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Evidence for a Real-Time Singularity in Hydrodynamics from Time Series Analysis
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The multiple-precision time series solution of the incompressible inviscid flow equations with
the initial velocity field usx, y, zd ­ ysy, z, xd ­ wsz, x, yd ­ sinxscos3y cosz 2 cosy cos3zd, has
been computed to 32 terms and maximum wave number 99. Ratio test and Padé analyses
indicate a real-time singularity in enstrophyVstd with the form st2

crit 2 t2d21 where tcrit

p
Vs0d > 4.
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Whether the equations of inviscid, incompressible flu
flow have real-time blow-up solutions is a fundamenta
unanswered question with important ramifications in flu
mechanics. Frisch [1] states that one of the central iss
in the mathematical aspect of fully developed turbulen
is the existence of singularities, whose form would, f
instance, influence scaling properties. Why typical tu
bulent structures have severely depleted nonlinearity
a question that may be answered by first understand
singular flows which possess no depletion. A singular
may also be a release mechanism for flows with top
logically confined vortex lines, and may be a source
focusing applications.

Mathematical discussions on the problem of glob
regularity of solutions of the Euler and Navier-Stoke
equations can be found in the recent books by Doer
and Gibbon [2], Temam [3], Marchioro and Pulviren
[4] and references therein. Roughly speaking, the up
bound on the growth of the spatial supremum of vorticit
which occurs when strain rate is a function of vorticity
is t21. More precisely, for a real-time singularity to
occur at tcrit, the time integral of this quantity mus
become infinite at this time or before [5]. There hav
been computational works (too numerous to mention he
that showed evidence of singular behavior of the vortic
supremum, but because this is one of the most challeng
numerical analysis problems, results to date are o
suggestive.

Numerical evidence from one such pseudospect
simulation of the incompressible equations of fluid flo
with highly symmetric initial conditions [6] suggests tha
a six-vortex dipole structure which is collapsing toward
the origin leads to a real-time singularity. A symmetr
vortex filament system [7] which is modeled after th
structure, produces an attracting, locally self-similar co
lapse solution. While the two results are consistent, ea
of the analyses has its weaknesses. The pseudospe
simulations suffer from loss of accuracy at late time
and the 1-d filament model does not have proper co
dynamics. Further investigations of this high symmetr
flow are necessary. The purpose of this paper is
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present findings from a different approach, that of
multiprecision, extended-time series analysis of the sa
highly symmetric flow.

We use an approach similar to that of Taylor and Gre
[8] by assuming a perturbation series in time for th
velocity

V ­
X̀
p­0

Vptp . (1)

Plugging the series into the Euler equations,

≠V
≠t

1 V ? =V ­ 2=P, = ? V ­ 0 , (2)

whereP is the pressure,Vp is found through a recursion
of the terms hVqj, q ­ 0, 1, . . . , p 2 1. If the initial
field V0 in a three-dimensional periodic domain has
Fourier series decomposition and rational coefficien
so do the subsequent terms, and the recursion can
formed exactly.

From the velocity termshVpj, p ­ 0, 1, . . . , 32, the
finite-term, time series for enstrophy is computed. Th
Maclaurin series is even due to time reversal and diver
ast approaches the radial value of the closest singular
Analysis of the divergent series indicates that this clos
singularity is near the imaginary axis and shields t
detection of other possible singularities at larger distan
from t ­ 0 even though the series contains informatio
on them.

We use two methods to rerepresent the divergent, fin
term enstrophy series and investigate the singularit
beyond the closest. The first is the Padé summat
technique, which allows an analytic continuation of th
series beyond the first singularity. The other is t
Cauchy ratio test of the series in which the close
singularity has been mapped far from the origin.

Because of the nonlinear nature of the Padé summa
technique, there is no general convergence proof. Eve
there were, it would be of limited value since the seri
generated here has only a finite number of terms. N
ertheless, the Padé summation technique has been
quite successfully to improve convergence of finite ter
© 1997 The American Physical Society
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divergence series in many physical problems [9]. Kno
caveats in usage are errors stemming from insuffici
precision of the series coefficients, and the intermitt
behavior of nearly coincident zeroypole “defects,” both
of which we shall address in the paper.

