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Wannier Analytic Continuation to Helium Negative Ion Resonances
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The uniform, semiclassical wave function [D. S. F. Crothers, J. Phy. B19, 463 (1986)] has been
analytically continued to below the energy threshold in order to calculate the complex eigenenergies
for doubly excited states of helium using a complex Bohr-Sommerfeld quantization rule with at
least one complex transition point. The real parts of the eigenvalues are in good agreement with
the experimental results of Buckmanet al. [S. J. Buckmanet al., J. Phys. B16, 4039 (1983); S. J.
Buckman and D. S. Newman, J. Phys. B20, L711 (1987)] for the resonance positions while the
imaginary parts give the explicit widths of the resonances from which intensities have been estimated.
[S0031-9007(97)04807-2]

PACS numbers: 31.50.+w
l
t
in
ro
r

m

h
r
b

l
t
m

s-
in

er
by

ed
nd

d
e
n

ed
f
]
nt

ct
,

e

The classical theory of Wannier [1] for the thresho
behavior of electron impact ionization has become
primary focus for all discussions of processes involv
two electrons near the threshold for double escape f
the field of an ion. The central point of this theory, whe
the classical equations of motion are solved in terms
the hyperspherical variables defined by

r2 ­ r2
1 1 r2

2 , a ­ tan21

µ
r2

r1

∂
, u12 ­ cos21sr̂1, r̂2d,

(1)

is that the threshold escape of the two electrons is do
nated by the configurationa . py4, u12 . p , which
coincides with the saddle point of the potential of t
combined electron-nucleus and electron-electron inte
tions. This saddle point lies on the ridge, given
a ­ py4 for all u12 with 0 # u12 # p , which has come
to be known as the “Wannier ridge”. It is now we
established that for doubly excited states of helium
highly correlated two electron excitations manifest the
n
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selves as “Wannier ridge resonances” [2–5]. The po
sible existence of a series of negative ion resonances
which the two electrons reside at or near the Wanni
ridge in a highly correlated state was first suggested
Fano [6]. Buckmanet al. [4,5] have subsequently used
this proposal to interpret long resonance series observ
in electron scattering by helium at energies near to, a
below, the single ionization energy threshold.

Semiclassical version of Wannier’s theory were derive
by Peterkop [7] and Rau [8] but Crothers [9] gave th
first complete semiclassical uniform, quantal descriptio
of so-called Wannier threshold ionization and associat
absolute differential and total cross sections. Details o
Crothers’ semiclassical approximation are given in [9
where, after adopting a transformation of the depende
variable, the Schrödinger equation is solved in dire
analogy with Peterkop [7] by taking a JWKB (Jeffreys
Wentzel, Kramers, Brillouin) approximation for the final-
state wave function. The ingoing final-state JWKB wav
function takes the form
C2p
f ­

C1y2 exph2 1
2 i ln Du12 2 ifS0 1

1
2 S1sDad2 1

1
8 S2sDu12d2gj

v̄1y2r5y2 sina cosa
, (2)
n

in

e

e
of
ar
where, withZ0 ­ 3y
p

2 andv2 ­ 2E 1 2Z0yr,

v2 . v2 2 v
d

dr
sln u2d 1 iv

d
dr

sln u1d , (3)

S0 .
Z r

0
dr̃v̄sr̃d , (4a)

and

Si ­ r2v
1
u1

dui

dr
, i ­ 1, 2 , (4b)

with , indicating dummy variable of integration.u1

and u2 are the standard Peterkop [7] Wannier functio
which are associated, respectively, with the radial a
s
d

angular correlated motion of the two electrons. As
[9], the deviation of the hyperspherical anglea from
its Wannier ridge value ofpy4 is denoted byDa ­
a 2 py4 and the deviation of the mutual polar angl
u12 from its Wannier ridge value ofp is denoted by
Du12 ­ p 2 u12.

