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Wannier Analytic Continuation to Helium Negative lon Resonances
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The uniform, semiclassical wave function [D.S.F. Crothers, J. Ph§9B463 (1986)] has been
analytically continued to below the energy threshold in order to calculate the complex eigenenergies
for doubly excited states of helium using a complex Bohr-Sommerfeld quantization rule with at
least one complex transition point. The real parts of the eigenvalues are in good agreement with
the experimental results of Buckmaet al. [S.J.Buckmanet al, J. Phys. B16, 4039 (1983); S.J.
Buckman and D.S. Newman, J. Phys. 2, L711 (1987)] for the resonance positions while the
imaginary parts give the explicit widths of the resonances from which intensities have been estimated.
[S0031-9007(97)04807-2]

PACS numbers: 31.50.+w

The classical theory of Wannier [1] for the thresholdselves as “Wannier ridge resonances” [2—5]. The pos-
behavior of electron impact ionization has become thesible existence of a series of negative ion resonances in
primary focus for all discussions of processes involvingwhich the two electrons reside at or near the Wannier
two electrons near the threshold for double escape fromdge in a highly correlated state was first suggested by
the field of an ion. The central point of this theory, whereFano [6]. Buckmaret al.[4,5] have subsequently used
the classical equations of motion are solved in terms ofhis proposal to interpret long resonance series observed
the hyperspherical variables defined by in electron scattering by helium at energies near to, and
- below, the single ionization energy threshold.

—2>, 01, = cos (£, 1), Semiclassical version of Wannier’s theory were derived
" by Peterkop [7] and Rau [8] but Crothers [9] gave the

1) first complete semiclassical uniform, quantal description
is that the threshold escape of the two electrons is domief so-called Wannier threshold ionization and associated
nated by the configurationr = 7 /4, 8, = 7, which  absolute differential and total cross sections. Details of
coincides with the saddle point of the potential of theCrothers’ semiclassical approximation are given in [9]
combined electron-nucleus and electron-electron interaawhere, after adopting a transformation of the dependent
tions. This saddle point lies on the ridge, given byvariable, the Schrddinger equation is solved in direct
a = /4 for all 6;, with 0 = 6, = 77, which has come analogy with Peterkop [7] by taking a JWKB (Jeffreys,
to be known as the “Wannier ridge”. It is now well Wentzel, Kramers, Brillouin) approximation for the final-
established that for doubly excited states of helium thestate wave function. The ingoing final-state JWKB wave
highly correlated two electron excitations manifest theﬁnafunction takes the form

/02 = r12 + r22, a = tan’1<

C/2exp— % ilnAf, — i[So + = Si(Aa)? + + SH(A01)2]}
@1/2p5/2 sina cosa ’

vt = @)

where, withZ, = 3/\/5 andw? = 2E + 2Zy/p, | angular correlated motion of the two electrons. As in
[9], the deviation of the hyperspherical angle from
its Wannier ridge value ofr/4 is denoted byAa =
) a — m/4 and the deviation of the mutual polar angle
S zf dpa(p), (4a) 0, from its Wannier ridge value ofr is denoted by
A012 = T — 012.
The purpose of the present work is to extend the

0 =0’ — oL (nu) +io L (nu), @)
dp dp

and semiclassical treatment of [9] for the unstable motion of
, 1 du; a pair of electrons along the potential ridge to the near
Si=po_— ap’ i=12, (4b)  threshold capture excitation process
1
: o . . : "~ 4+ He— (He" )"
with ~ indicating dummy variable of integrationu; ¢ (He™)

and u, are the standard Peterkop [7] Wannier functionsn order to calculate the complex eigenenerdigsof the
which are associated, respectively, with the radial andiigh-lying doubly excited Rydberg states of Hevhere
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the eigenvalue of the resonance takes the form

i
EN:Eg_EFN’ (5)

in which Eﬁ is the resonance position ardy is the
lifetime. We view the doubly excited negative ion of
helium as consisting of a positively charged core=
1) comprising Hé (1s), with two excited electrons in

a highly correlated state of energy below the singfle

O Vi (By, #)22e 220/
p>2 sina cos a

« sin [ dp(0? — o{lnuy — ilnu})/? +

ionization threshold of He but above the single ionization
threshold of He, in line with the grandparent model of
Schulz [10]. For the purpose of the present study the
wave function in Eq. (2) has been analytically continued
to negative energy to represent the two excited electrons,
which have positions; andr, while the core electron,
with position r3, is represented by the ground state
one-electron atom eigenfunction. The final-state wave
function, including both ingoing and outgoing waves, with
the Gans-Jeffreys [11,12] connexion formula applied at
the classical turning point = 0, is given by

2 wlnu)(Aa)® + 2 wlnuw) (A6)? + =]

