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Measured Correlated Motion of Three Massive Coulomb Interacting Particles
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We have measured the correlated center-of-mass (c.m.) motion and energy sharing of the
massive Coulomb-interacting particles H1 1 H1 1 H2 with total energy of a few eV. We measured
in time coincidence the lab frame energy and angle of all three particles produced from excited 4
H 1

3 formed in collisions with He. For each triple coincidence, we found the c.m. energy of ea
particle and the c.m. correlation angle between the two H1. The c.m. energy data, displayed on
a Dalitz plot, reveals the high degree of correlated motion of the three massive charged partic
[S0031-9007(97)04800-X]

PACS numbers: 34.90.+q
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The description of the motion of three bodies, intera
ing through some potential, with total energy in the co
tinuum, is a classic and fundamental problem of physi
In the case where the three particles interact via lo
range Coulomb forces, one has the possibility of a h
degree of correlated motion in the system because all th
particles interact over the entire path of their motion.
full quantal description of such a three-body system m
include these long range interaction terms over the en
path of all three particles.

Experimental studies of the continuum three-body pro
lem, in which two of the particles have a charge o
posite to the third, have centered around systems
include a massive positive nucleus and two light ele
trons. Such three-body systems are formed by thresh
ionization of atoms by electron impact, as well as dou
photoionization of negative ions and neutral atoms [
In these systems, the energy available to the three
ticles in the center-of-mass (c.m.) frame is inequitab
shared. The fraction of available energy carried away
the ion is limited by momentum conservation to a ma
mum of2meyMion, and the major part of the available en
ergy is carried away by the two very light electrons. Thu
a determination of the energy and mutual emission an
of the two electrons relative to the essentially stationa
nucleus is sufficient to determine the final state dyna
ics completely. This is not the case if all three particl
are of comparable mass, as with H1 1 H1 1 H2, be-
cause in the c.m. frame the available energy has the p
sibility of being more equitably shared among the thr
particles. For three equal mass particles, momentum c
servation limits the fraction of available energy carrie
away by any one of the three particles to a maximum
2
3 . To completely ascertain the final state dynamics of
three-body, massive system, a determination of the ene
and relative scattering angle of all three particles in t
c.m. frame is necessary.

Feagin [2] discussed the theoretical development of
Coulomb three-body problem, beginning with Wannie
classical description of threshold ionization [3], and t
subsequent semiclassical redevelopment of Wanni
0031-9007y97y79(25)y4982(4)$10.00
t-
-
s.
g
h

ree

st
ire

b-
-
at

c-
ld

le
].
ar-
ly
y

i-
-
s,
le

ry
-

s

os-
e
n-

d
of
e

rgy
e

he
s
e
r’s

theory by Peterkop [4] and Rau [5,6], and the extensi
of theory to systems of arbitrary mass with total angul
momentumL ­ 0 by Klar [7]. Feagin further developed
the theory for systems of arbitrary mass and charge a
L . 0 [2]. Because a complete quantal description
wave function for the Coulomb three-body problem do
not exist, the original assumption of Wannier theory h
proliferated to all subsequent theoretical developmen
The Wannier assumption for near threshold breakup
that, in the reaction zone where the three particles
close together, the system must develop such that
particle of opposite charge becomes located between
two particles of like charge, near the center of charge
the two like-charge particles.

Previous experimental studies of the H1 1 H1 1 H2

system have been limited to the energy distribution
H2 [8,9] and measurement of H1-H2 coincident pairs
[10,11]. For near threshold breakup of a Coulomb syste
Feagin [2] has predicted that the angular distributio
between the particles of like charge will be centered
f12 ­ p with FWHM of 8.06± for H1 1 H1 1 H2.
Yenenet al. [10] have identified the excited states of H1

3
that lead to H1 1 H1 1 H2. Gailitis [12] has predicted
the partitioning of available energy for two electro
emission from a heavy ion, but no prediction exists f
the H1 1 H1 1 H2 system.

