
VOLUME 79, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 22 DECEMBER 1997

h
ia

s of
ters
final
ems

4974
Cavity-Induced Atom Cooling in the Strong Coupling Regime
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We investigate the possibility of all optical trapping and cooling a single atom at the antinode
a high Q optical cavity mode to which the atom is strongly coupled. For properly chosen parame
the dynamics of the cavity field introduces a novel Sisyphus type cooling mechanism yielding
temperatures much below the Doppler limit and allowing for long trapping times, avoiding the probl
induced by spontaneous emission. [S0031-9007(97)04824-2]

PACS numbers: 32.80.Pj, 42.50.Lc, 42.50.Vk
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Using laser cooling and trapping very low steady-sta
temperatures of a trapped cloud of neutral atoms h
been achieved leading to new phenomena as Bose-Ein
condensation [1] and interesting possible applications
atom lithography or quantum logic gates [2–4]. In th
context the interaction between a single cooled atom
a high finesse optical cavity mode has started to ra
much theoretical [3,5–8] and experimental interest [
12]. One example is the continuous monitoring of a sin
atom traversing a high finesse optical cavity via the cav
output [13], showing the change in the cavity transmiss
related to the atom’s motion in the cavity field. In a rece
theoretical paper Dohertyet al. [14] have investigated the
mechanical effect of the optical potential of the cavity fie
on the atomic motion in the limit of a resonantly drive
cavity [13]. In close analogy to Doppler cooling in
standing wave field [15] they found heating mechanis
(e.g., dipole heating), which lead to high kinetic energ
and short confinement times of the atom.

In this work we investigate a novel cooling mechanis
mediated by the combined cavity-atom dynamics.
works best in the strong coupling regime, when the ato
cavity coupling constantg exceeds the optical linewidth
of the atomG and the cavityk. We find a Sisyphus
type cooling mechanism through the position depend
change of the intracavity photon number, which allows
sub-Doppler temperatures and long confinement times

Let us first present a simple classical model to dem
strate the key physical principle of the proposed cooli
and trapping scheme. We consider a pointlike particle
positionx moving with momentump inside a driven high
finesse optical cavity as depicted in Fig. 1. Because
the large atom-field coupling the resonance frequency
the cavity is significantly shifted depending on the partic
positionx, i.e., the single particle induces a position (a
time) dependent index of refraction in the cavity [2,3,9]

The system dynamics in this limit is given by th
following coupled equations for the cavity field, th
particle momentum, and its position:

ÙE  f2k 2 gsxd 1 iDc 2 iUsxdgE 2 a , (1a)

Ùp  2jEj2
d

dx
Usxd , (1b)

Ùx  pym . (1c)
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Here gsxd  g0 cos2skxd is the rate at which the atom
scatters light,Dc  vp 2 vc is the detuning of the
empty cavity relative to the pump frequency,Usxd 
U0 cos2skxd is the frequency shift of the cavity due to
the interaction with the particle, anda describes the
external pump. The position dependence ofgsxd and
Usxd derives from the cavity mode function, which is
assumed sinusoidal for simplicity.

Equation (1a) contains the influence of the particle
position on the cavity field: the field decay is enhance
by spontaneous photon scattering at a rategsxd and the
mode frequency is shifted byUsxd. If g0 ø k , jDcj
and U0 ø Dc the field amplitude will change signifi-
cantly with x. In order to find cooling we will as-
sumeDc , 0 and U0 , 0. In this case the maximum
field amplitude and the minimum cavity frequency i
obtained when the particle sits at an antinode of t
standing wave [see Fig. 2(a)]. For a moving particle w
have to consider the whole system dynamics according
Eqs. (1). Because of the finite cavity response time t
maximum field intensity will be attainedafter the par-
ticle has passed the potential minimum [dashed curve
Fig. 2(a)]. Hence on average the particle climbs the p
tential wells at times of higher intracavity field intensity
and runs down the potential wells at times of lower in
tensity, as is indicated by the dotted vertical lines in th
figure. Hence the particle loses kinetic energy and
slowed down until it is trapped within a single potentia
well. A typical trajectory showing this behavior obtaine
from a numerical integration of Eqs. (1) is plotted i
Fig. 2(b).

The classical model predicts the particle to come to
complete stop at some antinode of the mode. In a mo

FIG. 1. Schematic representation of the system consisting
a single particle inside a driven optical cavity.
© 1997 The American Physical Society
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refined quantum description field fluctuations due to
quantum nature of the cavity mode and the moment
diffusion through atomic spontaneous emission of
particle will introduce heating mechanisms yielding
nonzero final temperature.

