VOLUME 79, NUMBER 25 PHYSICAL REVIEW LETTERS 22 BCEMBER 1997

Evidence for a Real-Time Singularity in Hydrodynamics from Time Series Analysis
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The multiple-precision time series solution of the incompressible inviscid flow equations with
the initial velocity field u(x,y,z) = v(y,z,x) = w(z,x,y) = sinx(cos3y cosz — cosy cos3z), has
been computed to 32 terms and maximum wave number 99. Ratio test and Padé analyses
indicate a real-time singularity in enstroplfy(s) with the form (s2;, — 12)~! where ;,y/Q(0) = 4.
[S0031-9007(97)04859-X]

PACS numbers: 47.15.Ki, 02.30.Lt, 03.40.Gc

Whether the equations of inviscid, incompressible fluidpresent findings from a different approach, that of a
flow have real-time blow-up solutions is a fundamental multiprecision, extended-time series analysis of the same
unanswered question with important ramifications in fluidhighly symmetric flow.
mechanics. Frisch [1] states that one of the central issues We use an approach similar to that of Taylor and Green
in the mathematical aspect of fully developed turbulencd8] by assuming a perturbation series in time for the
is the existence of singularities, whose form would, forvelocity
instance, influence scaling properties. Why typical tur- o
bulent structures have severely depleted nonlinearity is V= Z V,tP. ()

a question that may be answered by first understanding p=0

singular flows which possess no depletion. A singularityPlugging the series into the Euler equations,

may also be a release mechanism for flows with topo- oV

logically confined vortex lines, and may be a source of — +V-VV=-VpP, V-v=0, 2
focusing applications. 9t

Mathematical discussions on the problem of globalwhereP is the pressurey, is found through a recursion
regularity of solutions of the Euler and Navier-Stokesof the terms{V,},¢ =0,1,...,p — 1. If the initial
equations can be found in the recent books by Doerindield V, in a three-dimensional periodic domain has a
and Gibbon [2], Temam [3], Marchioro and Pulvirenti Fourier series decomposition and rational coefficients,
[4] and references therein. Roughly speaking, the uppeso do the subsequent terms, and the recursion can be
bound on the growth of the spatial supremum of vorticity,formed exactly.
which occurs when strain rate is a function of vorticity, From the velocity terms{V,},p =0,1,...,32, the
is t~!. More precisely, for a real-time singularity to finite-term, time series for enstrophy is computed. This
occur att.;, the time integral of this quantity must Maclaurin series is even due to time reversal and diverges
become infinite at this time or before [5]. There haveas: approaches the radial value of the closest singularity.
been computational works (too numerous to mention herelnalysis of the divergent series indicates that this closest
that showed evidence of singular behavior of the vorticitysingularity is near the imaginary axis and shields the
supremum, but because this is one of the most challengindetection of other possible singularities at larger distances
numerical analysis problems, results to date are onlfrom r = 0 even though the series contains information
suggestive. on them.

Numerical evidence from one such pseudospectral We use two methods to rerepresent the divergent, finite-
simulation of the incompressible equations of fluid flowterm enstrophy series and investigate the singularities
with highly symmetric initial conditions [6] suggests that beyond the closest. The first is the Padé summation
a six-vortex dipole structure which is collapsing towardstechnique, which allows an analytic continuation of the
the origin leads to a real-time singularity. A symmetric series beyond the first singularity. The other is the
vortex filament system [7] which is modeled after thisCauchy ratio test of the series in which the closest
structure, produces an attracting, locally self-similar col-singularity has been mapped far from the origin.
lapse solution. While the two results are consistent, each Because of the nonlinear nature of the Padé summation
of the analyses has its weaknesses. The pseudospecti@thnique, there is no general convergence proof. Even if
simulations suffer from loss of accuracy at late timesthere were, it would be of limited value since the series
and the 14 filament model does not have proper coregenerated here has only a finite number of terms. Nev-
dynamics. Further investigations of this high symmetricertheless, the Padé summation technique has been used
flow are necessary. The purpose of this paper is tquite successfully to improve convergence of finite term,
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divergence series in many physical problems [9]. KnownTABLE |.

