VOLUME 79, NUMBER 25 PHYSICAL REVIEW LETTERS 22 BCEMBER 1997

Raman Scattering by Bulk Phonons in Microcrystalline Silver and Copper
via Electronic Surface Excitations
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In Raman scattering from cryocondensed metal films one observes the bulk acoustic phonons. This
is not caused by the laser field which penetrates the metal, but via the scattering of optically excited
intrasurface band electron hole pairs by the phonons. Phonons with wave Qecimtribute to the
Raman signal according to the scattering probabifity) of the image states by surface roughness,
whereq is the projection ofQ onto the low index facets having occupied electronic surface states, in
the present case mainly of (111) orientation. [S0031-9007(97)04865-5]

PACS numbers: 63.20.Dj, 63.20.Kr, 73.20.—r, 78.30.—j

Information on bulk phonon&Ps) in metals throughout clusters unlikely: The bands are not altered in shape or
the Brillouin zone [1] so far has mainly been obtainedin spectral position as the films are heavily reconstructed
by neutron scattering. Surfades of metals, especially during annealing (Figs. 1 and 2) or exposure to oxygen
the RayleighPs, has been investigated by electron energy(Fig. 3), whereas an Ag-O stretch band3d0 cm™! ap-
loss spectroscopy [2] and by inelastic He scattering [3]pears, see Fig. 25 in [12]. It is highly unlikely that the
Inelastic x-ray scattering has been used in the caseumber of Ag clusters even increases during reconstruc-
of vanadium [4]. Raman scattering (RS) of hexagonation. Oxygen does not chemisorb at the smooth (111)
monoelemental metals like zinc [5] and beryllium [6] facet planes of silver at 40 K, but only adsorbs dissocia-
yields a weak intensity from the zone center bulk opticaltively at “surface defects” [13]. If a major fraction of the
Ps. Here we show that RS at clean rough noble metatlefects has Agstructure, one has to assume that oxygen
surfaces is sensitive to the acousie and propose RS attaches to the cluster sites and the frequencies are shifted.
at stepped surfaces of metals with filled electronic surface The quenching of the Raman intensity of bukks
states (SSs) as a relatively simple method to gain facedicates a surface sensitive mechanism of excitation,
specific access to the dispersion of the acouBsc It is
the first time that surface projected butk densities are
introduced and electroR-interaction of electrons in SSs S L L L L L

is discussed and demonstrated. o ESO(K) Ao(g';(;;
The Raman spectra of cryocondensed silver films 10°E 180 0.0528
grown on a smooth substrate at low temperature in ul- - 120 0.0648
tra high vacuum show broad, but clearly resolvable, low
frequency bands at about 65, 110, ar cm~' [7], in
coincidence with critical points in thé band structure
of bulk silver [8], originally assigned to bulk disorder in-
duced light scattering (BDIRS) [6]. In contrast, Roy and
Furtak [9] assigned these bands, also observed at rough-
ened silver electrodes, to tetrahedral cationig Agrface 10° E
clusters, representing the sites of maximum enhancement F 350 K
of the Raman intensity of adsorbed molecules. .l
Silver and copper films of 150 nm thickness were evap- 10

10°F

10'F

intensity ( counts / (sW))

PR OO PR RPN [NV SR NP N NS
orated onto a polished copper substrate at 40 K and, re- 250 200 150 100 50 0O -50 -100-150 -200
spectively, 50 K within UHV. Figures 1 and 2 show the
low frequency Stokes and anti-Stokes spectra of silver and
the Stokes spectra of copper films annealed at increafG. 1. Thick solid lines are low frequency Raman spectra
ing temperatures recorded with a triple monochromator(laser wavelengthA, = 514.5 nm, 0.1 W) of a silver film
Since elastic light scattering is maximal after annea”nqcryocondensed at 40 K, subsequently annealed at the indicated

Raman shift (cm™)

