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We present a modal theory of self-trapping spatiallyincoherentlight beams inany general nonlinear
media. We find that a self-trapped incoherent beam induces a multimode waveguide which g
the beam itself by multiply populating the guided modes. The self-trapping process alters
statistics of the incoherent beam, rendering it localized. We find the conditions for self-trapp
(“existence region” in parameter space) and the correlation function of the incoherent self-trapped b
[S0031-9007(97)04860-6]
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Optical spatial solitons have been extensively stud
during the last three decades. Self-trapping of opti
beams occurs when diffraction is exactly balanced by s
focusing due to an optical nonlinearity [1]. Self-trappin
has been studied in Kerr-type [2], in photorefractive [3
in quadratic [4], and in resonant atomic [5] nonline
media. All of these studies have investigated self-trapp
of spatially coherent light beams only.

Recently, self-trapping of a quasimonochromatic p
tially spatially incoherent light beam [6] and of a “white
light beam which is both spectrally and spatially incohe
ent [7] has been demonstrated, using the nonlinearity
sociated with photorefractive screening solitons [8–1
In a recent paper [11] we have examined theoretica
the possibility of self-trapping spatially incoherent ligh
beams. We have shown [11] that the process of in
herent self-focusing can be described by an infinite se
coupled nonlinear Schrodinger-like equations, which
initially weighted according to the angular power spe
trum of the input beam. We were able to reproduce
experimental results of Ref. [6]. However, this dynam
approach [11] is better suited to describing thedynamic
evolution of incoherent beams in nonlinear media, a
doesnot lend itself readily toward identifying static (self
trapped) solutions and the conditions necessary for th
existence. To do that, a more analytic approach should
pursued.

Here we present a semianalytic modal theory describ
self-trapping of spatially incoherent light beams. We fi
the conditions that allow self-trapping in the form of a
“existence range,” and derive the statistical properties
the self-trapped incoherent beams.

We first state the three principles that enable the s
trapping of spatially incoherent beams. First, the no
linearity must be noninstantaneous with a response t
that is much longer than the phase fluctuation time acr
the incoherent beam. Such a nonlinearity responds
the time-averaged envelope and not to the instantane
“speckles” that constitute the incoherent beam. In co
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trast, an instantaneous nonlinearity which responds to
dividual speckles will generate multiple filaments th
randomly intersect and fragment the beam, prohibiti
self-trapping of the beam envelope. The second princi
is that the multimode (speckled) beam should be able
induce a multimode waveguide via the nonlinearity. Th
is easily satisfied with any saturable nonlinearity, in whi
even a single-mode (i.e., spatially coherent) beam indu
a multimode waveguide in the saturated regime [12].
nally, self-trapping requires self-consistency: The mul
mode beam must be able to guide itself in its own induc
waveguide [12].

We solve the coupled nonlinear equations for the mo
constituents of the self-trapped beam self-consistently
an iterative manner. We start by examining the guid
modes of a waveguide and observe whether or not i
possible that a certain composition of them will give a
intensity profile that recreates the waveguide itself v
the nonlinearity. When this happens, the solution is se
consistent and self-trapping occurs. The simplest c
is of bright coherent solitons which form when the fir
guided mode of the self-induced waveguide induces
index profile of the waveguide [12]. If a higher mode
additionally populated and if the modes are coherent w
each other, then the modes interfere and cause evolu
of the intensity profile due to differing modal propagatio
velocities. The subsequent induced index profile th
evolves with propagation and the beam does not main
a constant profile [13]. On the other hand, if the mod
of the self-induced waveguide do not interfere with ea
other, it is possible to have a self-trapped beam consis
of multiply populated modes that has a nonevolvin
intensity profile since the total intensity is simply the su
of the individual intensities of each mode.This is the
case of a self-trapped spatially incoherent light beam.It
is a multicomponent generalized version of the previou
studied bipolarization temporal [14] and bimodal spat
[13] vector solitons, where the modes mutually self-tr
in their common self-induced waveguide [13].
© 1997 The American Physical Society
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Here we show thatmultiple modes with the same
polarization can be self-trapped if the modes are mad
be incoherent with each other. This allows self-trappi
of a beam consisting of many modes. We find that
such a multimode beam, there is a parameter range wi
which nondiffracting solutions exist. This allows for sel
trapping of beams with widely varying beam profile
When the input light is multimode in space and random
varying in time (as a spatially incoherent light bea
is) and if the nonlinearity is noninstantaneous, then
nonlinear medium responds to the intensity superposit
only, and the contribution of the interference cross-ter
to the refractive index averages out to zero.

How does this correspond to self-trapping of a spatia
incoherent beam? When an initially partially spatial
incoherent beam is launched into a multimode wavegu
the intensity created by the modes exhibits interferenc
any instant of time, but the time averaged interference
zero [15]. When this waveguide is self-induced via t
nonlinearity,self-consistency is satisfied,and the resultant
waveguide has a nonevolving index profile. For this
occur, the input light beam (which is continually excitin
the modes at the waveguides input) must be changin
time such that the relative initial phase differences betwe
guided modes vary randomly in time between 0 and2p.
For example, consider two modes of a waveguide,u1 and
u2, with phasesu1 andu2 that vary randomly in time. The
time-averaged intensity is given as

Isx, zd ­ kju1sxdeifd1z1u1stdg 1 u2sxdeifd2z1u2stdgj2l

­ ju1sxdj2 1 ju2sxdj2 1 2ju1sxdj ju2sxdj
3 kcosfsd1 2 d2dz 1 u1std 2 u2stdgl .