The only presently viable method of studying the c.m
dynamics of three massive Coulomb-interacting partic
is to carry out a three-body half collision experimen
in which one studies the dissociation of a fast mo
ing excited molecular ion into the three-body, Coulom
interacting channel. By colliding 4 keV H13 with a He
target gas cell, we produced the excited, fast moving H1

3
that dissociate into the three-body, Coulomb-interacti
system H1 1 H1 1 H2 [8]. We have completely deter-
mined in a triple coincidence experiment the final labor
tory dynamics of the three-body system H1 1 H1 1 H2.
Transforming the results to the c.m. of the dissociati
ion, we have determined the correlated c.m. motion
these three equally massive particles. We have measu
the total amount of c.m. energy shared among the th
© 1997 The American Physical Society
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fragments and the c.m. energy of each individual partic
as well as the c.m. anglef12 between the two H1.

Our experimental approach is illustrated in Fig. 1 b
the Newton diagram of the excited, fast moving H1

3 that
dissociates to the experimental final state channel H1 1

H1 1 H2 with total c.m. energy of́ t . Measurements
of the three laboratory kinetic energiesEi ­ miV

2
i y2 and

scattering anglesui of the two H1 and H2 produced in
the dissociation of an excited H13 determine all of the
physical parameters in the c.m. system. Specifically, f
each triply coincident event of two H1 and an H2, we
determine the three c.m. energies´i and c.m. scattering
anglef12 between the two H1, as well as the deflection
anglea and the inelastic energy lossQ of the H1

3 in its
collision with the He target. The indexi ­ 1, 2 refers to
H1, while i ­ 3 refers to the H2.

From the Newton diagram and conservation of ener
and momentum, the c.m. energy´i of each particle is

´i ­
1
9

∑
s4Ei 1 Ej 1 Ekd 2 4

q
EiEj cossui 2 ujd

2 4
p

EiEk cossui 2 ukd 1 2
q

EjEk cossuj 2 ukd
∏

,

(1)

from which the total available c.m. energy´t to be shared
among the three particles is found. The c.m. correlati
angle f12 between the two H1 is related to the
c.m. energies by

cossf12d ­
1
2

√
´3

p
´1´2

2

r
´1

´2
2

r
´2

´1

!
. (2)

For H 1
3 ! H1 1 H1 1 H2, the observed c.m. energies

of the fragments are in the few eV range. Because ene
is proportional to velocity squared, the energies observ
in the laboratory frame extend over a much larger rang
As a result, the error on the measured c.m. energy, de
mined from the measured laboratory energies, undergoe
compression when making a Galilean transformation fro
the laboratory frame to the c.m. frame [13].

The electrostatic energy analyzer that measures all th
laboratory energies and angles in a triple coinciden
experiment has been described in a previous publicat

FIG. 1. Newton diagram for the dissociation of H1
3 into

H1 1 H1 1 H2. Vo is the velocity of the c.m. of the
dissociating H1

3 and a is the H1
3 deflection angle. Visyid

is the velocity of theith particle in the laboratory (c.m.) frame.
ui is the laboratory scattering angle of theith particle andf12
is the c.m. angle between the two H1. The size of theyi ’s
relative to theVi ’s is greatly exaggerated for clarity.
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[14]. Each of the three fragments is collected by its ow
position sensitive detector, utilizing two 40 mm activ
area microchannel plates along with a wedge-and-st
anode. Each detector provides two Cartesian coordina
used to determine the laboratory angle and energy of
fragment, and a fast timing pulse from the microchann
plates. Since the three measured laboratory energies re
from particles coming from the same excited parent H1

3 ,
the transformed c.m. energies are insensitive to the ene
spread of the primary 4 keV H13 ion beam or to the width
(0.76 mm) of the ion beam.

The three position sensitive detectors sample a limit
range of c.m. energy sharing configurations, but c
be repositioned to cover a wide range of c.m. ener
sharing configurations. We positioned the detectors
measure the near collinear breakup of H1

3 along the
beam direction. The positioning of the H1 detectors
limited one of the H1 to c.m. scattering forward, or nea
0± with respect to the H13 beam direction, while the
other was scattered backward, or near 180±. The forward
moving H1 is designated as the first H1, while the H1

moving backward is designated as the second H1 (see
Fig. 1). The detection system accepted H1

3 breakups with
c.m. angle between the H1 of 170 # f12 , 210±.

