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It is shown that certain sum rule identities exist which relate correlation functionsRaotts spins on
the boundary of a planar lattice far= 4. Explicit expressions of the identities are obtainedsfor 4.
It is also shown that the identities provide the missing link needed for a complete determination of the
duality relation for then-point boundary correlation function. The= 4 duality relation is obtained
explicitly. More generally we deduce the number of sum rule identities as well as a cyclic inversion
relation for anyn, and conjecture on the general form of the duality relation. [S0031-9007(97)04886-2]

PACS numbers: 05.50.+q, 75.10.Hk

The Potts model [1], which is a generalization of r,=q"P,c,0,....,0) — 1 2
the two-component Ising model tq components for yanishes identically if then spins are completely
arbitrary g, has been the subject matter of intense interestcorrelated.
in many fields ranging from condensed matter to high- |+ is convenient to write P;;..o = Pu(i.j.....€) =

energy physics. For reviews on the Potts model an%im{,/zy wherei, j,...,€ = 1,2,...,q, Z is the partition

its relevance, see, for example, [2,3]. However, exacknction, andz;,.., the partial partition function, namely,

results on the Potts model have proven to be extremelf,e sum of Boltzmann factors with the boundary spin
elusive. Rigorous results known to this date are limitedgtates fixed at j,....€. Then we have the following

and include essentially only a closed-form evaluation okpeorem.

its free energy foy = 2, the Ising model [4], and critical  Thegrem: (i) The boundary correlation functions

properties for the square, triangular, and honeycombp =, =4 are related by certain sum rule identities.
lattices [5,6]. Much less is known about its correlation pariicularly, forn = 4, the identity is

functions.

In this Letter we report on new sum rule identities for Prain = P + Past = Pioss. (3)
the Pottsn-point boundary correlation function. Specifi- (i) The number of correlation identities for a given
cally, we show that, as a consequence of being a many is a, = b, — c,, Where b, and ¢, are generated,
component system, the correlation functions of Potts spingespectively, from

on the boundary of a planar lattice must necessarily satis -

certain identitie)s/ wheg = 4. We further show that %/hese Y exple’ — 1) = Z bat"/n!, (4)
identities lead to the complete determination of a correla- =0

tion duality relation which, in its simplest form, relates the (1 — 1 —41n/2t = Z cnt” . (5)
correlation length and the domain wall free energy and has n=0

proven to be useful in determining the equilibrium crystal Proof: The identity (3) is equivalent toZ;, =
shape of the Ising model [7]. Our results are very genZ,;z + Z»;31 — Zio34, Which we represent graphically
eral and hold for any planar lattice or graph with arbitraryin Fig. 2. Consider the high-temperature expansion of
(nonuniform) edge interactions. Zijke in the form [9] of

Consider theg-state Potts model on a planar lattide
with open boundary conditions, or more generally any Zije = > ¢"9 [ @ - ). (6)
planar graph, oN sites ancE edges. Let,j,...,m,{ be G ihj'&e6
n sites on the boundary ordered as shown in Fig. 1, and let
o; denote the state of the spin at siteTwo spins of £ 1 B ]
at sitesi’ and;’ interact with an interactio&’;; 6(o i, o),
whered;, o} = 1,2,...,q. Define then-point correlation a
function [8]

