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Effect of Depth on the Pattern Formation of Faraday Waves
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The symmetry of standing wave patterns on the surface of a vertically oscillated fluid layer depends
on the depth of the layer. In a large experiment we trace out the stability diagram. The dependency
can be understood on the basis of the oscillatory character of the waves and the dispersion relation. A
simple amplitude equation can be constructed with the variation with depth of the dispersion relation
and a general quadratic nonlinearity as its only ingredients. The predictions of this model agree well
with the experiment. [S0031-9007(97)04783-2]

PACS numbers: 47.35.+i, 47.54.+r

Recently a great deal of attention has been focused gohase of the excitation. The diameter of the container is
the nonlinear dynamics of parametrically excited systemdarge enough that the pattern formation is insensitive to the
such as spin waves [1], second sound in superfluid heliurpresence of the lateral boundaries (for a discussion of the
[2], vertically oscillated granular layers [3], and waves oneffective size of the experiment, see [9]).

a free fluid surface undergoing oscillatory vertical accel- The strong dependency of the symmetry of the onset
eration (Faraday waves) [4,5]. These waves can organizeattern on the fluid layer depth is illustrated in Fig. 1,
in many symmetric forms, and stripes, squares, hexagonghich shows the imaged surface of the fluid layer close to
and quasiperiodic patterns have been observed. An explanset at a fixed frequency of 29 Hz, but for two different
nation of this pattern forming instability has been givendepths. The pattern at a depth bf= 10 mm is an

in terms of amplitude equations which describe the sloweightfold quasiperiodic structure, in agreement with recent
evolution of the amplitude of waves with wave numbertheory which was formulated in the infinite depth limit
equal to the critical wave number. As the free surfacg6,7,9]. However, at a depth df = 3.5 mm the pattern
problem is one of the most difficult problems of hydrody- observed is now hexagonal, in seeming disagreement with
namics, the formulation of an amplitude equation for Farathis theory as has been previously observed [8]. In Fig. 2
day waves is a formidable task [6,7]. This approach hasve present the regions of stability of square, hexagonal,
led to a prediction of pattern symmetries that is in strikingand eightfold quasiperiodic patterns as a function of depth
agreement with experiment [6—9]. However, the theory(the lines are from theoretical descriptions which will be
was formulated for deep fluids and an intriguing discrep-explained later). Both the frequencies for the square/
ancy remains with the experimental observation of wavéiexagonal, and hexagonal/eightfold boundaries show a
patterns on shallow fluid layers [8]. This encouraged us taimilar trend and decrease with decreasing depth [11].
study carefully the influence of the layer depth on the sym- One of the primary effects of changing the depth of
metry of the onset pattern. In this Letter we will show thatthe fluid layer is to alter the form of the dispersion rela-
the discrepancy can be resolved by considering the changien, which to a good approximation is given by the invis-
of the dispersion relation with depth. This central role ofcid dispersion relatiomd (k) = tanh(kh) [gk + (o/p)k?]

the dispersion relation can be exploited for constructing anvhere k is the wave number of the waves,the accel-
approximate amplitude equation whose predictions are ieration due to gravityg the surface tension, and the
favorable agreement with the experiment. The agreement
is surprising because the only other ingredient of our model
is a general quadratic nonlinearity.

Our experimental setup is described in detail in [9]. A
440 mm diameter sealed circular container is filled to a
height (in the range 2—20 mm) with the working fluid
[10]. The container is vibrated in the vertical direction
by an electromagnetic exciter, with the acceleration being
measured by a high-resolution piezoelectric accelerometer.
The measured acceleration inhomogeneity over the plate is AR X
less than 2%, the acceleration is controlled to better than a (b)

