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Structure of the Black Hole’s Cauchy-Horizon Singularity
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We study the Cauchy-horizon (CH) singularity of a spherical charged black hole perturbed nonlin
by a self-gravitating massless scalar field. We show numerically that the singularity is weak both
early and at the late sections of the CH, where the focusing of the area coordinater is strong. In the
early section the metric is almost Reissner-Nordström, and the fields behave according to pertur
analysis. We find exact analytical expressions for the gradients ofr and of the scalar field, which are
valid at both sections. We then verify these analytical results numerically. [S0031-9007(97)048
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One of the long-standing interesting predictions
general relativity (GR) is the occurrence of spacetim
singularities inside black holes (BH’s). This issue
intriguing, because the laws of physics we currently u
derstand (e.g., classical GR) are not valid at singularit
but some other, as yet unknown, laws take over from cl
sical GR and control the structure of singularities. Thu
despite many efforts in the last few decades, the na
of the spacetime singularities in a generic gravitation
collapse—and, more generally, the final outcome of
collapse—are still open questions.

Until recently, the only known generic singularit
was the Belinsky-Khalatnikov-Lifshitz (BKL) singularity
[1]—an oscillatory spacelike singularity. In the last fe
years, however, evidence has been steadily accumula
that another type of singularity forms at the Cauc
horizon (CH) of spinning or charged BH’s. The featur
of this new singularity differ drastically from those of th
previously known singularities like, e.g., Schwarzsch
or BKL. First, the CH singularity is null rather than
spacelike [2–4]. Second, it is weak [3,4]. Namel
the tidal distortion experienced by an infalling extend
test body is finite (and, moreover, is typically negligib
small) as it hits the singularity [6]. Yet, curvature scala
diverge there [2,4] (in the spherical charged case, thi
expressed by mass inflation [2]).

For uncharged spinning BH’s (the more realistic cas
the evidence in favor of this new picture emerges p
marily from a systematic linear and nonlinear perturb
tive analysis [4,5]. In addition, the local existence a
genericity of a null weak singularity in solutions of th
vacuum Einstein equations was demonstrated in Ref.
(The compliance of null weak singularities with the co
straint equations was demonstrated in [8].) In the case
a spherical charged BH, the weakness of the singula
was first demonstrated in [3]. More recently, an appro
mate leading-order analysis [9] confirmed the local co
sistency of this new picture.

Despite these recent advances, our understanding o
null weak CH singularity is still far from being complete
In particular, it is important to verify this new picture b
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performing independent, nonperturbative analyses. T
motivates one to employ numerical tools to study th
structure of the CH singularity. The numerical simulatio
of spinning BH’s is difficult, as they are nonspherica
One is thus led to study, numerically, the inner structu
of a spherical charged BH; hopefully, it may serve as
useful toy model for a spinning BH.

The first numerical analysis of a perturbed charge
BH’s interior was carried out by Gnedin and Gnedin [10
who analyzed the spherically symmetric gravitation
collapse of a self-gravitating scalar field over a charg
background. The coordinates (and numerical grid) us
there, however, do not allow getting even close to the C
More recently, Brady and Smith (BS) [11] numericall
explored the mass-inflation singularity inside a spheric
charged BH perturbed nonlinearly by a scalar fiel
This analysis confirmed several aspects of the abo
new picture: It demonstrated the existence of a nu
singularity at the CH, where the mass functionm diverges
but the radial Schwarzschild coordenater is nonzero.
The quantity r was found to decrease monotonicall
with increasing retarded time along the CH, due to th
nonlinear focusing, until it shrinks to zero (at which
point the singularity becomes spacelike). It also provid
evidence for the weakness of the singularity. Desp
its remarkable achievements, however, this analysis l
one important issue unresolved: To what extent is t
perturbative approach applicable at (and near) the C
singularity? BS reported on an inconsistency with th
predictions of perturbation analysis, manifested by t
nonzero value ofs (see [11]), namely, a finite deviation
of the power-law indices from the integer values predicte
by perturbative analyses. This issue is crucial, becau
for realistic (i.e., spinning and uncharged) black holes t
only direct evidence at present for the actual occurren
of a null weak singularity stems from the perturbativ
analysis [4]. A failure of the perturbative approach in th
spherical charged case would therefore cast doubts on
understanding of realistic black hole interiors.