P.(o,0,...,a" V) =(8(ai,0)8(aj, o) l
8o, V) (1) 0

as the probability that the spins are in respectiwefinite m

spin stateso, o”,...,o™. In particular, the correlation FiG. 1. A planar latticeZ and n sitesi, j,...,m,€ on the
function boundary.
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1 2 1 2 2 1 1 2 sum rule expressing the particular correlation function in
- + _ guestion in terms of planar ones. This gives rise to an
identity for this particularZ. Furthermore, since each
2 1 3 1 1 3 4 3 ; ; ; ; i ;
has a unique graphical expansion, all identities are dis-
FIG. 2. Graphical representation of the sum rule identity (3). tinct. It follows that the number of sum rule identities,
a,, is equal to the number af’s which are nonplanar,
Here, as a consequence of the fact that the four boundaﬂ?‘?hely’b” ; Cn- has b luated i iderati
sites are fixed in definite spin states, the summation € numberc, has been evaluated In a consideration
is taken over all graphss C £ in which there are of the transfer matrix formulation of the Potts model
n(G) clusters excluding those connected to the fowllz]’ and is found to b? generat_ed by (5). To enu-
boundary sites. merate b, we note that it is prec_lgely th_e numbgr_of
Apply the expansion (6) to the fo's. It is clear that, ways thatn objects can be partitioned into |nd|st|n—
as a consequence of sites being on the boundaryfand gwsr?ablg p?r{s.szet therf meTr[])arts of: c;tl))jecis
being planar, we havg,;;, = T + T, + T3, whereT, ea}oc %uw Jec' 0'”;,;:1 V""” T_h'nll den Wi aveo, =
is the sum of graphs where siteandk belong to the same  2m,—, lLs=17!/(#!)""m, ! This leads to the generating
cluster,T, those graphs where sitggnd{ belong to the

function (4). Particularly, we findiy = 15 — 14 = 1,
same cluster, anfl; graphsi, j, k, € all belong to different

as =52 — 42 = 10,a¢ = 203 — 132 = 71. Q.E.D.
clusters. It is also clear that we hade, ;3 = T; + Ts, Duality relation for P,,.—It has been known for some
Zy31 = T, + T3, andZ34 = T3. The identity (3) now

time that the two-point boundary correlation function of
follows as a sum rule condition. The identity (3) can

an Ising model is related to its counterpart in the dual
also be deduced from an application of the principIeSpace' 'The usual. derivation of th's. relat'on involves
of inclusion-exclusion [10]:Z;21; is equal to the sum embedding expansions of the correlation functions on the
of Ziy13 and Zo;3; minus tHe overcounted termg,»s, lattice followed by an explicit term-by-term identification
Clearly, the existence of (3) is a consequence of the planatsr14l- In a recent paper one of us [8] introduced a new

connectivity topology and the fact that the sites are on th&PProach to this problem which invokes only a repeated

boundary. One can proceed in a similar fashion to derivé/S€ of an eIemen'Fary_duaIity consideration [15]'. The
sum rules forn = 5, and thus we have established (j). "€W a@pproach, which is very general, also permits the

We remark that the sum rules manifest themselves Onlﬁxtension of the duality analysis to the Potts modgl for
for g = 4 n = 2,3 [8]. However, an extension of the analysis of

To enumeratez,, the number of correlation identities [8] to n= 4 ran into an apparent snag of madequgcy
for a givenn, it is instructive to consider the case= 4.  ©f conditions [16]. Here we show that the correlation

First, by enumeration we find that there are 15 distincfd.entltles derived aboye pf‘?"'de the missing link, a’.‘d
Z:ne. For eachZ; ;¢ we connect sites in the same stateWith the help of these identities we determine the duality
LjRE: i

by drawing connecting lines exterior td , resultin relation for anyn. .

inya “conngectivity” of %he four points. A WeII—nest%d The con;|derat|on of [8] is based on the fundamental
connectivity, or planaZ for brevity, is one in which the duality refation [15]

connecting lines do not intersect [11]. Fer= 4, the Z=qCZ" (7)

14 Z's shown in Fig. 3 are planar. Onlg,(,, which is
not shown, is nonplanar.

More generally for a givem-point correlation function
Zjj..me, Or Z for brevity, one connects sites in the same
state to arrive at am-point connectivity. Let there be
altogetherb,, distinct connectivities of which, are pla- D =
nar. To eactZ which is nonplanar, we follow the proce- ) = a. . D
dure described above, namely, expanding graphically in a Startlng from_£ we consider a lattice * formed by
high-temperature series. By applying the aforementione troducingn spinse, 8, v, ..., 8 to the boundary of the