In a quantum model of our system the particle
modeled by a single two-level atom with ground sta
j0l and excited statej1l. Using dipole and rotating wave
approximation the Hamiltonian for the compound ato
cavity system reads
a
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H  2Ds11 2 Dcaya 1 iVsx̂d ss01ay 2 as10d

1 iasa 2 ayd 1
p̂2

2m
, (2)

whereD  vp 2 v01 is the atom-pump detuning,asayd
is the photon annihilation (creation) operator,Vsx̂d 
V0 cosskx̂d is the atom-cavity coupling constant,x̂ and
p̂ are the atomic position and momentum operators, a
the atomic operators are given bysij  jil k jj. The
complete dynamics for the full density operatorr is
described by the master equation
Ùr  2ifH, rg 1 g

∑
2s11r 2 rs11 1 2

Z 1

21
du Nsuds01e2ikx̂ureikx̂us10

∏
1 ks2aray 2 raya 2 ayard , (3)
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where the angular distributionNsud and the recoil kick of
spontaneously emitted photons have been included.

To recover an interpretation of the cooling schem
related to our previous discussions we first calcul
the eigenstates of the compound atom-cavity system
the semiclassical limit, where the atomic momentu
and position operators are replaced by their expecta
values. The eigenenergies of the Hamiltonian (2)
vanishing pump fieldsa  0d are given by

E0  0 ,

En,6sxd  2Dcn 2 dy2 6
p

d2y4 1 Vsxd2n ,

n $ 1 , (4)

FIG. 2. (a) PotentialUsxd and cavity field intensity vs particle
positionx. jEstj

2 is the field intensity for fixed particle position
whereasjEj2 (dashed curve) is the field intensity for an ato
with constant velocity. (b) Time evolution of the particl
momentum. The particle gets cooled and finally trapped ins
a single potential well. The parameters areU0  0.76, g0 
0.07, andDc  1.2 in units of k.
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whered  D 2 Dc. A resonance with the driving field
occurs, if one of the energiesEn,6sxd, n . 0, vanishes.
As an example, let us consider the caseE1,2sx  0d 
0, i.e., the lowest excited eigenstate of the system
resonant to the driving field at atomic positionsx 
nly2 for any integern as shown in Fig. 3. An atom
initially in the lowest energy eigenstate and moving wit
a velocity y small enough to follow adiabatically the
energy eigenstates will then stay in the ground sta
until it is excited to the first energy levelE1,2 by the
driving laser. Preferentally this transition will occur nea
the potential minima ofE1,2, where we have assumed
resonance. Subsequently, the particle evolves in th
energy eigenstate transferring kinetic energy into intern
energy until spontaneous atomic decay or cavity dec
brings it back to the ground state. The emitted photo
then carries away the internal energy of the system. Th
leads to a diminishing kinetic energy of the atom.

Although the system closely resembles the Doppl
cooling scheme in a classical standing-wave light fie
the cooling mechanism here is of different physica
origin. Here the Sisyphus effect is due to the chang
of the intracavity photon number correlated with th

FIG. 3. Diagrammatic representation of the Sisyphus typ
cooling mechanism.
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atomic position, whereas in standard Doppler cool
the intensity of the cooling fields is fixed. Because
its different physical origin the cavity-mediated coolin
works well for small velocities, where the Doppler sh
is negligible. Using large detunings the atom hardly e
gets excited to the upper internal state and compare
Doppler cooling the diffusion of the atomic momentu
due to the arbitrary direction of the spontaneously emit
photons can be strongly suppressed. One therefore
expect must lower steady-state temperatures.

Unfortunately, an exact solution of Eq. (3) for th
steady state seems impossible. To lowest order in
atomic velocity and in the driving field strengtha an
approximate result for the steady-state temperature
however, be obtained from the semiclassical force
diffusion coefficient as presented in Ref. [16]. He
the calculations can be restricted to the lowest th
eigenstates of the atom-cavity system with energiesE0
andE1,6, cf. Eq. (4) and Fig. 3.

As in Ref. [16] we are able to derive analytic expre
sions for the friction coefficientb, which gives the semi-
classical forcef  2by acting on the atom to lowes
order in y. Similarly, we find the diffusion coefficien
D  dydtskp̂2l 2 kp̂l2d:

D  gh̄2k2 a2

C

Ω
2
5

Vsxd2 1
f,Vsxdg2

k2
s1 1 dcavd

æ
,

(5)
where

C  sgk 1 Vsxd2 2 DDcd2 1 sDk 1 Dcgd2 ,

dcav 
4DVsxd2

g

Dcg 1 Dk

C
.