The purpose of the present work is to extend th
semiclassical treatment of [9] for the unstable motion
a pair of electrons along the potential ridge to the ne
threshold capture excitation process

e2 1 He ! sHe2dp

in order to calculate the complex eigenenergiesEN of the
high-lying doubly excited Rydberg states of He2 where
© 1997 The American Physical Society
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the eigenvalue of the resonance takes the form

EN ­ EN
R 2

i
2

GN , (5)

in which EN
R is the resonance position andGN is the

lifetime. We view the doubly excited negative ion o
helium as consisting of a positively charged coresZ ­
1d comprising He1s1sd, with two excited electrons in
a highly correlated state of energy below the sing
-

.

th

u

t

and setting
f

le

ionization threshold of He but above the single ionizatio
threshold of He2, in line with the grandparent model of
Schulz [10]. For the purpose of the present study t
wave function in Eq. (2) has been analytically continue
to negative energy to represent the two excited electro
which have positionsr1 and r2 while the core electron,
with position r3, is represented by the ground stat
one-electron atom eigenfunction. The final-state wa
function, including both ingoing and outgoing waves, wit
the Gans-Jeffreys [11,12] connexion formula applied
the classical turning pointr ­ 0, is given by
C2p
f ­

C
1y2
N YLMsr̂1, r̂2d23y2e22r32iy2 ln Du12 y

p
p

r5y2 sin a cos a

3
sinf

R
r
0 dr̃sv2 2 vhln u2 2 i ln u1j0d1y2 1

r2

2 vsln u1d0sDad2 1
r2

8 vsln u2d0sDu12d2 1
p

4 g
fv2 2 vhln u2 2 i ln u1j0g1y4 , (6)
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where0 indicatesdydr̃ or dydr. The complex eigenen
ergy given in Eq. (5) is employed so that we now have

v2 ­ 2EN 1
2Z0

r
, (7)

and the Wannier functions [7] take the form

u1 ­ rm12
2F1

µ
m12, m12 1 1; 2m12 1

3
2

; 2EN ryZ0

∂
,

(8a)

u2 ­ rm22
2F1

µ
m22, m22 1 1; 2m22 1

3
2

; 2ENryZ0

∂
,

(8b)

where the function2F1 is a Gauss hypergeometric func
tion [13], andm12 and m22 are the Wannier indices [7]
The wave function includes, for arbitraryl1, m1, l2, m2,
the spherical harmonic factorYLMsr̂1, r̂2d, Eq. (48) of [9].
The total angular momentL is zero for this calculation;
however, the only restrictions on the magnitudes of
l values of the individual electrons are that they shou
be equal and less than the individual principal quant
numbers.

Exponential decay of the wave function is require
beyond the two transition points of the resonating syste
given by r ­ 0 and r ­ 2Z0yEN , which is complex.
This requires that on the ridge we have

Z 2Z0yEN

0
dr

s
v2 2 v

µ
d

dr
ln u2 2 i

d
dr

ln u1

∂
­ Np 1

p

2
. (9)

Therefore, the wave function hasN nodes whereN is a
hyperspherical radial quantum number for the two exci
electrons. On changing the dummy variable according

r ­
2Z0x

EN
(10)
-

e
ld
m

d
m,
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to

c4 ­
22Z0

2

EN
, (11)

Eq. (9) becomes

c
Z 1

0
dx

µ
1
x

2 1

∂1y4
vuutc2

µ
1
x

2 1

∂1y2

2
d
dx

ln
u2

ui
1

­ Np 1
p

2
, (12)

which has been solved numerically by the compl
Newton-Raphson method. The solution involves t
removal of the obvious removable singularity at th
lower end point and since the logarithmic derivative ter
in the above integrand, is divergent forx ­ 1 it was
necessary to use the analytic continuation of the Ga
hypergeometric function given by Eq. 15.3.b of [13
Similar remarks apply to the derivative of Eq. (12) wi
respect toc.

The most extensive study of the resonance feature
He2p for n ­ 3 to n ­ 8, wheren is the lower of the two
principal quantum numbersn1 andn2, was made by Buck-
man et al. [4,5], in measurements of metastable-ato
excitation. These experiments trace the occurrence
four strong resonances which occur in then ­ 3 region
through ton ­ 8 with an additional tentative observatio
of the lowest2S feature ath ­ 9. The lowest three (in
energy) of these were classified [14–16] as intrashell re
nances, withn1 ­ n2 while the final resonance was of th
intershell type, withn1 fi n2. For the purpose of com
parison with experiment we use the terminology of Buc
manet al. [4] where it has been found that the calculat
eigenvalues correspond to those of experiment for

N ­ n1 1 n2 2 L 2 1 . (13)