. : . : . ual of £ (cf. Fig. 1), each interacting with neighboring
principle of inclusion-exclusion we eventually arrive at a ual spins within£ . (Note that £ * hasN* + n — 1

sites and is not the dual of .) LetZ;g,..5 be the partial
K dual partition function of£ * with the n boundary spins

e £ £ q : ) : - . :
Y | \ fixed in the respective definite states. Our goal is to obtain
@: K a duality relation in the form of a linear transformation
5 K
(a) (b) (e) (e) )

relating the partition functiorz of any planar lattice, or
graph, to the partition functiolx™ on the dual. Here,

C = ¢ V' 1legges(eXii — 1), with N* being the number of
sites of the dual and the product taken over all edges. The
interactionk;; dual to K;; is given by(eXi — 1) (eXv —

relating theZ;j....¢ 10 Z, g ...5.
Regard thé, planar connectivities as auxiliary lattices,
FIG. 3. The 14 planar connectivities far= 4 corresponding and apply the fundamental duality relation to each one of

t0 () Zixsa; (B) Zi111; (C) Zi112, OCCurring four times; (dg15,  them [16]. Applying the duality orL itself, for example,
four times; (€)Zi213, two times; and (f)Z12,, two times. we obtain (7) which can be written as an equation relating
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linear combinations of th& and Z* [8]. Applying the sides of (8) are polynomials of degredn u. Since (8)
duality to the planar connectivit, in which alln points  holds for arbitraryu, the coefficients of all powers ai
are connected to a common point with interactigas in ~ must be equal. However, it suffices to equate only the

L, shown in Fig. 3(b), we obtain coefficients of the highest power of On the left-hand
-2 - side we haveZ, ) = q(u + g — 1)"Z;;..; + terms of
Zaux(n) = Cq (= 1)"Zyuxmy » (8)  the order oo (u~1). On the right-hand side we hae —

whereu = X, and Z,ux(») and Z;,,, are, respectively, D" Zyux(ny = qu + ¢ — 1)"Zyy.; + other terms.  This

the partition functions off, and its dual. Now, both, !€adsimmediately to an expression ... Forn = 4,
or example, we obtain
| f pl bt

Zun = Cq [Ziy + @1 Zo + Zhn + Zi + Zh) + @(Ziim + Ziny)

+ q192(Z 103 + Zoy13 + Zyzyy + Zins) T @1(Zan T 9221513 T 0225131 T 42q3Z1534)]

={1 + q(L,1,LL1) + qi(1,1) + q192(1,1,1,1) + q1(1, g2, 92. 9293)} , 9)
. . |
whereg,, = ¢ — m, m = 1,2,...,and in the last line we T =q1 D paird + 142 D posioa
have introduced a short-handed notation. An immediate
consequence of (9) is the result + o+ qig2 Gu—1P123n - (12)
Iy = qi(pair + pr2it + pr2t + prz + pia2 Applying (7) to all ¢, auxiliary lattices of planar

+ pim + pot) + @1ga(przs + paris connecti\_/ities in this fashio_n and equating the coef_ficients
of the highest power ofi in each case, we obtain,

+ pxi1 + pizs1 + piaz + poast) equations for theb, unknown Z's. Combining thec,

equations with thé, — ¢, sum rule identities, we have

T a19293p1234 (10) preciselyb, equations, and the duality relation can now
where we have introduced (7)%* = ¢Zi;1;, as well as be determined.
PaBys = ZZBYS/ZTUI. For generah the consideration In the case ol = 4, the solution of the 15 equations
of L, leads to | leads to, in addition to (9),

Zom ={1 + (=1,-1,q1,q1) + (g1, =1 + q2(q1, =1, —1,—1) = (1,92, 92, 4293)} ,
Znn ={l + (=L,q1,—Lq1) — (IL1) = q2(1, 1,1, 1) + (g1, 9192, =92, —q293)} ,
Ziy ={1 = (L =g, L) = (1,1) + (2,2, —q2, —q2) + (=1, —¢2,2,2¢3)},
Zopp ={1 = (LLLD +q(1) = ¢,1,1,1) + 0(=1,9192, 192, 92937)} , (12)
Zios ={1 — (LLLD + (=1,q1) + (2,—42,2,—q2) + Q(q1,5,5,931)},
Zoy ={l = (LL, L)+ (q1,—D + (—92,2, —q2,2) + Q(q1,5,5,931)},
Ziza ={1 = (L1, = (1,1) + 2(1,1, 1, 1) + Q[r,t,1,q3(2 = 59)1},
whereQ = 1/(¢> =3¢ + 1), r=2q — 1, s =q> —4q + 2, t = ¢> — 5q + 2. Expressions for otheZ;;, are

given by cyclic permutations.
The solutions (9) and (12) can be written in the form of a partition expansion

