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Structure of the Black Hole’s Cauchy-Horizon Singularity
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We study the Cauchy-horizon (CH) singularity of a spherical charged black hole perturbed nonlinearly
by a self-gravitating massless scalar field. We show numerically that the singularity is weak both at the
early and at the late sections of the CH, where the focusing of the area coordiisastrong. In the
early section the metric is almost Reissner-Nordstrém, and the fields behave according to perturbation
analysis. We find exact analytical expressions for the gradientsaoid of the scalar field, which are
valid at both sections. We then verify these analytical results numerically. [S0031-9007(97)04852-7]

PACS numbers: 04.70.Bw, 04.20.Dw, 04.25.Dm

One of the long-standing interesting predictions ofperforming independent, nonperturbative analyses. This
general relativity (GR) is the occurrence of spacetimemotivates one to employ numerical tools to study the
singularities inside black holes (BH’s). This issue isstructure of the CH singularity. The numerical simulation
intriguing, because the laws of physics we currently un-of spinning BH’s is difficult, as they are nonspherical.
derstand (e.g., classical GR) are not valid at singularitiesDne is thus led to study, numerically, the inner structure
but some other, as yet unknown, laws take over from clasef a spherical charged BH; hopefully, it may serve as a
sical GR and control the structure of singularities. Thususeful toy model for a spinning BH.
despite many efforts in the last few decades, the nature The first numerical analysis of a perturbed charged
of the spacetime singularities in a generic gravitationaBH'’s interior was carried out by Gnedin and Gnedin [10],
collapse—and, more generally, the final outcome of thevho analyzed the spherically symmetric gravitational
collapse—are still open questions. collapse of a self-gravitating scalar field over a charged

Until recently, the only known generic singularity background. The coordinates (and numerical grid) used
was the Belinsky-Khalatnikov-Lifshitz (BKL) singularity there, however, do not allow getting even close to the CH.
[1]—an oscillatory spacelike singularity. In the last few More recently, Brady and Smith (BS) [11] numerically
years, however, evidence has been steadily accumulatirexplored the mass-inflation singularity inside a spherical
that another type of singularity forms at the Cauchycharged BH perturbed nonlinearly by a scalar field.
horizon (CH) of spinning or charged BH’s. The featuresThis analysis confirmed several aspects of the above
of this new singularity differ drastically from those of the new picture: It demonstrated the existence of a null
previously known singularities like, e.g., Schwarzschildsingularity at the CH, where the mass functiardiverges
or BKL. First, the CH singularity is null rather than but the radial Schwarzschild coordenateis nonzero.
spacelike [2—4]. Second, it is weak [3,4]. Namely, The quantity » was found to decrease monotonically
the tidal distortion experienced by an infalling extendedwith increasing retarded time along the CH, due to the
test body is finite (and, moreover, is typically negligibly nonlinear focusing, until it shrinks to zero (at which
small) as it hits the singularity [6]. Yet, curvature scalarspoint the singularity becomes spacelike). It also provided
diverge there [2,4] (in the spherical charged case, this isvidence for the weakness of the singularity. Despite
expressed by mass inflation [2]). its remarkable achievements, however, this analysis left

For uncharged spinning BH’s (the more realistic case)pne important issue unresolved: To what extent is the
the evidence in favor of this new picture emerges pri-perturbative approach applicable at (and near) the CH
marily from a systematic linear and nonlinear perturbasingularity? BS reported on an inconsistency with the
tive analysis [4,5]. In addition, the local existence andpredictions of perturbation analysis, manifested by the
genericity of a null weak singularity in solutions of the nonzero value ofr (see [11]), namely, a finite deviation
vacuum Einstein equations was demonstrated in Ref. [7pf the power-law indices from the integer values predicted
(The compliance of null weak singularities with the con-by perturbative analyses. This issue is crucial, because
straint equations was demonstrated in [8].) In the case dbr realistic (i.e., spinning and uncharged) black holes the
a spherical charged BH, the weakness of the singularitgnly direct evidence at present for the actual occurrence
was first demonstrated in [3]. More recently, an approxi-of a null weak singularity stems from the perturbative
mate leading-order analysis [9] confirmed the local conanalysis [4]. A failure of the perturbative approach in the
sistency of this new picture. spherical charged case would therefore cast doubts on our

