VOLUME 79, NUMBER 25 PHYSICAL REVIEW LETTERS 22 BCEMBER 1997

Theory of Self-Trapped Spatially Incoherent Light Beams
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We present a modal theory of self-trapping spatiadigoherentlight beams inany general nonlinear
media. We find that a self-trapped incoherent beam induces a multimode waveguide which guides
the beam itself by multiply populating the guided modes. The self-trapping process alters the
statistics of the incoherent beam, rendering it localized. We find the conditions for self-trapping
(“existence region” in parameter space) and the correlation function of the incoherent self-trapped beam.
[S0031-9007(97)04860-6]

PACS numbers: 42.65.Jx, 42.65.Tg

Optical spatial solitons have been extensively studiedrast, an instantaneous nonlinearity which responds to in-
during the last three decades. Self-trapping of opticatlividual speckles will generate multiple filaments that
beams occurs when diffraction is exactly balanced by selfrandomly intersect and fragment the beam, prohibiting
focusing due to an optical nonlinearity [1]. Self-trapping self-trapping of the beam envelope. The second principle
has been studied in Kerr-type [2], in photorefractive [3],is that the multimode (speckled) beam should be able to
in quadratic [4], and in resonant atomic [5] nonlinearinduce a multimode waveguide via the nonlinearity. This
media. All of these studies have investigated self-trappings easily satisfied with any saturable nonlinearity, in which
of spatially coherent light beams only. even a single-mode (i.e., spatially coherent) beam induces

Recently, self-trapping of a quasimonochromatic para multimode waveguide in the saturated regime [12]. Fi-
tially spatially incoherent light beam [6] and of a “white” nally, self-trapping requires self-consistency: The multi-
light beam which is both spectrally and spatially incoher-mode beam must be able to guide itself in its own induced
ent [7] has been demonstrated, using the nonlinearity asvaveguide [12].
sociated with photorefractive screening solitons [8—10]. We solve the coupled nonlinear equations for the modal
In a recent paper [11] we have examined theoreticallyconstituents of the self-trapped beam self-consistently in
the possibility of self-trapping spatially incoherent light an iterative manner. We start by examining the guided
beams. We have shown [11] that the process of incomodes of a waveguide and observe whether or not it is
herent self-focusing can be described by an infinite set gbossible that a certain composition of them will give an
coupled nonlinear Schrodinger-like equations, which arentensity profile that recreates the waveguide itself via
initially weighted according to the angular power spec-the nonlinearity. When this happens, the solution is self-
trum of the input beam. We were able to reproduce theonsistent and self-trapping occurs. The simplest case
experimental results of Ref. [6]. However, this dynamicis of bright coherent solitons which form when the first
approach [11] is better suited to describing thenamic  guided mode of the self-induced waveguide induces the
evolution of incoherent beams in nonlinear media, andndex profile of the waveguide [12]. If a higher mode is
doesnotlend itself readily toward identifying static (self- additionally populated and if the modes are coherent with
trapped) solutions and the conditions necessary for thegach other, then the modes interfere and cause evolution
existence. To do that, a more analytic approach should bef the intensity profile due to differing modal propagation
pursued. velocities. The subsequent induced index profile thus

Here we present a semianalytic modal theory describingvolves with propagation and the beam does not maintain
self-trapping of spatially incoherent light beams. We finda constant profile [13]. On the other hand, if the modes
the conditions that allow self-trapping in the form of an of the self-induced waveguide do not interfere with each
“existence range,” and derive the statistical properties obther, it is possible to have a self-trapped beam consisting
the self-trapped incoherent beams. of multiply populated modes that has a nonevolving