[w?2 — w{lnu, — ilnu ]/ (6)
where’ indicatesd/dp ord/dp. The complex eigenen-| A= —22y’ (11)
ergy given in Eqg. (5) is employed so that we now have Ey ~
27, .
w? = 2Ey + 220 ) Eq. (9) becomes
. ) 1 1 1/4 1 1/2 d 1y
and the Wannier functions [7] take the form c] dx(— - 1) c2<— — 1) - Y nZ
0 X X dx  uj
u=m‘2F<m,m + 15 2mp + -5 —E Z>,
1 p ol My, my2 12 2 NP/ Zo =N7T+%, (12)

(8a)

3
uy = pm222F1<m22,m22 + 1; 2mp + ER —ENp/Zo>,
(8b)

where the function F; is a Gauss hypergeometric func-
tion [13], andm;, andm,, are the Wannier indices [7].
The wave function includes, for arbitraty, m, I, m»,
the spherical harmonic factof, y (£, 2), EQ. (48) of [9].
The total angular moment is zero for this calculation;

[ values of the individual electrons are that they shoul
be equal and less than the individual principal quantu
numbers.

however, the only restrictions on the magnitudes of th’%‘

Exponential decay of the wave function is required

beyond the two transition points of the resonating syste
given by p = 0 and p = —Z/Ey, which is complex.
This requires that on the ridge we have

—Zo/Ey d d
d 2 — (— InNu, —i—In >
‘/; p\/w w dp un ldp 73]

=N7+%n(%

Therefore, the wave function hasé nodes whereV is a

hyperspherical radial quantum number for the two excite

electrons. On changing the dummy variable according t
—Z()x
= 10
P= L, (10)

and setting

which has been solved numerically by the complex
Newton-Raphson method. The solution involves the
removal of the obvious removable singularity at the
lower end point and since the logarithmic derivative term,
in the above integrand, is divergent far= 1 it was
necessary to use the analytic continuation of the Gauss
hypergeometric function given by Eq. 15.3.b of [13].
Similar remarks apply to the derivative of Eq. (12) with
respect ta.

The most extensive study of the resonance features of
e *forn = 3ton = 8, wheren is the lower of the two
rincipal quantum numbers andn,, was made by Buck-

an et al. [4,5], in measurements of metastable-atom
excitation. These experiments trace the occurrence of
four strong resonances which occur in the= 3 region

rT1’hrough ton = 8 with an additional tentative observation

of the lowest>S feature ath = 9. The lowest three (in
energy) of these were classified [14—16] as intrashell reso-
nances, withi; = n, while the final resonance was of the
intershell type, withn; # n,. For the purpose of com-
parison with experiment we use the terminology of Buck-
manet al. [4] where it has been found that the calculated
eigenvalues correspond to those of experiment for

N=mn +n—L—1. (13)

E)gtability is maximized with equal sharing of energy =

ny, or almost equal sharing, = n; + 1. Essentially,
any partitioning ofE into (E, E,), whereE = E| + Ej,
is possible; equally well, any partitioning & + L +
1 into (ny,n,) couples, whereNV + L + 1 = n; + ny,
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is possible. To rephrase, in principle there can beheory of Fano [23] (cf. also Cowan [24]) by which the au-
strong mixing of such configurations. However, we aretoionization transition probability rate is“Awhich is pro-
concerned with the partitioning relevant to the centralportional to his|{¢|H|¢.)|> where ¢ is our ¥, ™ and .
resonance peak while recognizing that other, n,) is our ¢»;. This in turn is proportional t¢£y|, upon nor-
couples are involved in the broadening of the resonance.malizing ¢. It follows that the intensity is proportional
The terminology used here corresponds to the correto the product of A and 3 I'y, the lifetime. By detailing
lated quantum numbeds, T, andA, which are now used balance, the intensity for electron capture to form the dou-
as standard for the classification of such doubly excitedhly excited state is given likewise. The energy behavior
states, according to [17] of (¢|¢) is obtained by integrating over the mutual po-
(K, T)¢]2S+1L7T =, (n — 1,0)21156, (14) lar angle and the hypersphericgl angle by the .method _of
steepest descent and by averaging over the rapidly varying
sir? term in the hyperspherical radial integral. It is no-
f ticeable that th¢Ey|™: term is canceled. By running our
code up taVv € [20,30], we observe thak} ~ N~2. By