0.2%, and the frequency to 1 partin®. The waves are i
. . . . FIG. 1. Images of the surface at an excitation frequency of
visualized using the shadowgraph method, and images o Hz, taken just above onset, for depths of (a) 3.5 mm,

the surface are made using a CCD camera with a liquidhowing a hexagonal pattern, and (b) 10 mm, showing an
crystal shutter in order to obtain images at a constantightfold quasiperiodic pattern.
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FIG. 2. Frequency boundaries between different pattern symEIG.' 3. Dispersion relatiomw(k) plotted on a log-log scale.
metries observed close to threshold as a function of thé?o IS the angular frequency of the waves, and is calculated from

depth. Closed circles: square/hexagon boundary. Open cio — /2. Closed circles: experimentally measured points
cleg: hexagon/eightfold bgundary. Sash-dotted I)i/nes: ppredic]for a depth ofh = 2_0 mm (effectively infinite for this range
tions from [7] for infinite depth square/hexagon (upper) and®f k,)' .Openzcwcles. measurements for axdeptl”ho#: 2 mm.
hexagon/eightfold boundary (lower). Dashed lines: predictiono0lid lines:w;(k) = tank(kh) [gk + (a/p)k] for h = 20 mm

of the stability boundaries on the basis of Eq. (2). Full lines:(uPper line) and 2 mm (lower line). Dashed lines: viscous
Contours of constant resonance angle (using the fully viscouf?€ory [12,13] forh = 20 mm (the line corresponding th =
dispersion relation) chosen such that at infinite depth they pasd) MM is not visible as it coincides with the solid line), and
through the transition frequencies. The error in the depth stemé MM (lower line). The short line segment designates the linear
mainly from the leveling accuracy. It can be estimated asiependence <« k.

+0.1 mm at the walls of the container.

(3W), and cubic to four wave (4W) interactions. If all
density of the fluid. Parametrically excited systems typi-of the waves in any given interaction have wave num-
cally undergo a bifurcation to a standing wave state wheréers and frequencies that satisfy the dispersion relation,
the frequency and wave number of the waves is determineithen these waves will be resonant, and thus the interaction
by (but not necessarily equal to) the frequency and wavaill be amplified considerably in comparison to that not
number of the excitation. The excitation wave with fre-involving resonant waves. While resonant 4W interac-
quency() decays into two waves ab; andw; following  tions can always be found for a given dispersion relation,
the ruleQ) = *(w; — wz). In most cases the surface re- resonant 3W interactions only exist when« k” where
sponds subharmonically with; = —w, = Q/2,andthe p > 1 (termeddecay typedispersion relations). This is
wave numberk,. is given by the dispersion relation with indeed the case for infinite depth inviscid capillary waves
wo(k) = Q /2. Harmonic waves have higher dissipation, (w o k*?2) but not for gravity wavesd o« k'/2). This
and thus the initial bifurcation is to subharmonic waves.has been shown to have a great effect on the pattern for-
However, with thin fluid layers harmonic waves have re-mation of Faraday waves [6,7,9]. Thus, one expects that
cently been predicted and observed [12]. Figure 3 showi the dispersion relation is altered, the regions of differ-
the wave number measured close to onset as a function eht pattern symmetries will alter accordingly. In Fig. 3
the frequency of the waves for depths of 20 and 2 mm. Irwe have plotted the line correspondingdoc: k with the
addition, we have plotted the inviscid dispersion relation.experimental results. Dispersion relations with a steeper
and the viscous dispersion relation from the full stabilitygradient will be of decay type and so support resonant 3W
analysis [12,13]. The inviscid dispersion relation agreesnteractions, as described above. It can thus be seen that
well with both experiment and viscous theory, althoughwhile the dispersion relation for 20 mm is of decay type
the viscous theory gives a better prediction of the datdor high w, it is nondecay for lonmw. The dispersion re-
at 2 mm. Because the thickness of the viscous boundargtion for 2 mm, however, is of decay type throughout the
layer is much smaller than the depth, almost all viscouslisplayed frequency region. The stable pattern regions in
damping takes place in the bulk of the fluid. Fig. 2 all lie in a frequency range where the dispersion