In this Letter we report on a numerical and analytic
investigation, which we carried out in order to answer th
© 1997 The American Physical Society
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and other questions. We consider the model of a spher
charged black hole nonlinearly perturbed by a spherica
symmetric, self-gravitating, neutral, massless scalar fi
F (the same model as in [10,11]). We shall first prese
our numerical results which show that the CH singular
is indeed weak—not only in the early part of the CH, b
also all the way down to the point of complete focusin
(r ­ 0). Then, we study the asymptotic behavior
perturbations at the early part of the CH, and demonst
the full compliance with the predictions of perturbatio
theory (in particular, we find thats ; 0). In addition,
we shall show that despite the divergence ofm, the metric
functions at the asymptotically early part of the CH a
remarkably close to the unperturbed Reissner-Nordstr
(RN) metric functions—which is again a prediction of th
perturbation analysis (according to the latter, the me
perturbations should vanish at the asymptotic past “ed
of the CH, despite the divergence of the curvature [4
Then, we shall analyze the behavior of the bluesh
factors r,y and F,y , as a function ofu, at the late
(i.e., strong-focusing) part of the CH, whereu and y

are ingoing and outgoing null coordinates, respectiv
(see below). The asymptotic behavior ofr,y and F,y
is essential, because it is primarily these entities that
responsible to the divergence of curvature at the CH.
shall present exact analytic expressions for these enti
and verify them numerically. The expression we obta
for F,y, in addition to our numerical results, shows th
s vanishes not only at the early part of the CH, but a
everywhere along it.

We write the general spherically symmetric line el
ment in double-null coordinates,

ds2 ­ 2fsu, yd du dy 1 r2su, yd dV2, (1)

where dV2 is the unit two-sphere. As the source term f
the Einstein equations, we take the contributions of b
the scalar field and the (sourceless) spherically symme
electric field (see [12] for more details). The dynamic
field equations are

F,uy 1 fr,uF,y 1 r,yF,ugyr ­ 0 , (2)

f,uy ­
f,uf,y

f
1 f

(
1

2r2

"
4r,ur,y 1 f

√
1 2 2

Q2

r2

!#

2 2F,uF,y

)
, (3)

r,uy ­ 2
r,ur,y

r
2

f
4r

√
1 2

Q2

r2

!
, (4)

where the constantQ is the electric charge. Equa
tions (2)–(4) are supplemented by two constra
equations:

r,uu 2 sln fd,ur,u 1 rsF,ud2 ­ 0 , (5)

r,yy 2 sln fd,yr,y 1 rsF,yd2 ­ 0 . (6)
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It turns out that it is advantageous to substitu
fsu, yd ­ 2e2ssu,yd for the numerical integration near the
CH. Our initial value setup is described in Ref. [12]
The geometry is initially RN, with initial massM0 ­ 1
and chargeQ, and no scalar field. At some momen
y, however, it is modified by an ingoing scalar-field
pulse of a squared-sine shape with amplitudeA. F

vanishes everywhere on the initial surface except
a finite range y1 , y , y2. The results presented
below relate to y1 ­ 10, y2 ­ 20, Q ­ 0.95, and
A ­ 8 3 1022, unless stated otherwise. In this cas
due to the scalar-field energy, the BH’s external ma
approaches the final massMf ø 1.4. (We also checked
other values of0.5 , QyMf , 0.99 andA, and obtained
similar results.) Note that our outgoing initial nul
hypersurface is located outside the event horizon (E
(unlike in Ref. [11]). Therefore, we do not have to
make any assumption about the inverse power tails
the EH; these are created automatically by the dynami
evolution. Our numerical scheme is essentially the sa
as described in Ref. [12] (there are few modification
which will be described elsewhere [14]): It is based o
free evolution in double-null coordinates. The code
stable and second-order accurate [12]. Our numeri
setup is displayed in Fig. 1, embedded in the Penro
diagram of the simulated spacetime.