Despite these recent advances, our understanding of thmderstanding of realistic black hole interiors.
null weak CH singularity is still far from being complete. In this Letter we report on a numerical and analytical
In particular, it is important to verify this new picture by investigation, which we carried out in order to answer this
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and other questions. We consider the model of a spherical It turns out that it is advantageous to substitute
charged black hole nonlinearly perturbed by a spherically (1, v) = 2¢%®?) for the numerical integration near the
symmetric, self-gravitating, neutral, massless scalar fiel@H. Our initial value setup is described in Ref. [12]:
® (the same model as in [10,11]). We shall first presenThe geometry is initially RN, with initial massZy = 1
our numerical results which show that the CH singularityand chargeQ, and no scalar field. At some moment
is indeed weak—not only in the early part of the CH, butv, however, it is modified by an ingoing scalar-field
also all the way down to the point of complete focusingpulse of a squared-sine shape with amplitutle ®
(r = 0). Then, we study the asymptotic behavior of vanishes everywhere on the initial surface except in
perturbations at the early part of the CH, and demonstrata finite range v; < v < v,. The results presented
the full compliance with the predictions of perturbation below relate to v; = 10, v, =20, Q = 0.95, and
theory (in particular, we find thatr = 0). In addition, A = 8 X 1072, unless stated otherwise. In this case,
we shall show that despite the divergencemgthe metric  due to the scalar-field energy, the BH’s external mass
functions at the asymptotically early part of the CH areapproaches the final mas$, ~ 1.4. (We also checked
remarkably close to the unperturbed Reissner-Nordstrorather values 0.5 < Q/M; < 0.99 andA, and obtained
(RN) metric functions—which is again a prediction of the similar results.) Note that our outgoing initial null
perturbation analysis (according to the latter, the metridypersurface is located outside the event horizon (EH)
perturbations should vanish at the asymptotic past “edge(unlike in Ref. [11]). Therefore, we do not have to
of the CH, despite the divergence of the curvature [4])make any assumption about the inverse power tails at
Then, we shall analyze the behavior of the blueshifthe EH; these are created automatically by the dynamical
factors r,, and ®,, as a function ofu, at the late evolution. Our numerical scheme is essentially the same
(i.e., strong-focusing) part of the CH, whereand v  as described in Ref. [12] (there are few modifications,
are ingoing and outgoing null coordinates, respectivelywhich will be described elsewhere [14]): It is based on
(see below). The asymptotic behavior of and ®,  free evolution in double-null coordinates. The code is
is essential, because it is primarily these entities that arstable and second-order accurate [12]. Our numerical
responsible to the divergence of curvature at the CH. Wsetup is displayed in Fig. 1, embedded in the Penrose
shall present exact analytic expressions for these entitiedjagram of the simulated spacetime.
and verify them numerically. The expression we obtain The null coordinates andv are defined in Ref. [12]:
for @, in addition to our numerical results, shows thatThey are taken to be linear withon the two characteristic
o vanishes not only at the early part of the CH, but alsadnitial segments. For the presentation and interpretation
everywhere along it.

We write the general spherically symmetric line ele-
ment in double-null coordinates, Spacelike

singularity 4 o
ds* = —f(u,v)dudv + r?(u,v) dQ?, Q) = *

where dQ)? is the unit two-sphere. As the source term for
the Einstein equations, we take the contributions of both
the scalar field and the (sourceless) spherically symmetric
electric field (see [12] for more details). The dynamical
field equations are

(I),uv + [r,uq),v + r,vq),u]/r =0, (2)

Jufw 1 0’
f,uv = T + f[ﬁ |:47"M}",v + f(l - 2?>:|

- 2(I),uq),v] 5 (3) v

rul, Q2
Fuv = - 4L (1 - —2> (4) FIG. 1. The Penrose diagram of the simulated spacetime.
r r r Singularities are displayed by thick lines, and the characteristic
where the constanp is the electric charge. Equa- hypersurface on which the initial data are specified are marked

. . with dashed lines. The various fields are probed along outgoing
tions (2)—(4) are supplemented by two constraing,ch as 1—in the early sections—and 2—in the late sections)
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equations: and ingoing (such as 3) null rays. It is still unknown whether
2 there is a continuation of the spacetime manifold beyond the
Faw = (INf)uru + r(®,)° =0, (®)  cH. our domain of integration cannot include the entire
spacelike portion of the singularity. These uncovered areas are
Foy — (INf)yry + r((I),v)2 =0. (6) marked by dashed thick lines.

4959



VOLUME 79, NUMBER 25 PHYSICAL REVIEW LETTERS 22 BCEMBER 1997

of the results, we shall occasionally use other types oboth metric functions- and g should be arbitrarily close
double-null coordinates: Eddington-like coordinates to the corresponding RN metric functions. This behavior
andv,, and Kruskal-like coordinates (of thiener horizon is indeed demonstrated in Fig. 1. In this figuge.and
of RN) U and V. (In the perturbed spacetime, the r are displayed along lines = const [Figs. 2(A) and
Eddington-like and Kruskal-like coordinates are defined2(B)] andu = const [Figs. 2(C) and 2(D)]. The similarity
with respect to the asymptotic “vertex” region, whereof the analytic RN functions and the numerically obtained
the metric perturbations vanish asymptotically; see [14])functions of the perturbed spacetime is remarkable. (We
Recall that av > My, v is closely related ta, [12]. emphasize, though, that despite the similarity in the values
Our numerical simulations confirm the presence ofof the metric functions to RN, our geometry is drastically
a null singularity at the CH, wheren diverges and different from that of RN, in the sense that in our case
r is nonzero. Along the CH singularity; decreases curvature blows up at the CH.)
monotonically, until it shrinks to zero, at which point the  The validity of the perturbation analysis is checked in
singularity becomes spacelike. This situation was alreadynore detail in Fig. 3, which displays the power-law behav-