The three fast timing pulses are used to measure
arrival time differences T12, T31, and T32 between each
pair of fragments for each triply coincident event. A
histogram of the timing data is shown in Fig. 2. Th
background of the timing spectrum has four componen
An overall constant background forms due to thre
uncorrelated particles arriving at the detectors within th
timing limits of the coincidence electronics. The othe
three components arise from coincidences among t
correlated and one uncorrelated fragment, and appea
ridges, or walls, in the timing spectrum. The ridge forme

FIG. 2(color). Timing spectrum for H1 1 H1 1 H2 triple
coincident events.T31 is the time-of-flight difference between
the H2 and the first H1; T32 is the time-of-flight difference
between H2 and the second H1.
4983
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by the triple coincidence of two correlated H1 and an
uncorrelated H2 can be seen running diagonally on th
left edge of the timing spectrum. Coincidences from
correlated H1-H2 pair and an uncorrelated second H1

form faint, broad horizontal and vertical bands. Th
overlap of the three ridges form a background trip
coincidence peak in the spectrum, and the real tri
coincidence peak forms on top of it. Subtracting t
background from the triple coincidence timing spectru
in Fig. 2, we find a real triple coincident peak of251 6

27 events. Acquisition time for this spectrum was 750
The rate for real triple events was0.9 3 1024 Hz.

For each triple event, we measure the laboratory
ergy and scattering angle of each of the three fragme
Equations (1)–(3) are used to transform the three en
gies and scattering angles from laboratory coordina
to c.m. coordinates. The events that lie in the reg
of the real triple coincidence peak are approximately3

5
background and2

5 real triple events. Because the bac
ground triple events contain at least one uncorrela
particle, typically the set of measured laboratory quan
ties (E1, E2, E3, u1, u2, u3) or, equivalently, the trans-
formed set of c.m. quantities (´1, ´2, ´3, f12, Q, a),
for background triple events is unphysical. Subsequen
most of the background events can be identified and se
rated from the events that form the real triple coinciden
peak. For example, the inelastic energy lossQ calculated
for the triple coincidence event may be negative, indicat
a superelastic scattering of the H1

3 in its collision with the
He target. Because the H13 must absorb energy during th
collision to be promoted to an excited state, the collisi
must be inelastic, not superelastic.

To graphically accentuate three-body correlations,
use a triangular Dalitz plot [15], shown in Fig. 3. For a
arbitrary three-body system of massesm1, m2, andm3 we
use the set of reduced c.m. energy coordinatesmi´iyR,
where

R ; m1´1 1 m2´2 1 m3´3 . (3)

For nonrelativistic speeds, the coordinatemi´iyR is the
ratio of p2

i to p2
i 1 p2

2 1 p2
3 . On the Dalitz plot,

each of the reduced c.m. energy coordinates is plo
as the perpendicular distance from one of the sid
of the equilateral triangle. Because of our choice
normalized coordinates, the height of the triangle
unity. For any point inside the triangle, the sum
the three coordinates is equal to one, satisfying ene
conservation requirements. Events that satisfy momen
conservation, for nonrelativistic systems, will lie insid
the inscribed circle in Fig. 3 [16]. The purpose of usin
reduced coordinates is that, for any combination of th
arbitrary masses, the momentum conservation limit w
always be the inscribed circle in Fig. 3. For the thre
body system H1 1 H1 1 H2, all masses are equal, an
the reduced c.m. energy coordinates become´iy´t, the
fraction of total c.m. energy carried away by each partic
4984
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FIG. 3. Dalitz plot of the sharing of available energy amon
the three particles. The fraction of energy carried away
the H2, ´3y´t , is plotted as the vertical distance from the bas
of the triangle. The H1 energy fractions,́ 1y´t and ´2y´t ,
are plotted as the perpendicular distance from the other t
sides of the triangle. The approximate range of energy shar
configurations probed by the present setup is indicated by
solid curve. Energy sharing configurations in which momentu
is conserved are located inside the circle. Lines of consta
f12, the c.m. angle between the two H1, are also shown.

If, for the process producing the three-body system, t
energy sharing among the three particles is determin
solely by phase space considerations, the resulting tri
coincidence events will produce a uniform distribution o
a Dalitz plot. Any deviation from a uniform distribution
indicates a noncontact interaction among the three p
ticles. A long range Coulomb interaction or an electro
exchange interaction inside the reaction zone, could aff
the energy sharing by enhancing some configuratio
while depleting others, causing a clumping of events
a Dalitz plot.