Stability is maximized with equal sharing of energyn1 ­
n2, or almost equal sharingn2 ­ n1 1 1. Essentially,
any partitioning ofE into sE1, E2d, whereE ­ E1 1 E2,
is possible; equally well, any partitioning ofN 1 L 1

1 into sn1, n2d couples, whereN 1 L 1 1 ­ n1 1 n2,
4967
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is possible. To rephrase, in principle there can
strong mixing of such configurations. However, we a
concerned with the partitioning relevant to the cent
resonance peak while recognizing that othersn1, n2d
couples are involved in the broadening of the resonanc

The terminology used here corresponds to the co
lated quantum numbersK , T , andA, which are now used
as standard for the classification of such doubly exci
states, according to [17]

z sK , T dA
h

2S11Lp ­ n2 sn1 2 1, 0d0
n1

1Se , (14)

wherez , denoted byn in Lin’s notation, is the principal
quantum number of the outer electron andh, denoted by
N in Lin’s notation, is the principal quantum number
the inner electron.

The results obtained from the present calculation
given in Table I and are compared with the results
Buckmanet al. [4,5]. The energy values obtained for th
lower of the 2S resonance features correspond to valu
of N where n1 ­ n2 ­ n, while those of the higher2S
resonance feature correspond to values ofN where, for
n1 ­ n, n2 ­ n1 1 1.

In Table II, we compare our results (theoryz) for the
lower features with the table on p. 576 of Buckman a
Clark [18]. Theorya [3] and theoryb [19] are semiempir-
ical, being based on generalized Rydberg-quantum-de
formulas. Theoryc [20] is a multiconfiguration Hartree
Fock one. Theoryd [21] is a diabetic molecular treat
ment and theorye [22] is an R-matrix calculation. For
n [ f6, 9g, our results lie within experimental error. Fo
n [ f3, 5g, our results are a little on the low side b
0.111, 0.057, and 0.007, respectively. Forn [ f3, 4g the
R-matrix theorysed [22] gives the best agreement. By th
very nature of our near-threshold analysis, the accurac
our results at the highern values would be expected t
exceed that for the lowern values.

In Table III we compare our relative intensities wi
those of Buckman and Newman [5]. ForN ­ 13, 15, 17
we see that the ratio of the two sets of intensities
reached a stable converged value. Our intensity is ta
as being proportional tojEN j

1
2 GN . This follows from the
rror
TABLE I. Resonance position energies forL ­ 0, n1 ­ n, n2 ­ n1 ) N ­ n1 1 n2 2 1 ­ 2n 2 1, and for L ­ 00, n1 ­
n, n2 ­ n1 1 1 ) N ­ n1 1 n2 2 1 ­ 2n sinceN ­ n1 1 n2 2 jl1 2 l2j 2 1, where L­ jl1 2 l2j. The experimental values
are from (a) Buckmanet al. [4] and (b) Buckman and Newman [5] using their notation. The number in brackets indicates the e
in the second and third decimal places.

Present results
resonance position energies (eV) b a

n N L ­ 0 N L ­ 00 L ­ 0 L ­ 00

2 3 19.492 19.367(5)
3 5 22.330 6 22.963 22.451(10) 22.881(05)
4 7 23.368 8 23.641 23.435(10) 23.667(05)
5 9 23.833 10 23.973 23.850(10) 23.983(10)
6 11 24.077 12 24.158 24.080(10) 24.176(10)
7 13 24.220 14 24.271 24.217(10) 24.288(10)
8 15 24.311 24.307(15)
9 17 24.372 24.387(15)
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theory of Fano [23] (cf. also Cowan [24]) by which the au
toionization transition probability rate is Aa, which is pro-
portional to hisjkfjHjcelj2 wheref is our C

2p
f andce

is our fi. This in turn is proportional tojEN j, upon nor-
malizing f. It follows that the intensity is proportional
to the product of Aa and 1

2 GN , the lifetime. By detailing
balance, the intensity for electron capture to form the do
bly excited state is given likewise. The energy behavi
of kfjfl is obtained by integrating over the mutual po
lar angle and the hyperspherical angle by the method
steepest descent and by averaging over the rapidly vary
sin2 term in the hyperspherical radial integral. It is no
ticeable that thejEN jm12 term is canceled. By running our
code up toN [ f20, 30g, we observe thatEN