found numerically by BS [11]. iorof ¥ = r®o, ¥, andr, near the early section of the
We shall first discuss the early part of the CH sin-CH. Figure 3(A) displays these entities along an outgoing
gularity, i.e., the part where the focusing efis still ray. Both the ringing and the power-law tails are appar-

negligible. Our first goal is to demonstrate that the sin-ent (the graph of approaches a nonzero limiting value,
gularity is weak. In terms of the double-null metric (1), due to the finite value of/ on that ray). Figure 3(B) dis-
the singularity will be weak if coordinate®(u), #(v) can  plays R = ¥, /¥ where W' = WEH[D (M, /0)* —
be chosen such that bothand g;; are finite and nonzero 1] is the asymptotic form of¥’, as predicted by linear
at the CH. The numerical analysis by BS already demonperturbation theory [13], an®5H is the @-dependent)
strated the finiteness of, which we recover in our re- value of ¥, atthe EH. Numerically, we find that at large
sults. (Note thatr is independent of the choice of the v, R tends asymptotically td—it deviates from unity by
null coordinates.) Figure 2(C) displays the metric func-no more thar2 X 1073 atv = 600. A similar result was
tion g = —2g;4 in Kruskal-like coordinated/, vV along  obtained for various values @ andA. We thus find no
an outgoing null ray that intersects the early section ofvidence for charge-dependent internal power-law indices,
the CH singularity. The CH is located & = 0 (corre-  and we conclude that the parametenf Ref. [11] vanishes
sponding tov — ). This figure clearly demonstrates the identically. The behavior ofz along the same outgoing
finiteness ofgyy, from which the weakness of the singu- ray is shown in Fig. 3(C). Clearly, the exponential growth
larity follows. of m does not affect the validity of the perturbation analy-
The perturbation analysis also predicts that both theis. Finally, Fig. 3(D) displaysl along aningoing null
scalar field and the metric perturbations will be arbitrarilyray at very largay. The local power index (see [12]) af
small at the early section of the CH. In other words,is found numerically to b8.1, in a remarkable agreement
with the value3 predicted by linear perturbation theory.
We conclude that the linear perturbation analysis describes
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FIG. 2. Metric functions in the early sections of the CH. 0 107
. 2
[(A) and (C)] andr [(B) and (D)] as functions of lo@/V) 20 400 600 10 " 10°

along an outgoing ray and an ingoing ray at= 80 (see

text). The solid lines are the RN values (computed accordind-1G. 3. Fields in the early sections of the CH. (%) (solid),

to the BH’'s external parameters at= 75), and the circles WV, (dashed), and, (dash-dotted) along an outgoing ray, as a
represent the numerical values. (E) The mass function alonfunction ofv. (B) R, and (C) logn, along the same outgoing
the same outgoing ray as (C) and (D). Here we tdbk= 80 ray, as a function ofv. (D) ¥ along an ingoing ray, as a
andA = 5 X 1072, which corresponds taf, ~ 1.1. function of U.
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5pX10" 200 gnd (8) are expressed in terms ‘dﬁ Note that (8) is
et 1000 invariant to a gauge transformatian— ¥ (v), whereas
3 £ a0 (7) is not. [Equation (7) refers explicitly to the derivatives
o3 2 600 with respect to the Eddington-like coordinatg]
< 400 In order to verify this prediction, we calculated nu-
* 200 ° merically R = ¥, /{WEN[2(M;/Q)* — 1]} and P =
28] T —(r?) ., /[(2/k-)¥2 ], as functions ofwv, along an

v outgoing ray located at a region ®0% focusing of
the CH. The results, presented in Fig. 4(C), are in
] excellent agreement with the above theoretical prediction,
c R=1=P.

To summarize, we have confirmed, numerically (for
a spherical charged black hole) the main predictions of
| the perturbation analysis (which apply both to spherical
100 120 140 160 180 200 charged and nonspherical, spinning BH’s): The null sin-
Y gularity at the CH is found to be weak. In the asymptotic
'(:/-I\)G . 4éloﬁhea?1081|jtneoei1{1 feﬁlm?? écoggrzcgﬁgcggahgfcaﬁzg_ early section of the CH the metric functions approach arbi-
N = 20; dagsh-dotte?jN 9 40: daghedN Z'%0: and solid line: trarily close to the corresponding metric functions in RN,
N = 160. (B) logm along the same outgoing ray. (@ a_md, moreover, the perturbatlor?s are yvell described by the
(dashed) and?® (solid) along the same outgoing null ray, as linear perturbation analysis. This confirms the conclusions
a function ofv. of the perturbation analysis [4] that the nonlinear effects
are negligible at the early section of the CH singularity.
In addition, we analytically derived exact expressions for

Ghe diverging blueshift factors, and® ,, which are valid
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the evolution of perturbation near the vertex well, despit
the d'iv_ergence oiz_ (and the curvgture). Thig confirms the everywhere along the contracting CH.
pfed'c“of‘ of nonlinear perturpa’uon ana_ly_sls [4], namely, | am indebted to Amos Ori for numerous invaluable
that nonlinear perturbations will b_e negligible at_the earlydiscussions and useful comments.
part of the CH, compared to the linear perturbations.
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