

The perturbedsine-Gordon (SG) equation string (1) diffuses in the direction df with exponentially

bu — i + wlsing = —ad, + F + {(x,1) (1) small average speexir/Ty. o
represents the archetypal model of an elastic string at (P) Running solution—At vanishingly low tempera-
thermal equilibrium on a periodic substrate. The couplindUres thermal nucleation becomes negligible. The elas-
of the classical fields (x, 7) to the heat bath at temperature UcC string can still be driven away from a SG valley, say
T is reproduced here by a viscous teraw ¢, and a ¢(x,0) =0, proylded that the external forg@ is strong
zero-mean Gaussian noise sougde, ). The damping €nough. Following [8-10], we assume first thi, 1)

constanta and the noise intensity are related through theS identically zero and that the intensify of the driving
noise autocorrelation function force increasesdiabatically The string will adjust in-

(e, W 1)) = 2akT8(r — £)8(x — x).  (2) stantaneously around the shifting bottom of its SG valley.

The relevant SG substrate potentisl[¢] = wi(l — Let us define the string mobilit. as
cos¢) is tilted by the bias term—F¢: the resulting u(F) = v(F)/F, 4
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with v(F) = (¢:(x,1)) and {(¢p,(x,1)) = IimLﬁO% x  coupling of the SG string to its heat bath. In fact,
fé é.(x,t)dx. The overbar denotes a suitable timethe fluctuation dissip_qtiqn relationship (2) required by
average [16]. Itis clear that is identically zero (locked thermodynamical equilibrium has been violated. In other
solution) as long a#’is smaller than the static threshold words, imposing/(x,7) = 0 is different from taking the
F3 = w§. For F > F; the string gets unlocked and a limit 7 —0[17]. _ _
free-flow (or running solution) sets in with = F/a or I order to clarify this question we ran an extensive
ap = 1. Let us now decreasE from F > F3 back to  digital simulation of Eq. (1) with periodic boundary
zero. In the inertial regimer < wy, the string keeps conditions ¢(x + L,1) = ¢(x,7) and é.(x + L,1) =
jumping from valley to valley even foF < F;. Such ¢x(x,7) and initial conditions¢(x,0) = ¢x(x,0) = 0.
a process comes to a halt only when, at each jumplhe details of our numerical code and the stability
the potential energy gained by the string gets entirely@nalysis of the resulting string statistics will be reported
dissipated by the viscous forcea,. This condition In @ forth-coming article. Here, we limit ourselves to
defines thdocking threshold [12] summarizing our main findings. In Fig. 1(a) we plotted
the string mobility w(F) in the inertial regimea < wq
Fi = @/mawy = (@4/m)(a/wo)Fs. (5)  at different temperatures [16]. The rescaled mobiity
The ensuing hysteresis cycle, illustrated in Fig. 1(a)jumps abruptly from marginally small values (due to the
persists even in the static limit: the string mobility nucleation mechanism) up to the (free-flow) asymptotic
depends on the history of the control paraméter value e = 1 in the vicinity of a new threshold value
However, on setting{(x,r) to zero while keeping F,: such a transition is particularly sharp f6rtending to
the viscous term—a ¢, in Eq. (1), we have altered the zero, where, can be identified with [18]

Fz = 3.36&&)0 = 3.36(&/(1)0)F3, (6)

i.e., Risken’s threshold for the unlocking of a Brownian
particle in a washboard potential [12]. In tteteady-
stateregime no hysteresis loap, = F3 is observable, at
variance with the simulation of Ref. [19]: the dynamical
—4—1.0 ] unlocking threshold, turns out to be a uniquely defined
:;‘:if) - function of @. In Fig. 1(b) the two thresholdB; and F,

’ are plotted against the damping constant: b6thand F,
T grow proportional taw for a < wo (underdamped limit)
] and eventually merge together wiify for a > 1.2w

e (overdamped limit).
: S The unlocking mechanism of &tring segmentin
0.8 L0 the presence of thermal fluctuations reveals a number
of surprising features which eluded earlier numerical

. . T T . investigations [8,10,19]. In Figs. 2 and 3 we illustrate the
1.0 transient dynamics of an underdamped SG string at the
: : unlocking threshold”,. The quantity

8T ] () = ($lx.0) = (plx. NP/ (7)