From these rerepresentation techniques of the enstro
we find a simple, isolated pole on the real-time axis ind
pendent of precision and degree of approximation. T
result is not a proof of the existence of a hydrodynam
blowup solution, since it is deduced from a finite-term re
resentation. It does, however, provide another indicat
(along with [6,7]) of singular behavior in highly symmetri
flows and provides a direction for further analysis.

This technique was used over ten years ago for inve
gations of the Taylor-Green vortex (TG), but attempts
isolate singularities were inconclusive. Series to orders
8, 44, and 80 were found in Refs. [8,10–12], respective
The investigations in the first two references did not
veal singular behavior. In the analyses of Morf, Orsza
and Frisch and Brachetet al. [11,12], Padé resumma
tion of the series indicated that a real-time singularity
the enstrophy exists, although subsequent pseudospe
Euler simulations [13] found no evidence of a singulari

The initial flow we examine in this paper, which i
given in the abstract, is similar in nature to the Taylo
Green vortex. The TG symmetries in each directio
2p translational, reflectional about planesnp , and p

rotational about the linessn 1 1dpy2 sn ­ 0, 1, . . .d, are
preserved by the Euler equations. For the present in
field, which is termed the high-symmetry initial condition
a py2 rotational symmetry about the same lines is us
From these symmetries, the cyclic permutation of veloc
usx, y, zd ­ ysy, z, xd ­ wsz, x, yd can be derived, which
can also be seen as a2py3 rotational symmetry abou
the line x ­ y ­ z. Kida [14] was the first to use
these symmetries to gain higher resolution in turbulen
simulations.

The cyclic permutation plays a critical role in the dy
namics. It provides a way for the positive strain rate p
duced by a vortex dipole near the origin to be direct
back on the dipole as axial stretching, thus linking vo
ticity and strain rate and preventing depletion of the no
linearity. Using all the symmetries also greatly simplifi
the series representation and recursion operation.

We started to generate the series with the computer
gebra packageFORM [15], a program that can manipulat
very large formulas. Eleven exact terms were compu
beforeFORM’s integer-length limit of 480 digits was ex
ceeded. We continued the analysis with theGMP [16]
and MPFUN [17] extended precision packages in C a
Fortran. Series were found for a number of precisions
cluding exact (16 terms), 154 (28 terms), 77 (32 term
51 (26 terms) and 29 digits (16 terms). Careful atte
tion was paid to truncation errors and precision. Beca
of truncation error, the precision decreased by about
digit every three terms. With the exponent range of t
Fourier coefficients increasing by about five places ev
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TABLE I. Coefficients of the enstrophy seriesAn as given in
Eq. (4) for the 77-digit series (rounded to 40 digits).

n An

0 33y8
1 2123y480
2 3.8481656583957343138134098586075987205
3 25.540736522851773327499709970305670919751
4 14.1049334733013979799083718930358214526
5 231.66144613116725862507350490138202993987
6 65.9778196614061568619036838319992464944
7 2123.4312214664711517008338131705589843103
8 201.1211240149986858663566058334491631555
9 2258.6551464165619910095346398235215226700

10 130.8767678216434162498915121397318885203
11 732.9148587160793136299612084865127132055
12 24025.791643406789037068728038105266487180
13 14752.55192141364554134862254790989441046
14 247427.51601885362624101609757797205840492
15 143790.4245136551444888147675454747723734
16 2423523.1014514189545277106457927681229459

two terms, the smallest magnitude coefficients of the s
teenth term could not be distinguished from roundoff err
in the 29-digit series. This occurred at the 26th term f
the 51-digit series.

The enstrophy is defined as

V ;
1

2Vol

Z
v2 dx , (3)

where the vorticity isv ­ = 3 V. A series approxima-
tion to the enstrophy was computed from the velocity s
ries and has the form

VN ­
NX

n­0

Ant2n. (4)

To produce thenth term of the enstrophy series,2n terms
of the velocity series are required.

In Table I the terms of the enstrophy expansion a
given for the 77-digit series. The gross behavior of th
coefficients suggests that there is a singularity at a po
angle that is close top in t2 and within the unit disk.