Therefore,Isxd ­ ju1sxdj2 1 ju2sxdj2. It is thus neces-
sary that the nonlinearity responds slower than the rate
change of the initial phases of the waveguide modes.A
spatially incoherent beam that induces its own wavegu
via such a noninstantaneous nonlinearity, effectively po
lates the guided modesincoherently.

Having satisfied the first two conditions, we now pr
ceed to seek self-consistent multimode solutions. E
such “allowed” solution represents a spatially incohere
beam that possesses a different mutual coherence f
tion, that is, both the intensity profile and the correl
tion statistics are fully defined having found an “allowed
modal composition. Obviously,the characteristics of the
solutions strongly depend on the specific nonlinear
nonetheless, the general idea holds for any noninst
taneous nonlinear medium.We study the properties o
1D self-trapped incoherent beams in biased photorefr
tive media, for which the explicit form of nonlinearity i
well established [8,9] and confirmed in many experimen

To solve for the self-trapped beam profiles we ne
to solve the following coupled nonlinear Schrodinger-lik
equations [8,9]:
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d2uisxd
dx2 ­ 2

µ
di 2

1
1 1 Isxd

∂
uisxd ,

where Isxd ­ k
P

i ciuisxd
P

j cp
j up

j sxdl ­
P

i juisxdj2 3

kjcij
2l ­

P
i juisxdj2d2

i anddi is the averaged modal am-
plitude of modeuisxd. Note that these modal amplitude
di arenot normalized. Also notice that the time averag
of the cross terms between different modes is zero, i.
kcic

p
j l ­ 0 for i fi j. This isnot due to different propa-

gation constantsdi, but, as explained above, due to th
fact that relative phases between modes vary randomly
time much faster than the nonlinear medium can respo
To solve these equations self-consistently, we start with
arbitrary initial index profile, solve for the guided modes
weigh the modes, and sum them incoherently to get t
corresponding intensity profileIsxd, and finally useIsxd
to calculate the induced index. We repeat this until th
solutions are stationary. This methodology is depicted
the inset in Fig. 1. We employ the shooting method
find the modes under a given index profile.

A self-consistent solution has a given modal amp
tude distributionsd1, d2, . . .d as an initial condition, and
one needs to determine which distributions allow fo
self-trapping of a beam. Whether or not the equatio
can be solved self-consistently depends upon the mo
amplitude function used as the initial condition. Whe
a solution is found, we have the profile and propagati
constant of each mode. Of course, if we set the mod
amplitude profile of the modes such that the first mode h
an amplitudeu0 and the other modes are zero, we retriev
the existence curve of fundamental bright screeni
soliton [8], which describes the relation betweenu0, the
maximum change in the refractive index, the optic
wavelength in the medium, and the soliton width. Fo
bimodal solutions, allowing only the first and secon
modes to be populated, the existence curve turns into

FIG. 1. Existence range for a beam composed of weight
combinations of the first and second guided modes. PositionA
andB represent points in parameter space that are trappable
nontrappable, respectively. Inset: schematic of self-consisten
between intensity, its induced index change, and the populat
of the guided modes of the induced waveguide.
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range. The existence range is shown in Fig. 1, where
horizontal axis indicates the modal amplitude of the fi
guided moded1 and the vertical axis is the normalize
full width half maximum (FWHM) of the total intensity
made up from all the modes (Dj ­ Dxkn2

b

p
reffVy,, as

in Ref. [8]). The bottom edge of the curve correspon
to the case where only the first mode is populated (fu
damental soliton solutions) [8]. Other points correspo
to adding some contribution of the second mode. T
upper edge of the curve is where the second mode att
its maximum allowed value, which also gives the wide
possible bimodal (first1 second modes) self-trappe
solution. Notice that the second mode can vary from 0
a maximum value that depends on the modal amplitude
the first mode. If the second mode is populated above
maximum value, self-consistency is not observed.Thus, a
self-trapped bimodal solution exists only in the existen
range defined by the shaded area in Fig. 1.To confirm
this, we study the evolution of bimodal solutions usin
standard split-step Fourier transform beam propaga
methods. For example, consider two adjacent pointsA and
B, located on either side of the top of the existence ran
at d1 ­ 3. PointsA andB represent two different points
in modal-amplitude-space, where pointA lies within the
existence range and pointB lies outside it. PointA has
the second moded2 weighted to 5.4. The evolution o
this solution with and without the nonlinearity is shown
Figs. 2(a) and 2(b), respectively. For this point, it is ev
dent that the nonlinearity supports stationary self-trappi
as expected from a self-consistent solution (note that
solution and the induced index profile that supports
are bothdouble humped). On the other hand, pointB is
outside the existence range, i.e., a self-consistent solu
for that point does not exist. Yet, since pointsA andB are