06| - has been introduced in Fig. 2 to describe the diffusion of
I / \ ] the string¢ (x, ) around its “center of mass'e (x, 1)) =
oal i vt. Itis apparent by inspection that: (i) fét close toF,
] the quantityS(z) peaks after a waiting time of the order
of Ty, see Eq. (3), thus signaling an unlocking event.
The peak ofS(r) marks the onset of a running solution
ool o . b with au = 1; see Fig. 1; (ii) the decay of(s) obeys
0.0 02 04 06 08 1.0 12 a logarithmic law over a time intervalr of up to four
o decades. In Fig. 2 the transient time(independent of
FIG. 1. (a) au versusF for different values ofkT. The L) is of the order of10* to compare withTy = 330;
SG parameters ar@j = 1, ¢; = 0.1, & = 0.1, andL = 500; (i) close to the threshold,, the tilt F does control the
the integration steps amex = 1 andAs = 107>, The arrows transient peaks of(z), but not its asymptotic tails. In
denote the static hysteresis loop discussed in the text. (tl‘bct, trajectories ofS(¢) obtained for different values of

Unlocking thresholdsF; and F, versusa. The dotted line . . .
is the analytical prediction (6) foF,. Here, F, is defined as I (&bove threshold), butlentical noise sequences, tend

the value ofF such thatex = 0.5 at the lowest temperature in t0 coincide asymptotically—the only difference being a
(@), kT = 1.0. superimposed drift modulation with periodhr /v [10]
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250 Figs. 1-3 clearly confirm that the string motion can be
separated into two components: the drift of the string cen-
ter of mass¢(x, t)), which amounts to the Brownian dif-
fusion of an inertial particle in a washboard potential [12],
and the spatial diffusion of the string arouti(x, 7)). In

the presence of thermal fluctuations the string instabilities
detected in Refs. [8—10] disappear: the spatial diffusion
of the string builds up through the avalanche mechanism
illustrated in Fig. 3 and not as an effect of parametric
resonance. After the logarithmic transient is over, the av-

erage diffusionS = limr—.. 5 [1*" S(')dt' is well ap-
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proximated by+/kTL/c}/2m, the average diffusion for
10° a free elastic string segment of the same lendthand
¢ coupled to the same heat bdthy = F = 0).

FIG. 2. Transient dynamicsS(¢) defined in Eq. (7) versus The logarithmic decay 08(z) can be explained as fol-

for F = 0.35 (curve 1),=0.70 (curve 2),=1.0 (curve 3). The IOWS' The Fonguellke profile 0 (x, 1) —in co_mmden_cg
SG parameters are as in Fig. 1 akfl = 1.0. The vertical ~With Smax—is made of a large number of kink-antikink

arrow represents the unlocking tinfg of Eq. (3). The three pairs subjected to a nonlinear relaxation dynamics. The
solid circles on curve (1) refer to the string configurations ofamplitudes(z) of a large avalanche decays in time due to
Fig. 3. Inset:4 Blowup %10) of curves (2) and (3) starting at he viscous damping that opposes tateral motion of
t = 1.95 X 10° (linear scale). each kink (antikink). Therefore, during the transient in-
terval 7, the dominating recovery force acting uperis

(see inset of Fig. 2); (iv) the unlocking mechanism isproportional tos? [14]: in the underdamped limit « s2,
triggered by thenucleationof multikink avalanches [20] whence the logarithmic decay branch of $(e) peak.
randomly distributed in space and size. The buildup of The slow transient dynamics in the vicinity df,
such avalanches, which may span over many a SG valleyhakes the nonstationary properties [21] of a driven SG
is maximum in correspondence with the rising branchstring particularly interesting. In Fig. 4 we display the
of the S(r) peak and their amplitude is distributed hysteresis loops we obtained by forcing the SG string
according to gpower laws % with 8 ~ 1 (see inset of with the periodic driveF(r) = Fy + Fq sin(Qr). Away
Fig. 3); (v) the string diffusiorf(z) attains its peak value from the thresholdF, > F, or Fy < F5, no hysteresis
Smax * L after all avalanches have merged together into @ycle is detectable foR Ty < 1, as one would expect for
characteristic tonguelike profile as shown in Fig. 3. Thisthe Brownian motion in a modulated multistable potential
property is sensitive to the finite size of the simulated
string segment.

The analytical interpretation of the unlocking dynamics

is rather involved. First of all, the simulation results of Lo .
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FIG. 3. String segment profiles close to the unlocking thresh- 020 025 030 035 040

old (F = 0.35) at increasing simulations timés — 3). These
string configurations refer to the solid circles on curve (1)
of Fig. 2. Inset: normalized histogram of the avalanche am+IG. 4. Hysteresis loops driven b§(r) = Fy + Fgq sin(Q1)
plitudes s. The power laws™® with § = 1.0 is drawn for  with F, = 0.3, Fq = 0.1, and (a)Tq = 5 X 10%; (b) Tq =
comparison. 10*. The SG parameters are as in Fig. 1 &fd= 1.0.
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