Coefficients of the enstrophy seridg as given in

caveats in usage are errors stemming from insufficienEd. (4) for the 77-digit series (rounded to 40 digits).

precision of the series coefficients, and the intermittent,,

A

behavior of nearly coincident zefpole “defects,” both
of which we shall address in the paper.

From these rerepresentation techniques of the enstrophyl
we find a simple, isolated pole on the real-time axis inde-
pendent of precision and degree of approximation. This 4
result is not a proof of the existence of a hydrodynamic 5
blowup solution, since it is deduced from a finite-term rep- 6
resentation. It does, however, provide another indication7
(along with [6,7]) of singular behavior in highly symmetric 8
flows and provides a direction for further analysis. 9

This technique was used over ten years ago for investil0
gations of the Taylor-Green vortex (TG), but attempts to12
isolate singularities were inconclusive. Series to orders 4
8, 44, and 80 were found in Refs. [8,10—12], respectivelyq 4
The investigations in the first two references did not re-15
veal singular behavior. In the analyses of Morf, Orszag.6

33/8
2123/480
3.848165658395734313813409858607598720593
—5.540736522851773327499709970305670919751
14.10493347330139797990837189303582145263
—31.66144613116725862507350490138202993987
65.97781966140615686190368383199924649445
—123.4312214664711517008338131705589843103
201.1211240149986858663566058334491631555
—258.6551464165619910095346398235215226700
130.8767678216434162498915121397318885203
732.9148587160793136299612084865127132055
—4025.791643406789037068728038105266487180
14752.55192141364554134862254790989441046
—47427.51601885362624101609757797205840492
143790.4245136551444888147675454747723734

—423523.1014514189545277106457927681229459

and Frisch and Brachett al.[11,12], Padé resumma-
tion of the series indicated that a real-time singularity in

the enstrophy exists, although subsequent pseudospectf@o terms, the smallest magnitude coefficients of the six-

Euler simulations [13] found no evidence of a singularity.t€enth term could not be distinguished from roundoff error
The initial flow we examine in this paper, which is in the 29-d|g|t series. This occurred at the 26th term for

given in the abstract, is similar in nature to the Taylor-the 51-digit series.

Green vortex. The TG symmetries in each direction,
27 translational, reflectional about planesr, and =
rotational about the line& + 1)7/2 (n = 0,1,...), are
preserved by the Euler equations. For the present initial

The enstrophy is defined as

_ 1 2
= ZVOIfw ax, 3)

field, which is termed the high-symmetry initial condition, where the vorticity isw =V x V. A series approxima-
a /2 rotational symmetry about the same lines is usedtion to the enstrophy was computed from the velocity se-
From these symmetries, the cyclic permutation of velocityries and has the form

u(x,v,z) = v(y,z,x) = w(z,x,y) can be derived, which
can also be seen as2ar/3 rotational symmetry about
the line x =y = z. Kida [14] was the first to use

N
Qy = > A (4)
n=0

these symmetries to gain higher resolution in turbulencd 0 produce therith term of the enstrophy serie®; terms

simulations.
The cyclic permutation plays a critical role in the dy-

of the velocity series are required.
In Table | the terms of the enstrophy expansion are

namics. It provides a way for the positive strain rate pro-given for the 77-digit series. The gross behavior of the
duced by a vortex dipole near the origin to be directedcoefficients suggests that there is a singularity at a polar
back on the dipole as axial stretching, thus linking vor-angle that is close ter in > and within the unit disk.
ticity and strain rate and preventing depletion of the non- The series for enstrophy was recast in algebraic (Padé
linearity. Using all the symmetries also greatly simplifiesand generalized Pade) approximates using the Gfun Maple
the series representation and recursion operation. package [18]. Théeth algebraic approximate 0y has