FIG. 2. Evolution of a bimodal beam: (a) Diffraction of th
beam of pointA in Fig. 1; (b) self-trapping of the beam (poin
A) with application of 870 Vy5 mm; (c) diffraction of beam
of point B in Fig. 1; (d) non-self-trapping evolution of beam
(point B) with application of voltage.
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close to each other, we can take the solution from poinA
and add slightly more weight to the second mode such t
d2 ­ 5.7. The evolution of this profile with and without
the nonlinearity is shown in Figs. 2(c) and 2(d). It i
obvious that although the input intensity profiles of bo
beams are very similar, beamA is self-trapped whereas
the two intensity peaks of beamB diverge away from one
another. The divergence angle of this “forbidden” sol
tion in the presence of nonlinearity [Fig. 2(d)] is smalle
than its natural diffraction [Fig. 2(c)]. We find thatthe
transition between self-trapped solutions and nontrapp
(diverging) solutions is abrupt.This is surprising, since
coherent solitons “breathe” (oscillate) when the inp
beam slightly deviates from the soliton wave form (
sheds off excess power while evolving into a soliton
rather than diverge or disintegrate.

When more modes are populated, the existence ra
becomes multidimensional with the dimensionality equ
to the number of modes. For example, the existence ra
for three modes is shown in Fig. 3, where we plot th
FWHM of the intensity profile vs totalpowerin the beam.
Examples of four different states profiles are shown
Fig. 3. The induced index profiles that support examp
I, II, III, and IV are single, triple, double, and triple
humped, respectively.

Having found the parameter range that supports
self-trapped incoherent beam, we extract the cohere
statistics in the form of the mutual coherence function.
thermal light sources, the statistics are nonlocalized, i
the correlation function depends only upon the separat
of two points and not on their position. The self-trappin
of a beam from such a source alters the statistics and r
ders it localized, that is, the coherence function depen
upon both the distance between two pointsand their
location within the self-trapped beam. The spatial c
herence function is given bygsx1, x2d ­ kEsx1dEpsx2dlyp

Isx1dIsx2d. The optical (electric) fieldEsxd consists
of all the guided modes, yet the time-averaged cro
(interference) terms average out to zero. For examp
consider a self-trapped beam with the first six mod
excited with a modal amplitude distribution starting a

FIG. 3. Existence range for a beam composed of weigh
combinations of the first three modes. The width vs total pow
is shown with four examples of trappable beam profiles.
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FIG. 4. Evolution of beam composed of six weighted mod
(a) Ordinary diffraction; (b) self trapping with application o
870 Vy5 mm.

one and decreasing by 0.1 until the last mode with
value of 0.5. The diffraction of this beam is shown
Fig. 4(a), where a38.4 mm wide (FWHM) input beam
diffracts to196.6 mm in 1 cm of propagation. This beam
is self-trapped with the application of the nonlineari
as shown in Fig. 4(b) [16]. Numerical parameters a
ne ­ 2.3, r33 ­ 1022 pmyV, l ­ 488 nm. The spatial
coherence function of the guided beam is found to
asymmetric with respect tox1-x2, as shown in Fig. 5(a).
The correlation distance as a function of coordinate
shown in Fig. 5(b), and it varies from8 mm in the center
of the beam, increasing to30 mm when the intensity de-
creases to half its maximum value, and further increas
when the intensity diminishes at the beams’ margi
The explanation for this is intuitive: around the center
the beam many modes contribute, thus the coherenc
reduced because the modes are incoherent with each o
On the other hand, far away from the center only t
higher modes contribute and the coherence increases
large distances from the center the remaining optical fi
is only that of the highest mode, which is fully cohere
with itself. Choosing the set of parameters that allo
for self-trapping provides control over the correlatio
statistics of the self-trapped incoherent beam.

Finally, we consider how a nonideal self-trappable
coherent beam evolves into a self-trapped beam. It is
portant to note that the modes available for population
a given waveguide do not form a complete basis to rep
sent an arbitrary excitation. Thus, part of the light do
not couple into the modes of the self-induced wavegui
but escapes to radiation. The more modes available
the self-induced waveguide, the more complete the
and less power escapes and more power “couples”
the self-trapped beam. We notice that when the exc
noncoupled light is small, this light does not diffract awa
but stays with the beam and causes it to oscillate sligh
during propagation. On the other hand, if the excess n
coupled light is large, the beam may not self-trap and
stead diverge. Yet, this amount of light tends to enlar
the induced waveguide and possibly increase the num
of modes, which then reduces the amount of uncoup
light, leading to “breathing” propagation.
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FIG. 5. Coherence properties of a six-mode self-trapp
beam: (a) Spatial coherence functiongsx1, x2d; (b) intensity
profile and coherence length as a function of position.

In conclusion, we have presented a general modal t
ory of self-trapping spatially incoherent light beams (in
coherent wave packets) in any noninstantaneous nonlin
media.
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