The series for enstrophy was recast in algebraic (Pa
and generalized Padé) approximates using the Gfun Ma
package [18]. TheJth algebraic approximate toVN has
the form

JX
j­0

RjstdVj
N std ­ 0 , (5)

where eachRjstd is a rjth order polynomial int with the
constraint

PJ
j­0 rj ­ 2N. These approximates are repre

sented byfr0, r1, . . . , rJg. A Padé approximate is a linear
sJ ­ 1d approximate of the formR1stdVN std 1 R0std ­
0. If the orders ofR1 andR0 arer1 andr0, respectively,
then r1 1 r0 ­ 2N and the representation isfr0, r1g.
Likewise, a quadratic approximatefr0, r1, r2g has the form
R2stdV2

N std 1 R1stdVN std 1 R0std ­ 0 with r2 1 r1 1

r0 ­ 2N .
4999
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FIG. 1. Plot of approximates to enstrophy vs real time for th
12003 pseudospectral simulations (solid), the 32-term Tayl
series (dashed), and some Padé approximates.

In Fig. 1, we plot enstrophy versus real time for th
Euler pseudospectral computation with effective res
lution of 12003 (solid) [19], the 32-term time series
(dashed), and various Padé approximates. The conv
gence of the series is clearly affected by singularities o
the real axis, whereas the curves from the approxima
are all much closer together and to the simulation curv
Whent . 1.3, the simulations show that the width of the
analyticity strip is less than one mesh size, suggesting t
the simulations are becoming less accurate with time.
this time, the approximate and simulation curves start
diverge.

Table II shows the location of all the poles of th
algebraic approximates. An isolated real singularity

TABLE II. Poles of the algebraic approximates of the enstr
phy series rounded to 6 digits (first quadrant only).

Real-
time

Approx. poles Complex-time poles

[4, 4] 1.99252 0.64806i
[6, 6] 1.95039 0.62177i, 0.53302i

[4, 4, 4, 4] 1.97538 0.66526i
[8, 8] 1.99395 0.70849i, 0.18284 1 0.642596i

[6, 6, 6] 1.97309 0.15379 1 0.65557i
[10, 10] 1.97008 0.08008 1 0.65910i, 0.35246 1 0.64475i
[8, 8, 8] 1.97157 0.15263 1 0.67684i, 0.38615i

[6, 6, 6, 6] 1.97212 0.01001 1 0.58319i
[12, 12] 1.96971 0.354241 1 0.646929i, 0.285261i

0.08071026 1 0.659760i
[14, 14] 2.12851 0.44467 1 0.85129i, 0.08026 1 0.75467i

2.25403i, 0.58988i
[16, 16] 2.02046 0.421803 1 0.847303i

0.080899 1 0.749964i
1.20714 1 1.15242i, .589432i
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TABLE III. Zeros of some Padé approximates of the enstro
phy series (first quadrant only).

Approx. Zeros int

[8, 8] 0.18015 1 0.63024i, 0.15624 1 0.81971i
[10, 10] 0.35556 1 0.64597i, 0.12058 1 0.67139i, 0.90476i
[12, 12] 0.35749 1 0.64804i, 0.12157 1 0.67114i

0.90730i, 0.28526i
[14, 14] 0.62642 1 1.2962i, 0.42583 1 0.79596i

0.15668 1 0.67856i, 0.58847i
[16, 16] 0.41844 1 0.79218i, 0.15637 1 0.67855i

1.0715 1 1.1515i, 0.58806i, 61.6034i

consistently found at a time of2.04 6 0.09. This critical
time was found to be a linear function ofVs0d21y2. The
scale factor is close to a value of four:tcrit ø 4y

p
Vs0d ­

1.96946 . . . .
As can be seen in the third column of Table II, the

approximates predict a range of locations of the comple
time poles which changes with order. Some of the ap
proximates have nearly coincident poles and zeros. Th
results in near cancellation and is called a defect. To u
derstand this behavior, the locations of the zeros of som
approximates are given in Table III. Plotted in Fig. 2 ar
the locations of all the poles (outlined) and defects (filled
for Padé approximatesf12, 12g (squares),f14, 14g (dia-
monds), andf16, 16g (circles) in the complex time plane.
Baker and Grave-Morris [9] state that defects are transie
with order, effectively fictitious, and to be expected with
Padé approximates and that true singularities will have
behavior which is stable with order. Neglecting the de
fects, the field becomes less cluttered.