We started to generate the series with the computer athe form
gebra packageorwm [15], a program that can manipulate J .
very large formulas. Eleven exact terms were computed D> Ri(0Qy(1) = 0, (5)
beforeFORM's integer-length limit of 480 digits was ex- j=0
ceeded. We continued the analysis with thep [16]  Where eactR;(¢) is ar;th order polynomial irv with the
and MPFUN [17] extended precision packages in C andconstraintﬁjz0 rj = 2N. These approximates are repre-
Fortran. Series were found for a number of precisions insented by[ro, ry,...,r;]. A Padé approximate is a linear
cluding exact (16 terms), 154 (28 terms), 77 (32 terms)(J = 1) approximate of the fornR;(z)Qy(r) + Ro(t) =
51 (26 terms) and 29 digits (16 terms). Careful atten{. If the orders ofR; andR, are r; andry, respectively,
tion was paid to truncation errors and precision. Becausthen r; + rp = 2N and the representation iy, ri].
of truncation error, the precision decreased by about onkikewise, a quadratic approximate, r1, ] has the form
digit every three terms. With the exponent range of theR, (1) QX (1) + Ri()Qn (1) + Ro(r) = 0 with r, + rp +
Fourier coefficients increasing by about five places every, = 2N.
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100 - T TABLE lll. Zeros of some Padé approximates of the enstro-
- I i phy series (first quadrant only).
90 ! Spectral / ! ! -
s I — — — - Series[32] | ,f i Approx. Zeros int
80 | ———— [12,42 4
- | [ ! if [8, 8] 0.18015 + 0.63024i,0.15624 + 0.81971i
70F I / [10,10] 0.35556 + 0.64597i,0.12058 + 0.67139i,0.90476i
- I [12,12] 0.35749 + 0.64804i,0.12157 + 0.67114i
_%OF ! 0.90730i,0.28526i
5 2 ! [14,14] 0.62642 + 1.2962i,0.42583 + 0.79596i
Gk ; 0.15668 + 0.67856i,0.58847i
40k | [16, 16] 0.41844 + 0.79218i,0.15637 + 0.67855i
- | 1.0715 + 1.15157,0.58806i, =1.6034i
30F
- |
20 / . . —
: consistently found at a time @04 + 0.09. This critical
10F time was found to be a linear function 6¥(0)~/2. The
3 S N scale factor is close to a value of foug;, = 4/4/Q(0) =

05 1 15 2 1.96946. ...

t As can be seen in the third column of Table I, the
FIG. 1. Plot of approximates to enstrophy vs real time for the@Pproximates predict a range of locations of the complex-
1200° pseudospectral simulations (solid), the 32-term Taylortime poles which changes with order. Some of the ap-
series (dashed), and some Padé approximates. proximates have nearly coincident poles and zeros. This
results in near cancellation and is called a defect. To un-
derstand this behavior, the locations of the zeros of some
. . - approximates are given in Table Ill. Plotted in Fig. 2 are
Euler pseudospectral computation with effective '€SO0the locations of all the poles (outlined) and defects (filled)

lution of 12003 (solid) [19], the 32-term time series f 4 ; ;
. L . or Padé approximateFl2, 12] (squares)[14, 14] (dia-
(dashed), and various Padé approximates. The conve ionds), and 16, 16] (circles) in the complex time plane.

gence of the series is clearly affected by S|ngular|t|_es O"Baker and Grave-Morris [9] state that defects are transient