L . f emperatures’y, for about 120 sec, recorded &}, = 40 K.
to 350 K [11] the contribution by erroneous stray light Theoretical spectra as sum (thin solid lines) of the contribution

is indeed limited to the range-/—25 cm™' in all spec-  of bulk Ps projected on (111) [Eq. (3) and Ref. [10]] and the
tra. Two observations make the assignment to tetrahedraltra-Shockley surface band transitions [Eq. (4)], dotted line.
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single crystal surfaces [16,17], still do exist on small

| Cu T, (K)] A(nm") facets, for instance the Shockley/p-derived crystal
_ 200 | 0087 induced) SS at Au(111) was observed spatially confined
10 E'T"'SOK | on terraces with widths in the range of 3 to 6 nm and
s E T, = Y ] islands of 4.5 nm diameter [18] and the first image
2z [ 250K ; ] state on Cu(100) with step spacings of 1 nm [19]. The
£ 200K . 1 Shockley states may penetrate several lattice constants
3 10°F et i into the bulk, for instance 2.8 nm at Ag(111) [20]. An
= 2 . 3 electron in this state therefore will scatter not only from
g [ ] surfacePs but also from bulkPs.
£ i e ] The scattering mechanism is modeled as a fourth order
[ 350K process, involvingp-polarized [21] photon annihilation
10° MWMMM 3 by electronic excitations from the occupied part of the

TV

Shockley SS bandS¢ in Fig. 4) to image statesS( in
400 300 200 100 0 Fig. 4), photon creation by electronic transition fram
Raman shift (cm™) to the unfilled part ofS, scatterin_g Withir! theS| band by
surface roughness, and scattering withinby Ps. Also,
FIG. 2. Like Fig. 1, but copper filmy, = 647.1 nm, 0.2 W.  the scattering withir§, by surface roughness and within
S1 by Ps will contribute. The resonant process among

because the decrease of the local macroscopic field WithiWe 24 dlff.erently time order_ed Processes Is schematically
the metal should be connected with a change of the optic&!Ven in Fig. 4. An alternative or additional process may
absorption. However, the latter effect is not observednvolve the electronic transition between the Shockley
[14]. Apparently BDIRS byPs within the penetration Stat€ and the bulk states abavg see Fig. 4 and [23].
depth of visible light is too weak because the local With the laser wavelength of 514.5 nm one is far out
macroscopic field factor of RS below the surface isOf resonance with the transition betwesh and §; at
smaller by about a factor of(w;)~* compared to sites 518 NM [24] or the bulk states abovg. Out of reso-
outside the so-called image plane [15]. In the following,”ance’ in the case of RS of vibrations of molecules and

we propose a mechanism involving virtual transitionsPUlk crystals, one usually uses _the polarizability_ theory of
between electronic SSs. RS of G. Placzek, see [25], with the assumption of ho-

Most likely, the surface of a cryocondensed and partly09eneous laser and Raman fields (frequengyand at
annealed film consists of small facets of (111), (110), and

(100) orientations, various steps, kinks, and other one- Ag (111)
and zero-dimensional defects related to grain boundaries T
and dislocations. Electronic SSs, well known from large
6_
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300 250 200 150 100 S0 0 FIG. 4. See text. Hatched area: Bulk electronic band
Raman shift (cm ™) structure projected onto Ag(111l). The experimental data of
the lowest image stat§, and the Shockley stat§, are from
FIG. 3. Low frequency Raman spectra of a silver film Ref. [22]. According to two-photon photoemission and SHG
annealed at 250 K and exposed to increasing doses of oxygef is found 3.84 eV abové, atk = 0 [24]. V is the vacuum
at 40 K. level.
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every site the same derivative of the atomic polarizabilityindex faces yields significant and individual structures, see
with respect to displacement from the equilibrium condi-Fig. 5. Though BDIRS has been ruled out above, we give
tions. This is not possible in our case, because the nonlats expected shape in Fig. 5, which does not resemble the
cal electromagnetic fields are highly inhomogeneous neaxperimental spectra in Fig. 1. To the Raman spectrum
the surface and the electronic SSs are localized near thd the Ps projected on (111) we add the electronic Raman
surface. Nevertheless, one may define an electronic suspectra of the intra-Shockley-band transitions at (111)
face susceptibilityy modulated by lattice vibrations with facets, as given by (4)