Py(01,02,03,04) = Appza + A1123812 + A2113823 + A2311034 + A1231014 + A213813 + A2131024 + A1122612034
+ A1221614623 + A1212013624 T+ A21110234 + A12116134 + A11210124 + A11120123 + A1i1161234,
(13)
whered, = 8(oy,02), 123 = 812623, etc. We find
Apas = ¢ *[1 = (pun + prain + izt + prnz + Pz + piar + pion)
+ 2(puxs + pst + paz + pasin + piaz + past) — 6pisal,
Anp = q_3(p1211 — P13t — pa311 — P2z T 2pias4),
Aoz = q_3(p1121 — pu23 — P13t — P23t T 2pias4),
At = q (P2 = P23 — Piios — P21z + 2pioss).
Az = ¢ 2 (pain — P23t — P2z — Paist + 2pioss).
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(14)

g 2(pa31t — P12z,

Aottt = ¢ 2(ps — piosa),
Al = ¢ 2(p3i — pioa),

Az = q 7 (pia1 = pias1t = pans + piaa).
Apizt = ¢ (puz — puas — p3u T piasa),
Az = ¢ 2(p1ai3 — pioaa), A =
App =0,

At = ¢ 2(panz — pi2sa)

Az = ¢ 2(p131 — pioas),

_ 1
Al = q p1o4s

where we have used the fact tiZit satisfies the same sum
rules as theZ, includingZis1, = Zi213 + Zs131 — Zi234-

For generah we write in analogous to (13) the partition
expansions

P01, 00,...,0,) = Az + A1123(-1)012
+ -+ Ai1abi2em,  (15)
Pap-s = ZZ,BMB/ZTL--]
= Bi2..n + B1123.-(n—1)0ap
+ oot BiiatBapes. (16)

Regard the diagram in Fig. 1 as representiAg....
Construct for eachA the associated connectivity as in
Fig. 3, and label indicesa, 8, ..., § such that neighboring

indices are the same if there is no line in between. Then

we are led to the followingonjecture:
Ajjg = q 19B,5 5 if the connectivity is planar,

= 0, otherwise a7
where d(ij ---{) is the number of distinct indices in
{i,j,...,€}. The conjecture is readily verified for =
2,3,4. In practice, for any givem, one can solve from
(16) for B,p..s by applying the principle of inclusion-
exclusion.
A cyclic inversion relation—Since aBy---6 are
boundary sites of *, the transformation relating” to Z,

an inversion process, is given precisely by the same trans:

formation relatingZ to Z*. Now L* hasN* + n — 1
sites and its dual ha¥ — n + 1 sites. AlsoL and L*
have the same number of edges. Therefore we have

(X — 1)
Zijkmt = W

XY TuijmllaBy - 8)Zigy. s

{aBy--8)
(18)

. _ (ki — 1)
Zapy-s = \ N-ni17G-2)

X Z Tn(aﬁy"'6|€ij"'m)z€ij~--m,
{ij--mt}
(19)

whereT, is a b, X b, matrix, and the summations are
over the set ofb, distinct partitions of then indices.
Substituting (19) into (18) and making use of the Euler
relation E = N + N* — 2, we are led to the identity,
which we refer to as a cyclic inversion relation,

To(ijk---C1i'j'k ) = ¢"" ' 88 Seir. (20)
Further discussions including properties Bf and the
extension to the Ashkin-Teller model will be given
elsewhere [17].

We are grateful to J. L. Jacobsen for discussions and a
comment [16] which has led to this investigation. This
work is supported in part by National Science Foundation
Grant No. DMR-9614170.

Note added—The conjecture (17) has since been
established rigorously [18].
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