&ith order, effectively fictitious, and to be expected with

S&E all n;u(13h3 ctlﬁser_ toglef[_her anhd to ttr:]et fr']muk’g![ﬁn ?ltjrr]vePadé approximates and that true singularities will have a
ens -, (€ simulations show that the width ot the 1, p4,i6r which is stable with order. Neglecting the de-

analyticity strip is less than one mesh size, suggesting th%cts the field becomes less cluttered

the simulations are becoming less accurate with time. At To analyze the form of the real-time singularityzat
this time, the approximate and simulation curves start tc;cri“ the origin-preserving bilinear transformation

diverge.
Table Il shows the location of all the poles of the

In Fig. 1, we plot enstrophy versus real time for the

algebraic approximates. An isolated real singularity is >
- m] poles of [12,12]
TABLE Il. Poles of the algebraic approximates of the enstro- B 8 ’;3:22 §I ﬂéj}‘é}
phy series rounded to 6 digits (first quadrant only). 3 [ ] defects of [12,12]
B ¢ defects of [14,14]
Real- - ® defects of [16,16]
time 15
Approx.  poles Complex-time poles i
[4,4] 1.99252 0.64806i - | o
[6,6] 1.95039 0.62177i,0.53302i 1
[4,4,4,4] 1.97538 0.66526i i
[8,8] 1.99395 0.708497,0.18284 + 0.642596i (O
[6,6,6] 1.97309 0.15379 + 0.65557i PO
[10,10] 1.97008 0.08008 + 0.65910i,0.35246 + 0.64475i 05 B
[8,8,8] 1.97157 0.15263 + 0.67684i,0.38615i
[6,6,6,6] 1.97212 0.01001 + 0.58319i T
[12,12] 1.96971 0.354241 + 0.646929i,0.285261i N T I T AP
0.08071026 + 0.659760i 0 0.5 1 1.5 z 25
[14,14] 2.12851 0.44467 + 0.85129:,0.08026 + 0.75467i tr
2.254031,0.58988i
[16,16] 2.02046 0.421803 + 0.847303i FIG. 2. Plot of locations of poles (outlined) and defects
0.080899 + 0.749964i (filled), nearly coincident zeros and poles, of enstrophy in
120714 + 1.15242i, 589432i the complex time plane for the Padé approximatés, 12]

(squares)[14, 14] (diamonds), andl16, 162] (circles).
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TABLE IV. Table of the ratios B,-/B,, as defined in The number of nonzero modes of tiph term,3(p +
Eq. (7), which are estimates of;;;. Also listed are estimates 1)/2 (p = 32), is larger than in the TG studiesp +
of 1 and biased estimates of the order of the singulayity 3)/5 (,, — 80). The singularities detected in the TG
The Euler transformation of enstrophy is given in Eq. (6) with fl : s
a4 = 0.575. ow are rglatlvely _far away from the origin and the
distribution is complicated (many singularities were found

with approximately the same radii and with time arguments

n Bu-1/By Estimates of. _Estimates ofy of |77/8| or less). The real-time singularity in the high-

2 0.77660203341358 1.0720807511772.3787066405075  symmetry flow is closer to the origin, away from zeros and

3 0.89521496878252 1.6806678361271.0953041643588 other poles, and easy to isolate by Euler transformation.

: DoLoosioony L iesteroest DU s O rtas forshg it fom e o
7 0.92125444120982 1.9667293882922 0182342244150 ~ SPectral simulations, and J. Greene for useful suggestions.
8 0.02246431359793 1.9833155354673.0103192575860 ~ COMputations were done on the C90 at the Pittsburgh
9 0.92297901395155 1.9904864281948 0065838301311 ~ Supercomputer Center, the SP2 at the Cornell Theory
10 0.92277837889223 1.9876828590919.0094912070339  Center, and computers at the CAIP Center at Rutgers.