(6)

Apart from the termdcav , Eq. (5) corresponds exactly t
the diffusion coefficient of an atom at positionx in an
external standing wave in the weak field limit, i.e., w
have rederived the well-known diffusion coefficient
ordinary Doppler cooling [16]. The additional termdcav

is due to the cavity field dynamics and turns out to
the dominatingterm for the parameters discussed in th
work.

Similarly, the friction coefficient can be split into
the usual Doppler forcebD and the additional cavity-
mediated forcebC , respectively. However, since th
analytic expressions forbD and bC are rather unwieldy,
we will not give the exact results here and restr
ourselves to the discussion of a numerical example.b,
bc, and bD as well as the approximate steady-sta
temperatureT are shown in Fig. 4.

In Fig. 4(a) we show the friction coefficientb sbD , bCd
versus the detuning of the driving laser with resp
to the cavity resonance frequency where the cav
atom detuningd is kept constant, i.e., the dressed lev
remain the same for all parameters but the driving fi
frequency varies. As expected one finds a positive frict
4976
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FIG. 4. Results of the semiclassical model in the we
pumping limit. (a) Total friction coefficientb (solid curve)
and its decomposition into the Doppler partbD (dotted) and
the cavity partbC (dashed) vs cavity detuningDc for k  gy2.
(b) Steady-state temperature vsk for Dc  21.3g. The other
parameters ared  21.9g and V0  2g. The crosses are
obtained from fully quantum Monte Carlo simulations.

coefficient, which implies a slowing of the atom, whe
the driving field is approximately in resonance wit
the minima of the first excited dressed levelE1,2, see
Eq. (4), so that the Sisyphus mechanism works efficien
yielding a low steady state temperature. For higher pu
frequencies close to resonance with the maxima ofE1,2

(i.e., Dc ø 0), the Sisyphus mechanism is reversed a
gives rise to heating of the atom with a negative frictio
coefficient. Increasing the pump frequency further, oth
cooling and heating peaks occur in the friction coefficie
which correspond essentially to the usual Doppler cool
force with a maximum value for atom detuningsD ø
6g. Only a slight modification due to the spatiall
dependent excitation of thesecondexcited dressed leve
E1,1 occurs for these parameters.

Figure 4(b) shows the steady-state temperatureT 
DybkB of the atom as a function of the cavity deca
rate k. The driving field frequency is chosen close
the point of optimum cooling [see Fig. 4(a)]. For sma
k we, find a linear dependence of the temperature
k, connected to the effective linewidth of the involve
dressed levelE1,2. Hence the cavity decay ratek plays
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essentially the same role in this system as does the ato
decay rateg in usual Doppler cooling. This gives rise
to a final temperature of the order ofkBT  h̄k. For k

larger than the spatial modulation of the dressed ene
E1,2 the position dependence ofE1,2 gets washed out and
the effect of the Sisyphus cooling decreases significan
Here the Doppler cooling force becomes predomina
and the steady-state temperature approaches the valu
weak classical standing wave field of fixed amplitud
Note that this temperature differs from the convention
Doppler limit kBT  h̄g because the detuningD is
chosen to optimize the new cavity-mediated cooling.

In a final generalization we now relax the assumption
a classical point particle and include the external atom
degrees of freedom. This requires a full quantum tre
ment including the internal and the cavity dynamics. B
cause of the complexity of the model we are restricted to
pure numerical treatment based on quantum Monte Ca
wave-function simulations [17]. The results of these ca
culations for the steady-state temperature are indicated
the crosses in Fig. 4(b). As one can see, we find excell
agreement with the semiclassical calculations perform
previously. Hence quantum effects of the external m
tion like the spreading of the atomic wave packet, th
zero point energy in the well, or tunneling between we
essentially seem to play no role in the dynamics.

We have shown that in a high-finesse optical cavity ne
mechanical light effects on single atoms appear. In p
ticular, we found a Sisyphus-type cooling mechanis
based on the change of the resonance frequency of
cavity induced by the atomic position, which does n
require atomic spontaneous emission but works throu
the cavity decay. The achievable steady-state tempe
tures are of the order ofkBT  h̄k which, depending on
the experimental parameters, can be significantly bel
the usual Doppler cooling limit in a standing wave an
provide for long trapping times of the atoms at exact
the antinodes of the field, where the atom field couplin
is maximal. These results could have significant impa
mic
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on ongoing experiments with laser-cooled atoms in hig
finesse cavities [9,13]. As the only requirement on th
particle is a strong coupling to the cavity mode, the r
sults should also apply to small molecules or other mo
complex objects (as, e.g., a Bose condensate) with a su
ciently large dipole moment.
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