The null coordinatesu andy are defined in Ref. [12]:
They are taken to be linear withr on the two characteristic
initial segments. For the presentation and interpretati

FIG. 1. The Penrose diagram of the simulated spacetim
Singularities are displayed by thick lines, and the characteris
hypersurface on which the initial data are specified are mark
with dashed lines. The various fields are probed along outgo
(such as 1—in the early sections—and 2—in the late sectio
and ingoing (such as 3) null rays. It is still unknown whethe
there is a continuation of the spacetime manifold beyond t
CH. Our domain of integration cannot include the entir
spacelike portion of the singularity. These uncovered areas
marked by dashed thick lines.
4959
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of the results, we shall occasionally use other types
double-null coordinates: Eddington-like coordinatesue

andye, and Kruskal-like coordinates (of theinner horizon
of RN) U and V . (In the perturbed spacetime, th
Eddington-like and Kruskal-like coordinates are define
with respect to the asymptotic “vertex” region, wher
the metric perturbations vanish asymptotically; see [14
Recall that aty ¿ Mf , y is closely related toye [12].

Our numerical simulations confirm the presence
a null singularity at the CH, wherem diverges and
r is nonzero. Along the CH singularity,r decreases
monotonically, until it shrinks to zero, at which point th
singularity becomes spacelike. This situation was alrea
found numerically by BS [11].

We shall first discuss the early part of the CH sin
gularity, i.e., the part where the focusing ofr is still
negligible. Our first goal is to demonstrate that the si
gularity is weak. In terms of the double-null metric (1
the singularity will be weak if coordinateŝusud, ŷsyd can
be chosen such that bothr andgûŷ are finite and nonzero
at the CH. The numerical analysis by BS already demo
strated the finiteness ofr, which we recover in our re-
sults. (Note thatr is independent of the choice of the
null coordinates.) Figure 2(C) displays the metric fun
tion g ; 22gûŷ in Kruskal-like coordinatesU, V along
an outgoing null ray that intersects the early section
the CH singularity. The CH is located atV ­ 0 (corre-
sponding toy ! `). This figure clearly demonstrates th
finiteness ofgUV , from which the weakness of the singu
larity follows.

The perturbation analysis also predicts that both t
scalar field and the metric perturbations will be arbitrari
small at the early section of the CH. In other word

FIG. 2. Metric functions in the early sections of the CH.g
[(A) and (C)] and r [(B) and (D)] as functions of logsUV d
along an outgoing ray and an ingoing ray aty ­ 80 (see
text). The solid lines are the RN values (computed accord
to the BH’s external parameters aty ­ 75), and the circles
represent the numerical values. (E) The mass function alo
the same outgoing ray as (C) and (D). Here we tookN ­ 80
andA ­ 5 3 1022, which corresponds toMf ø 1.1.
4960
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both metric functionsr and g should be arbitrarily close
to the corresponding RN metric functions. This behavi
is indeed demonstrated in Fig. 1. In this figure,g and
r are displayed along linesy ­ const [Figs. 2(A) and
2(B)] andu ­ const [Figs. 2(C) and 2(D)]. The similarity
of the analytic RN functions and the numerically obtaine
functions of the perturbed spacetime is remarkable. (W
emphasize, though, that despite the similarity in the valu
of the metric functions to RN, our geometry is drastical
different from that of RN, in the sense that in our cas
curvature blows up at the CH.)

The validity of the perturbation analysis is checked
more detail in Fig. 3, which displays the power-law beha
ior of C ; rF, C,y, andr,y near the early section of the
CH. Figure 3(A) displays these entities along an outgoi
ray. Both the ringing and the power-law tails are appa
ent (the graph ofC approaches a nonzero limiting value
due to the finite value ofU on that ray). Figure 3(B) dis-
plays R ; C,yyClin

,y , where Clin
,y ­ CEH

,y f2sMfyQd2 2

1g is the asymptotic form ofC,y as predicted by linear
perturbation theory [13], andCEH