To analyze the form of the real-time singularity att ­
tcrit, the origin-preserving bilinear transformation

FIG. 2. Plot of locations of poles (outlined) and defects
(filled), nearly coincident zeros and poles, of enstrophy i
the complex time plane for the Padé approximatesf12, 12g
(squares),f14, 14g (diamonds), andf16, 162g (circles).
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TABLE IV. Table of the ratios Bn21yBn, as defined in
Eq. (7), which are estimates ofscrit. Also listed are estimates
of tcrit and biased estimates of the order of the singularityg.
The Euler transformation of enstrophy is given in Eq. (6) w
a ­ 0.575.

n Bn21yBn Estimates oftcrit Estimates of2g

2 0.77660203341358 1.072080751177221.3787066405075
3 0.89521496878252 1.680667836127021.0953041643588
4 0.91767461012944 1.919752777652421.0260641266995
5 0.91958055790291 1.944384753952821.0221494953234
6 0.91999644219909 1.949872742417521.0238550797986
7 0.92125444120982 1.966729388292221.0182342244159
8 0.92246431359793 1.983315535467321.0103192575869
9 0.92297901395155 1.990486428194521.0065838301311

10 0.92277837889223 1.987682859091921.0094912070339
11 0.92218150824131 1.979404917070821.0175666999606
12 0.92156334967305 1.970928741269221.0272257869278
13 0.92120139253489 1.966010650670621.0346141329532
14 0.92123125807386 1.966415201458921.0368216819137
15 0.92166468738083 1.972311597078121.0323792307986
16 0.92243129609908 1.982857899669921.0212119577879

s ­
t2

t2 1 a2 (6)

is used to map the real-time singularity closest to the orig
The constanta is close to the value of the imaginary part o
the complex-time singularities. A new series for enstrop
is created

VN std ­ V̂N ssd ­
NX

n­0

Bnsn. (7)

If enstrophy has the formV ­ stcrit 2 td2ghstd where
hstd is analytic neartcrit, then the ratiosBnyBn21 approach
a value equal to the inverse of the radius of convergen
1yscrit, and a slope ofg 2 1 asn ! `. The values for
Bn21yBn, and estimates oftcrit andg for eachn are given
in Table IV for a ­ 0.575. The estimated values fortcrit

are close to those of the approximates, and the estim
values forg, biased by an assumed critical time of 2, a
close to 1 indicating a simple pole.

A simple pole behavior is also found usingD log
Padé analysis. Thef8, 8g Padé approximate ofsscrit 2

sd d
ds ln VN ssd evaluated ats ­ scrit ­ 0.92 gives a biased

value of the pole order of1.015 for a ­ 0.6.
Results of Kerr [20] indicate a lnstcrit 2 td behavior

for enstrophy in the anti-parallel vortex tube problem.
stcrit 2 td21y2 behavior was found for enstrophy in th
symmetry vortex filament model [7]. That a singulari
stronger than is predicted by the filament model is fou
here may be due to the fact that two more symmetries
enforced in the series solution.

How do the series results of the high-symmetry flo
compare to those of the Taylor-Green vortex [11,12
.
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The number of nonzero modes of thepth term, 3sp 1

1dy2 sp ­ 32d, is larger than in the TG studies,sp 1

3dy2 sp ­ 80d. The singularities detected in the TG
flow are relatively far away from the origin and the
distribution is complicated (many singularities were foun
with approximately the same radii and with time argumen
of jpy8j or less). The real-time singularity in the high-
symmetry flow is closer to the origin, away from zeros an
other poles, and easy to isolate by Euler transformation

We should like to thank S. Orzsag for suggesting th
analysis, O. Boratav for sharing data from the pseud
spectral simulations, and J. Greene for useful suggestio
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