We first state the three principles that enable the selfintensity profile since the total intensity is simply the sum
trapping of spatially incoherent beams. First, the non-of the individual intensities of each modeThis is the
linearity must be noninstantaneous with a response timease of a self-trapped spatially incoherent light beah.
that is much longer than the phase fluctuation time across a multicomponent generalized version of the previously
the incoherent beam. Such a nonlinearity responds tstudied bipolarization temporal [14] and bimodal spatial
the time-averaged envelope and not to the instantaneols3] vector solitons, where the modes mutually self-trap
“speckles” that constitute the incoherent beam. In conin their common self-induced waveguide [13].
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Here we show thammultiple modes with the same dui(x) _ _< 1 > )
polarization can be self-trapped if the modes are made to dx2 ! 1+ I(x) uitx),
be incoherent with each other. This allows self-trapping -
of a beam consisting of many modes. We find that forVhere /(x) = o Cé’”i(x) Y, cjuj(x)) = X lui(x)? <
such a multimode beam, there is a parameter range withificil>) = > lui(x)|*d;i" andd; is the averaged modal am-
which nondiffracting solutions exist. This allows for self- Plitude of modex;(x). Note that these modal amplitudes
trapping of beams with widely varying beam profiles. di arenot normalized. Also notice that the time average
When the input light is multimode in space and randomlyof the cross terms between different modes is zero, i.e.,
varying in time (as a spatially incoherent light beam(cic;) = 0 fori # j. This isnotdue to different propa-
is) and if the nonlinearity is noninstantaneous, then théation constantss;, but, as explained above, due to the
nonlinear medium responds to the intensity superpositioffCt that relative phases between modes vary randomly in
only, and the contribution of the interference cross-termdime much faster than the nonlinear medium can respond.
to the refractive index averages out to zero. To solve these equations self-consistently, we start with an
How does this correspond to self-trapping of a Spatia”yarb_itrary initial index profile, solve fpr the guided modes,
incoherent beam? When an initially partially spatially Weigh the modes, and sum them incoherently to get the
incoherent beam is launched into a multimode waveguidecorresponding intensity profilé(x), and finally usel(x)
the intensity created by the modes exhibits interference 4 calculate the induced index. We repeat this until the
any instant of time, but the time averaged interference i§olutions are stationary. This methodology is depicted in
zero [15]. When this waveguide is self-induced via thethe inset in Fig. 1. We employ the shooting method to
nonlinearity,self-consistency is satisfieaind the resultant find the modes under a given index profile.
waveguide has a nonevolving index profile. For this to A self-consistent solution has a given modal ampli-
occur, the input light beam (which is continually exciting tude distribution(d,.d,,...) as an initial condition, and
the modes at the waveguides input) must be changing ifine needs to determine which distributions allow _for
time such that the relative initial phase differences betweefelf-trapping of a beam. Whether or not the equations
guided modes vary randomly in time between 0 amd ~ can be solved self-consistently depends upon the modal
For example, consider two modes of a waveguideand ~ amplitude function used as the initial condition. When
u>, with phase®; andé, that vary randomly in time. The @ solution is found, we have the profile and propagation

time-averaged intensity is given as constant of each mode. Of course, if we set the modal
amplitude profile of the modes such that the first mode has
I(x,7) = <|u1(x)ei[51z+01(t)] + uz(x)ei[62z+92(t)]|2> an amplitudesy and the other modes are zero, we retrieve
the existence curve of fundamental bright screening
= luy(O)1* + lua (01> + 2luy (x)] [z (x)] soliton [8], which describes the relation betwesp the
X (cod(8, — 82)z + 0,(t) — 6,(1)]). maximum change in the refractive index, the optical

wavelength in the medium, and the soliton width. For
Therefore,I(x) = |u1(x)]* + |ua(x)|%. It is thus neces- bimodal solutions, allowing only the first and second

sary that the nonlinearity responds slower than the rate ofnodes to be populated, the existence curve turns into a
change of the initial phases of the waveguide modés.

spatially incoherent beam that induces its own waveguide ¢,
via such a noninstantaneous nonlinearity, effectively popu-

ntensit

lates the guided modéscoherently 50| ‘
Having satisfied the first two conditions, we now pro- Guided Modes Induced Index
ceed to seek self-consistent multimode solutions. EachsS 40| -—

such “allowed” solution represents a spatially incoherent §
beam that possesses a different mutual coherence funci \
tion, that is, both the intensity profile and the correla- < .
tion statistics are fully defined having found an “allowed” A—g
modal composition. Obviouslyhe characteristics of the 10 ! ! B
solutions strongly depend on the specific nonlinearity, E g ¥
nonetheless, the general idea holds for any noninstan- 010" 7

taneous nonlinear mediumWe study the properties of

1D self-trapped incoherent beams in biased photorefrac-

tive media, for which the explicit form of nonlinearity is FIG. 1. Existence range for a beam composed of weighted

well established [8,9] and confirmed in many experimentscombinations of the first and second guided modes. Positions
T ive for th Ii-t db il ndB represent points in parameter space that are trappable and
0 solve for the sell-rapped beéam profiies we nee ontrappable, respectively. Inset: schematic of self-consistency

to solve the following coupled nonlinear Schrodinger-like petween intensity, its induced index change, and the population
equations [8,9]: of the guided modes of the induced waveguide.
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range. The existence range is shown in Fig. 1, where thelose to each other, we can take the solution from paint
horizontal axis indicates the modal amplitude of the firstand add slightly more weight to the second mode such that
guided moded; and the vertical axis is the normalized d, = 5.7. The evolution of this profile with and without
full width half maximum (FWHM) of the total intensity the nonlinearity is shown in Figs. 2(c) and 2(d). It is
made up from all the modes\¢ = Axkni /resV /€, as  obvious that although the input intensity profiles of both
in Ref. [8]). The bottom edge of the curve correspondsbeams are very similar, beaf is self-trapped whereas