,y is the (y-dependent)
value ofC,y at the EH. Numerically, we find that at large
y, R tends asymptotically to1—it deviates from unity by
no more than2 3 1023 at y ­ 600. A similar result was
obtained for various values ofQ andA. We thus find no
evidence for charge-dependent internal power-law indic
and we conclude that the parameters of Ref. [11] vanishes
identically. The behavior ofm along the same outgoing
ray is shown in Fig. 3(C). Clearly, the exponential grow
of m does not affect the validity of the perturbation anal
sis. Finally, Fig. 3(D) displaysC along aningoing null
ray at very largey. The local power index (see [12]) ofue

is found numerically to be3.1, in a remarkable agreemen
with the value3 predicted by linear perturbation theory
We conclude that the linear perturbation analysis descri

FIG. 3. Fields in the early sections of the CH. (A)C (solid),
C,y (dashed), andr,y (dash-dotted) along an outgoing ray, as
function of y. (B) R, and (C) logm, along the same outgoing
ray, as a function ofy. (D) C along an ingoing ray, as a
function of U.
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FIG. 4. The nonlinear regime (contraction of the CH of90%):
(A) G along an outgoing null ray, as a function ofy. Dotted:
N ­ 20; dash-dotted:N ­ 40; dashed:N ­ 80; and solid line:
N ­ 160. (B) logm along the same outgoing ray. (C)R
(dashed) andP (solid) along the same outgoing null ray, a
a function ofy.

the evolution of perturbation near the vertex well, desp
the divergence ofm (and the curvature). This confirms th
prediction of nonlinear perturbation analysis [4], namel
that nonlinear perturbations will be negligible at the ear
part of the CH, compared to the linear perturbations.

We turn now to explore the late part of the CH sin
gularity, where focusing is strong. First, we numerical
verify the weakness of the singularity in this part too
Figure 4(A) showsG ; 22guV along an outgoing null
ray in the late part of the CH, where the value ofr has
shrunk to10% of the value it had when the CH was firs
formed. We present here the results for various values
the grid-parameterN (see [12]), in order to demonstrate
the second-order numerical convergence.guV approaches
a finite value at the CH (y ! `). At the same time, the
mass function (and curvature) grows exponentially withy

[see Fig. 4(B)]. We conclude that the entire null CH sin
gularity is weak, even at the region of strong focusing.

Next we study, analytically, the behavior of th
blueshift factorsr,y and F,y along the contracting CH.
Here, we shall present the results; the full derivation w
be presented in Ref. [15]. The field equations (2) and
can be integrated exactly along the CH singularity [15
For r,y we find

fr2g,ye ­ 2s2yk2dC2
,ye

, (7)
and forC,y we find

C,y ­ f2sMfyQd2 2 1gCEH
,y . (8)

Here, k2 is the surface gravity at the RN inner horizo
with parametersMf and Q. For convenience, Eqs. (7)
te

,
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y
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].

and (8) are expressed in terms ofC. Note that (8) is
invariant to a gauge transformationy ! ỹsyd, whereas
(7) is not. [Equation (7) refers explicitly to the derivatives
with respect to the Eddington-like coordinateye.]

In order to verify this prediction, we calculated nu-
merically R ; C,yyhCEH

,y f2sMfyQd2 2 1gj and P ;
2sr2d,ye

yfs2yk2dC2
,ye

g, as functions of y, along an
outgoing ray located at a region of90% focusing of
the CH. The results, presented in Fig. 4(C), are
excellent agreement with the above theoretical predictio
R ­ 1 ­ P.

To summarize, we have confirmed, numerically (fo
a spherical charged black hole) the main predictions
the perturbation analysis (which apply both to spheric
charged and nonspherical, spinning BH’s): The null sin
gularity at the CH is found to be weak. In the asymptoti
early section of the CH the metric functions approach arb
trarily close to the corresponding metric functions in RN
and, moreover, the perturbations are well described by t
linearperturbation analysis. This confirms the conclusion
of the perturbation analysis [4] that the nonlinear effec
are negligible at the early section of the CH singularity
In addition, we analytically derived exact expressions fo
the diverging blueshift factorsr,y andF,y , which are valid
everywhere along the contracting CH.

I am indebted to Amos Ori for numerous invaluable
discussions and useful comments.
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