R , N22. By
running our code up toN ­ 300, we observe that eventu-
ally GN , N23, whereas forN [ f21, 29g, GN , N22.87.
This N22 and N23 behavior is to be expected—for in
stance, by taking the smallx behavior ofu1 and u2 in
Eq. (12), evaluating as a sum of two3F2 hypergeomet-
ric functions, and analytically continuing via Barnes com
plex contour integrals. The net effect is thatIN , N25 in
comparison with results of Feagin and Macek [25], name
N25.254 ­ N2322m12 , Rau [26], namelyN26.254, Heim and
Rau [27], namelyN26.5, and Buckman and Newman [5]
namely for N [ f13, 17g N25.260.7. However, this is a
little bit academic since forN [ f21, 29g, our result is
more likeN24.89; nevertheless, forN [ f13, 17g it is more
like N24.8860.01 well within the error bars of [5]. More
significant therefore is the converged ratio of the expe
mental, and our Wannier results, of Table III, namel
4.4s60.1d 3 1022 for N [ f13, 17g, which embraces an
error tolerance of less than 3%.

In summary, we have analytically continued the abov
threshold Wannier quantal ionization theory of [9] t
below threshold Wannier quantal doubly excited state
We have presented results for

e2 1 Hes1s21Sd ! He2sss1ssn1sn2s2Sdddd

doubly excited states, where for the principal series,n1 ­
n2 ­ n andN ­ 2n 2 1, L ­ 0, while for the subsidiary
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TABLE II. The experimental values (the number in brackets indicates the error in the second and third decimal places) ar
Buckmanet al. [4] and Buckman and Newman [5]; theory:z current results; (a) Rau [3]; (b) Lin and Watanabe [19]; (c) Komnino
et al. [20]; (d) Rost and Briggs [21]; (e) Fonet al. [22].

Theory
n N Experiment z a b c d e

3 5 22.451(10) 22.330 ... ... 22.432 22.774 22.43
4 7 23.435(10) 23.368 ... ... 23.408 23.578 23.43
5 9 23.850(10) 23.833 23.857 23.865 23.843 23.879 ...
6 11 24.080(10) 24.077 24.087 24.095 24.077 24.090 ...
7 13 24.217(10) 24.220 24.223 24.230 24.213 24.219 ...
8 15 24.307(15) 24.311 24.310 24.316 24.301 24.304 ...
9 17 24.387(15) 24.372 24.369 24.361 24.362 ...
e
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,

series,n2 ­ n1 1 1 ­ n 1 1 and N ­ 2n, L ­ 00, in
the notation of Buckmanet al. [4].

In future publications we extend the theory toL fi 0,
in particular L ­ 1 and L ­ 2, also to other Wannier
indices, for instances to those for

e2 1 He1s1s2Sd ! Hesn1sn2s2Sd .

In a unique way, we have calculated complex eigene
ergies whose imaginary parts give directly the lifetim
of these Wannier doubly excited Rydberg states [8], a
have obtained good agreement with experiment, previo
theories having addressed the resonance energy posit
only. Moreover, since conversely the theory of [9] fo
above-threshold ionization is the analytic continuation
our new below-threshold ionization theory, it reinforce
our contention that our above-threshold ionization theo
is a fully fledged quantal treatment of ionization. Th
fact that we use semiclassical asymptotic methods to
rive the form C

2p
f on the hyperspherical surface at in

finity, at which the detectors of the two electrons mu
be placed, does not obviate our contention that we ha
formed a uniform semiclassical exact quantal descripti
of the Wannier ridge states. This does not mean that
initial total wave functionC

1
i cannot be improved using

all the well known methods, whereas ource or fi above
is only a plane wave times a target wave function. O
course, it can. For instance, and of relevance especia
to lowern1 values, exchange could be included.

TABLE III. Relative intensity values forL ­ 0 resonances.
The experimental values (the number of brackets indicates
error in the last and second last decimal places) are fro
Buckman and Newman [5].

Relative intensity
N Experiment [5] 1

2 GN jEN
R 2

i
2 GN j Ratio

5 0.53(1) 0.0050 0.0094
7 0.048(1) 0.00099 0.021
9 0.0105(2) 0.00029 0.028

11 0.0021(3) 0.00011 0.052
13 0.0011(1) 0.000049 0.045
15 0.00054(12) 0.000024 0.044
17 0.00030(12) 0.000013 0.043
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