to the case where only the first mode is populated (funthe two intensity peaks of beaBidiverge away from one
damental soliton solutions) [8]. Other points correspondanother. The divergence angle of this “forbidden” solu-
to adding some contribution of the second mode. Thdion in the presence of nonlinearity [Fig. 2(d)] is smaller
upper edge of the curve is where the second mode attaiiBan its natural diffraction [Fig. 2(c)]. We find théte

its maximum allowed value, which also gives the widesttransition between self-trapped solutions and nontrapped
possible bimodal (first+ second modes) self-trapped (diverging) solutions is abrupt.This is surprising, since
solution. Notice that the second mode can vary from 0 ta@oherent solitons “breathe” (oscillate) when the input
a maximum value that depends on the modal amplitude dfeam slightly deviates from the soliton wave form (it
the first mode. If the second mode is populated above theheds off excess power while evolving into a soliton),
maximum value, self-consistency is not observétius, a rather than diverge or disintegrate.

self-trapped bimodal solution exists only in the existence When more modes are populated, the existence range
range defined by the shaded area in Fig. To confirm  becomes multidimensional with the dimensionality equal
this, we study the evolution of bimodal solutions usingto the number of modes. For example, the existence range
standard split-step Fourier transform beam propagatiofor three modes is shown in Fig. 3, where we plot the
methods. For example, consider two adjacent pdidtad FWHM of the intensity profile vs totgbowerin the beam.

B, located on either side of the top of the existence rang&xamples of four different states profiles are shown in
atd, = 3. PointsA andB represent two different points Fig. 3. The induced index profiles that support examples
in modal-amplitude-space, where poiatlies within the |, I, 1ll, and IV are single, triple, double, and triple
existence range and poiB lies outside it. PoinfA has  humped, respectively.

the second modé, weighted to 5.4. The evolution of  Having found the parameter range that supports a
this solution with and without the nonlinearity is shown in self-trapped incoherent beam, we extract the coherence
Figs. 2(a) and 2(b), respectively. For this point, it is evi-statistics in the form of the mutual coherence function. In
dent that the nonlinearity supports stationary self-trappingthermal light sources, the statistics are nonlocalized, i.e.,
as expected from a self-consistent solution (note that thithe correlation function depends only upon the separation
solution and the induced index profile that supports itof two points and not on their position. The self-trapping
are bothdouble humped On the other hand, poid is  of a beam from such a source alters the statistics and ren-
outside the existence range, i.e., a self-consistent solutiaters it localized, that is, the coherence function depends
for that point does not exist. Yet, since poidtandB are  upon both the distance between two pointnd their
location within the self-trapped beam. The spatial co-
herence function is given by(x;, x;) = (E(x)E*(x2))/
JI(x1)I(x2). The optical (electric) fieldE(x) consists

of all the guided modes, yet the time-averaged cross
(interference) terms average out to zero. For example,
consider a self-trapped beam with the first six modes
excited with a modal amplitude distribution starting at
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FIG. 2. Evolution of a bimodal beam: (a) Diffraction of the Log(Power)

beam of pointA in Fig. 1; (b) self-trapping of the beam (point

A) with application of 870 Y5 mm; (c) diffraction of beam FIG. 3. Existence range for a beam composed of weighted
of point B in Fig. 1; (d) non-self-trapping evolution of beam combinations of the first three modes. The width vs total power
(point B) with application of voltage. is shown with four examples of trappable beam profiles.
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FIG. 4. Evolution of beam composed of six weighted modes. E

(a) Ordinary diffraction; (b) self trapping with application of

870 V/5 mm. FIG. 5. Coherence properties of a six-mode self-trapped

beam: (a) Spatial coherence functignix,, x,); (b) intensity
profile and coherence length as a function of position.

one and decreasing by 0.1 until the last mode with a

value of 0.5. The diffraction of this beam is shown in |n conclusion, we have presented a general modal the-

Fig. 4(a), where &8.4 um wide (FWHM) input beam ory of self-trapping spatially incoherent light beams (in-

diffracts t0196.6 um in 1 cm of propagation. This beam coherent wave packets) in any noninstantaneous nonlinear

is self-trapped with the application of the nonlinearity media.

as shown in Fig. 4(b) [16]. Numerical parameters are This work was supported by the U.S. Army Research

n, = 2.3, r33 = 1022 pm/V, A = 488 nm. The spatial Office and the National Science Foundation.

coherence function of the guided beam is found to be

asymmetric with respect to;-x,, as shown in Fig. 5(a).

The correlation distance as a function of coordinate is

shown in Fig. 5(b), and it varies fro® wm in the center

of the beam, increasing 80 wm when the intensity de-

creases to half its maximum value, and further increasing
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