The results obtained from the present calculation arélflnnllnggu]{/(zg)de#ptw T ;\IOO, wzelozb;er%/e tEa]th\ég? -
given in Table | and are compared with the results of:‘?‘_hy IIVV‘Z d]’v"!fgeﬁs o 'Et[ b ) Nt d—for i
Buckmanet al. [4,5]. The energy values obtained for the IS an ehavior IS 1o be expected—for n-

lower of the2S resonance features correspond to value tance, by taking the smatl behavior ofu; andu, in
of N wheren, = n, = n, while those of the highets ~ =9- (12), evaluating as a sum of twa’ hypergeomet-

resonance feature correspond to valuesvofvhere, for ric functions, and analytically continuing via Barnes com-
no=n.m=n +1 ’ plex contour integrals. The net effect is thgt~ N > in
In Téble Il, we compare our results (theary for the comparison with results of Feagin and Macek [25], namely

lower features with the table on p. 576 of Buckman antg =N 2"112,_55au [26], namelyv™¢>, Heim and

Clark [18]. Theorya [3] and theoryb [19] are semiempir- au [27], namelyw -, a”95'§955ma” and NeW“.“a.” [5],

ical, being based on generalized Rydberg-quantum-defe mely forN € .[13’.17] N>, However, this IS a

formulas. Theory [20] is a multiconfiguration Hartree- ltle b.'t ac:il?ggr_nlc since fon € [21,29], our r.esult IS

Fock one. Theoryl [21] is a diabetic molecular treat- o'¢ "ﬁ@i@l ; nevertheless, fal € [13, 17]tis more

ment and theory [22] is an R-matrix calculation. For like N7 well within the error bars of [5]. More

n € [6,9], our results lie within experimental error. For significant therefore is the converged ratio of the experi-

n € [3,5], our results are a little on the low side by mental, and oug Wannier results, of'TabIe I, namely,

0.111, 0.057, and 0.007, respectively. koe [3,4] the 4.4(x0.1) X 107 for N € [1%’ 17], which embraces an

R-matrix theory(e) [22] gives the best agreement. By the error tolerance of less than 3%. .

very nature of our near-threshold analysis, the accuracy 0[1 In summary, we have analyﬂcglly_ continued the above-

our results at the higher values would be expected to threshold Wannier qugntal lonization theory_of [9] to

exceed that for the lower values. below threshold Wannier quantal doubly excited states.
In Table Ill we compare our relative intensities with We have presented results for

those of Buckman and Newman [5]. F§r= 13, 15, 17 e” + He(152'S) — He™ (1s(n15n252S))

we see that the ratio of the two sets of intensities has

reached a stable converged value. Our intensity is takefloubly excited states, where for the principal serigs=

as being proportional ttENI%FN. This follows from the n, = nandN = 2n — 1, L = 0, while for the subsidiary

where ¢, denoted by: in Lin’s notation, is the principal

quantum number of the outer electron apddenoted by

N in Lin’s notation, is the principal quantum number o
the inner electron.

TABLE I. Resonance position energies for=0,n =n, np=n =N =n; +n, —1=2n—1, and forL =0, n; =
n,nmy=n +1=N=n +n —1=2nsinceN =n; +n, — |l; — L] — 1, where L= |l; — ,|. The experimental values

are from (a) Buckmaret al. [4] and (b) Buckman and Newman [5] using their notation. The number in brackets indicates the error
in the second and third decimal places.

Present results

resonance position energies (eV) b a
n N L=0 N L=0 L=0 L=0
2 3 19.492 19.367(5)
3 5 22.330 6 22.963 22.451(10) 22.881(05)
4 7 23.368 8 23.641 23.435(10) 23.667(05)
5 9 23.833 10 23.973 23.850(10) 23.983(10)
6 11 24.077 12 24.158 24.080(10) 24.176(10)
7 13 24.220 14 24.271 24.217(10) 24.288(10)
8 15 24.311 24.307(15)
9 17 24.372 24.387(15)

N
©
o))
(o)
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TABLE Il. The experimental values (the number in brackets indicates the error in the second and third decimal places) are from
Buckmanet al. [4] and Buckman and Newman [5]; theorycurrent results; (a) Rau [3]; (b) Lin and Watanabe [19]; (c) Komninos
et al. [20]; (d) Rost and Briggs [21]; (e) Foet al. [22].

Theory
n N Experiment b4 a b c d e
3 5 22.451(10) 22.330 22.432 22.774 22.439
4 7 23.435(10) 23.368 23.408 23.578 23.434
5 9 23.850(10) 23.833 23.857 23.865 23.843 23.879
6 11 24.080(10) 24.077 24.087 24.095 24.077 24.090
7 13 24.217(10) 24.220 24.223 24.230 24.213 24.219
8 15 24.307(15) 24.311 24.310 24.316 24.301 24.304
9 17 24.387(15) 24.372 24.369 24.361 24.362
series,ny, =n; +1=n+1andN =2n, L =0, in One of us (A. M. L.) acknowledges a DENI distinction
the notation of Buckmaet al. [4]. award.

In future publications we extend the theory to# 0,
in particular L = 1 and L = 2, also to other Wannier
indices, for instances to those for

e~ + He'(1s%S) — He(n;snys>S).

In a unique way, we have calculated complex eigenen-
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