11 0.92218150824131 1.9794049170768.0175666999606

12 0.92156334967305 1.9709287412692.0272257869278

13 0.92120139253489 1.9660106506764.0346141329532

'—\
~

0.92123125807386 1.9664152014589.0368216819137
0.92166468738083 1.9723115970781.0323792307986 *Electronic address: pelz@jove.rutgers.edu
0.92243129609908 1.9828578996699.0212119577879 [1] U. Frisch, Turbulence(Cambridge University Press, Cam-
bridge, 1995).
5 [2] C.R. Doering and J.D. GibbonApplied Analysis of
_ 4 (6) the Navier-Stokes Equatioff€ambridge University Press,
12 + a2 Cambridge, 1995).

is used to map the real-time singularity closest to the origin. [3] R. Temam Navier-Stokes Equations and Nonlinear Func-

The constant is close to the value of the imaginary part of tional Analysis(SIAM, Philadelphia, 1995).

. . o . [4] C. Marchioro and M. PulvirentiThe Mathematical Theory
the complex-time singularities. A new series for enstrophy =~ ¢ Incompressible Nonviscous FluidéSpringer, New

=
o Ul

is created York, 1991).
. N [5] J.T. Beale, T. Kato, and A. Majda, Commun. Math. Phys.
Q1) = Qu(s) = D Bas™ (7) 94, 61 (1985).
n=0

[6] O.N. Boratav and R. B. Pelz, Phys. Fluifls2757 (1994).
If enstrophy has the fornf) = (¢.;c — t)~Yh(r) where [7]1 R.B. Pelz, Phys. Rev. B5, 1617 (1997).
h(t) is analytic near, ., then the ratio®, /B, approach [8] G.I. Taylor and A. E. Green, Proc. R. Soc. LondorlB8
a value equal to the inverse of the radius of convergence, 499 (1937).
1/serit, and a slope off — 1 asn — . The values for [9] G.A. Baker .and P. Gravg-Morrisl?adé Apprpximates,
B,_1/B,, and estimates af,;; andy for eachn are given Part I: Basic Theory(Addison-Wesley, Reading, 1981).
in Table IV fora = 0.575. The estimated values far;, 0] M- Van Dyke, SIAM J. Appl. Math28 720 (1975).
are close to those of the approximates, and the estimatégil] R H. Morf, S.A. Orszag, and U. Frisch, Phys. Rev. Lett.

. > T 44, 572 (1980).
values fory, biased by an assumed critical time of 2, areé[15] M.E. Brachet, D.|. Meiron, S.A. Orszag, B.G. Nickel

close to 1 indicating a simple pole. R.H. Morf, and U. Frisch, J. Fluid. Mechl30, 441
A simple pole behavior is also found using log (1983).
Padé analysis. ThE8,8] Padé approximate ofs.., — [13] M.E. Brachet, M. Meneguzzi, A. Vincent, H. Politano,
s)% In Qn(s) evaluated at = s..;¢ = 0.92 gives a biased and P.L. Sulem, Phys. Fluids 2845 (1992).
value of the pole order of.015 for a = 0.6. [14] S. Kida, J. Phys. Soc. Jph4, 2132 (1985).
Results of Kerr [20] indicate a (n.;; — ¢) behavior [15] J.A.M. VermaserenForMm (Computer Algebra Nether-
for enstrophy in the anti-parallel vortex tube problem. A __ land, Amsterdam, 1991).

(terit — t)_l/z behavior was found for enstrophy in the [16] T. Granlund,gmP, 1996, now available by anonymous ftp

. . . from sics.se.
symmetry vortex filament model [7]. That a singularity ., 2, 5" “gajjey. RNR Technical Report No. RNR-90-022
stronger than is predicted by the filament model is founo[ 1993. ' ’

here may be due to the fact that two more symmetries arfig) B. Salvy and Paul Zimmerman, ACM Trans. on Math.
enforced in the series solution. Softw. 20, 163 (1994).

How do the series results of the high-symmetry flow[19] O.N. Boratav and R. B. Pelz (unpublished).
compare to those of the Taylor-Green vortex [11,12]720] R.M. Kerr, Phys Fluids A6, 1725 (1993).
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