The real triple coincidence events, shown on the Dal
plot in Fig. 3, illustrate how the energy is shared amon
the fragments in a three-body system. Total c.m. energ
were 4 to 14 eV, with 70% of all events in the rang
of 5 , ´t , 8 eV. For each event,́ t is known to
within 0.5%. The fraction of energy carried away b
the H2 is plotted as the vertical distance from the bas
of the triangle. The H1 energy fractions are plotted as
the perpendicular distance from the other two sides
the triangle. The approximate range of energy shari
configurations probed by the present setup is indicat
by the solid curve. The circle itself corresponds to th
collinear breakup, with the lower two-thirds of the circl
corresponding to configurations in which the c.m. ang
f12 between the two H1 is 180±, and the upper third
corresponding tof12 ­ 0±. Lines of constantf12 are
also shown for f12 ­ 45±, 90±, and135±. Line AB
extending from the lower left corner corresponds
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configurations in which the H2 and the second H1 have
matching energies. Above lineAB, ´3 . ´2, and below
line AB, ´3 , ´2.

The intersection of lineAB and the circle at point
P correspond to configurations in which the H2 and
second H1 escape together, with matched c.m. ener
and scattering angle. It is here on the Dalitz plot th
we observe a dense band of events along the momen
conservation limit wheref12 ­ 180±. Figure 4 shows
an expanded view of the Dalitz plot data in Fig. 3
emphasizing the detailed structure of the data and den
of events. Bracket I marks the extent of the dense band
events at pointP. The density of these events is indicativ
of the high degree of correlation.

The final system H1 1 H1 1 H2 can be formed
through an intermediate doubly excited state of H2,

sH 1
3 dp ! H1 1 Hpp

2 H1 1 H1 1 H2 ,

and the triple coincidence events from this two-bod
breakup would form a band as seen in Fig. 4. T
location of the band along lineAB is determined by the
amount of energy liberated in the breakup of the Hpp

2 rela-
tive to that liberated in the H13 two-body fragmentation.
The fact that the band lies right on the momentu
conservation limit indicates little or no energy availab
to the H1-H2 pair to share from the breakup of th
Hpp

2 . Treating the system as the result of this two
body breakup and using momentum conservation, we c
determine the total energy available to the H1-Hpp

2 pair
in the fragmentation of thesH 1

3 dp, as well as the energy
available to the H1-H2 pair in the breakup of the Hpp

2 .
For the dense band of events at pointP in Fig. 4, the
energy the H1-H2 pair has to share is less than 0.1 e
for all events and typically#0.01 eV. The small relative
energy indicates that the Hpp

2 only formed very near the
threshold for producing a H1-H2 ion pair.

In the absence of postcollision effects, the break
of the Hpp

2 would occur along an arbitrary orientation
producing a symmetric band of events about lineAB.
As can be seen in Fig. 4, the intense band of eve
is not symmetric. Configurations in which the H2 has
less c.m. energy than the second H1 are more likely.
This indicates a preference in the three-body system
configurations in which the H2 lies between the two
H1, suggesting a quasi-two-body breakup in which th
H2 and second H1, by virtue of their proximity to each
other, appear to be bound, but are still influenced by t
first H1.

Another feature of the real triple coincidence dat
indicated by bracket II in Fig. 4, is the collection of even
near the base of the Dalitz plot. For these events, the t
H1 share most of the available energy, while the H2 gets
a small share, typically,10%, and always lies between
the two H1. Unlike the events that form the band at poin
P in Fig. 4, the events near the base of the Dalitz p
are not confined to the strict collinear configuration. Th
departure of these events from the collinear configurat
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FIG. 4. Dalitz plot of data in Fig. 3, expanded to emphasiz
the high degree of correlation. LineAB and point P are
identical to that in Fig. 3. Bracket I marks a dense band o
events at pointP. These events collect only in the collinear
configuration for whichf12 ­ 180±, and correspond to the
quasi-two-body breakup of H13 . The events indicated by
bracket II depart from the collinear configuration.

is illustrated in Fig. 4 by the lines of constantf12 for
f12 ­ 160± and 180±.

In conclusion, we have observed for the first time tripl
coincidences for the near collinear breakup of H1

3 into
the Coulomb-interacting channel of H1 1 H1 1 H2 and
determined the c.m. dynamics of each triple coinciden
event completely. A Dalitz plot of the sharing of avail-
able c.m. energy among the three fragments indicates
tendency for the H2 to escape with one of the H1, yet
remain between the two H1.
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