In addition to the waves generated by interaction withrelation is of decay type, and we thus expect 3W interac-
the excitation, waves can be generated by nonlinear intetions to predominate.
actions in which the dispersion relation plays a significant Three-wave interactions are the result of quadratic
role. As wave amplitudes are small, quadratic and cubiconlinearities. Let us briefly sketch how such interactions
nonlinearities dominate. When Fourier transformed intcarise. A quadratic nonlinearity in the surface heighwill
k, w space, quadratic nonlinearities lead to three wavepawn waves with wave vectds; from waves withk;
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andk,. The amplitudelx, obeys a wave equation with parametric excitation. The growth and saturation of the

quadratic nonlinearity amplitude of directly excited waves can thus be described
. . 5 by an amplitude equation which consequently has a third-
gk, T plks)li, + wg(ks)dk, order nonlinear saturation term
— f.(l+k2=k3 dk; dk,, (1) A = gA; — Z[/g(e,.j) + B(m — 0:)A%A;, (2
J

where u(k) provides damping. In Eg. (1) we have . . .
ignored the direct excitation and omitted a prefactor of theWhere A; is the amplitude of wavek;, and e is the

quadratic coupling term. As will be explained in a Iongerreduce.q excitation amplitude = (a — a.)/ac With a
write-up, the wave vector dependence of this prefactor iéhe C.”t'cal amphtude Whgre waves first appear. The
not essential for our model. For weakly viscous waves th&oupling function B(6;;) in Eq. (2) depends on the
damping can be approximated jayk) = 4vk?> with » the angle §;; between the wave vectork; and k;. An
viscosity. Close to onset, the surface wakgsk, have approximate coupling function follows immediately from
frequencyw = /2 and wave numbek | = |k,| = k. Ea. (1)
that satisfies the dispersion relatiag(k.) = /2. w(k)

The nonlinearly produced wavas are at frequenc) ~ B(6) = [0l — Q2F + 0220
and do not in general satisfy the dispersion relation. A spe- 0 H
cial case is when the angtebetweenk; andk; is such with k = 2cog6/2)k., (3)

thatk; = 2 cog0/2)k. doessatisfy the dispersion relation )
wo(k;) = Q. Because the wavk; is strongly damped Where we note thaB(¢ =0) = B(6—0)/2 as the inte-

[when resonantk; > k., and thusu(ks) > w(k.)], pat- gral overk; andk; leads to two interactions wheh # 0.

terns with wave vectors that have mutual angles close tPUr @Pproximation ofg(6) is crude, in that it assumes
the resonance angkg, with wo[2 cog, /2)k.] = Q, will an arbitrary quadratic nonlinearity and omits cubic terms
’ r c H

not be preferred. In fluids of infinite depth, the resonancdVhich lead to 4W interactions. A precise derivation of
angle decreases from, ~ 74.9° at high frequencies to B(6) is only possible in a full hydrodynamic approach, as
9, = 0°atw = 85.22 rads’'. Below this frequency, 3W has been performed in [6,7]; however, we will demon-

interactions cannot be resonant (though they still exist). I$rate that ours(¢) contains the essential physics of

Fig. 4 we plotd, as a function of frequency for depths be- Pattérn formation. _

tween infinite and 2 mm. With decreasing depth, the reso- 1he coupling function3(6) displays a resonance phe-

nance angle increases and the frequency at whjck 0 nomenon. F_lgure 5 |IIustre_1tes how the resonance peaks

decreases. shift with fluid depth. As is well known, the presence
The nonlinearly produced wavés will couple through of this resonance is of key importance for pattern for-

a quadratic interaction with the directly excited waves toMation [6], and we will demonstrate that the change of
provide an effective damping which is then third orderPaltérn symmetry with depth is governed by the corre-

in the amplitude. Thus, pattern formation is a balancePonding change of the resonance peaks. Equation (2)
between this nonlinear damping and the energy input fron® Of gradient form and a Lyapunov functional (or free

p(8) (arbun.)
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FIG. 4. Resonant angle, as a function of frequencw for FIG. 5. Approximate coupling function3(6) for a wave
depths of 20 mm (solid line), 4 mm (short-dashed line), 3 mmnumber of600 m~!. Full line: depthz = 10 mm; dashed line:

(long-dashed line), and 2 mm (dot-dashed line). h = 3.5 mm.
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energy) can be defined. The preferred onset pattern snd Christian Wagner for many useful discussions. We
the one that minimizes the Lyapunov functional. Thisgratefully acknowledge financial support by the “Ned-
calculation leads to the predicted boundaries for thesrlandse Organisatie voor Wetenschappelijk Onderzoek
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fold (3—4 wave) pattern symmetries, which are plottedMaterie (FOM).”
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