normal coordinateg [26]. Analogous to first order Ra-

man scattering (s: Stokes, as: anti-Stokes)Pisyin crys- Jensh(@w) = Cz] f(&sn(ksn))S(k,)
tals (frequencyw,,) we derive for the first order RS at

crystalline surfaces the differential Stokes and anti-Stokes X [1 = f(esn(ksn + k)]

ower scattering cross sections (1):
p g ( ) X 6(“) - Ssh(ksh + kr) + 8sh(ksh))

X dkgndk, , 4

4
A
ofas]
il = e | ol e
e = where o is taken positive on the Stokes side and
h {n(wph(f)) + 1}. ) negative on the anti-Stokes side afitl) is the Fermi-

8 20pn(£) [ n(wpn(£)) Dirac distribution. The quadratic dispersie, (k) of
Here e,, e., and e, are the macroscopic Stokes anti- the Shockley band was modeled with the experimental

Stokes, and laser fields above the illuminated surfacd2@ [29_] at 65 Ken(ksh = 0) — Ep = —60 meV and
area F, by the choice of the definition of the surface ett/m = 043. »
susceptibility andh(w,,(£)) is the Bose-Einstein factor, We neglect the intrasurface band transitions at (110)
At a smooth surfack, = k; — q, andk,, = k; + q, and (100) facets because we expect that (;11) facets are
where thek and q vectors are two-dimensional projec- MOre a_lbundant than the (110) facets, particularly when
tions of the wave vectors of the laser, Stokes, and anti@n€aling to a temperature of 250 K and because the
Stokes fields and of the wave vecirof the bulk lattice  ntensities will depend on the numberof occupied SSs
vibrations onto the surface. At a smooth surfagevill ~ Per unit area in the sense(111) ~ n(110) > n(100).

be very small with respect to the extension of the surfac&©’ CU gquantitative data are compiled in [30]. By
Brillouin zone. However, surface roughness allows fordSSUmMing two-dimensional isotropic dispersion of the
elastic scattering by a two-dimensional veckor Then, ©Ccupied SSs near thiepoint of the (100)-, the” point of

RS becomes possible férs with wave vectorg = —k, . the (110)-, and thd" point of the (111)—surface Brillouin

In the following we assume that the cross sections (1fON€: the numben of electr_ons In _the SSs_per surf.ace
may be integrated over the range qfor which surface 0M is calculated ag(100) = 0.010; n(110) = 0.0407;
roughness components willy = q are present. Further n(111) = 0.0424. A detailed calculation in the sense
we assume a constant tens‘fgr for all Ps. We consider

only bulk Ps, the relationwﬁ(Q) for wave vectorsQ
throughout the bulk Brillouin zone is obtained by a Born-
von Karmann fit [27] to the experimentd# dispersion 8
along high symmetry directions (Ref. [8]). The scattering
probability of the image state by surface roughness with
momentum transfekk, is modeled by a Lorentzian dis-
tribution

10

(111)

2A 1
Sk = M (2’
Integration of (1) weighted by (2) yields the Stokes and
anti-Stokes spectra (3), wili; being a constant.

(110)

intensity (arb. units)

(100)

Jph{s}zcl{”(wph(f))‘Fl}L 0' J.o\ ) |
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X D (@@ — op(Q, ), (3)
0

Raman shift (cm ™)

FIG. 5. Theoretical RS spectra of the bulls of silver (data

h the index the th tical b h of Kamitakahara and Brockhouse [8]), for projections on the
where the indey runs over the three acoustcal brancnesy, e |0y index faces and for BDIRS [bulk disorder analogue

Using N and Q in the Gilat-Raubenheimer method [28], to Eq. (2)]. Spectra have been displaced vertically from the
the projection of the bulkP structure on the three low zero position at-200 cm™!.
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