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Quantum disordered problems with a direction (imaginary vector potential) are discussed and ma
onto a supermatrixs model. It is argued that the 0D version of thes model may describe a broad class
of phenomena that can be called directed quantum chaos. It is demonstrated by explicit calcula
that these problems are equivalent to those of random asymmetric or non-Hermitian matrices. A
probability of complex eigenvalues is obtained. The fraction of states with real eigenvalues prove
be always finite for time reversal invariant systems. [S0031-9007(97)03575-8]
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New very interesting phenomena may occur in syste
with non-Hermitian quantum Hamiltonians. Although th
Hamiltonian of a closed system in equilibrium must b
Hermitian, non-Hermitian models can describe noneq
librium processes [1], open systems connected to re
voirs [2], dynamics of neural networks [3], and have ma
other interesting applications (see, e.g., [4–6]).

In a recent remarkable work [7], Hatano and Nels
considered a model of particles described by a rand
Schrödinger equation with an imaginary vector potent
This model arises as a result of mapping flux lines
a sd 1 1d-dimensional superconductor to the world line
of d-dimensional bosons. Columnar defects introduc
experimentally in order to pin the flux lines [8] lea
to the random potential in the boson system, wher
the component of the magnetic field perpendicular to
defects results in the constant imaginary vector poten
ih [9]. The prediction made in Ref. [7] is that alread
a one-dimensional chain of the bosons has to unde
a localization-delocalization transition as a function
disorder. This effect is new and very unusual for phys
of disordered systems, which clearly shows that rand
models with the imaginary vector potentials deserv
further discussion.

The HamiltonianH of the simplest model of noninter
acting particles with a disorder and the imaginary vec
potentialih has the form

H ­ sp̂ 1 ihd2y2m 1 Usrd , (1)
wherep̂ ­ 2i= andUsrd is a random potential.

The non-Hermitian Hamiltonian, Eq. (1), differs from
Hamiltonians for open dots [2]. It is real and contains t
vector h that introduces a direction. Average physic
quantities depend on the direction ofh, but the time-
reversal symmetry is not broken. To understand be
the physical meaning of the vectorh, it is instructive to
write a lattice HamiltonianHL corresponding toH

HL ­ 2
t
2

X
r

dX
n­1

seh?en c1
r1en

cr 1 e2h?en c1
r cr1en

d
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r
Usrd c1

r cr , (2)
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wherec1 and c are creation and annihilation operators
andhenj are the unit lattice vectors. Considering the one
particle Hamiltonian, we do not need to specify statistic
of the particles. [Equation (2) was used in Ref. [7] fo
numerical calculations.]

In Eq. (2), the hopping probability alongh is higher
than in the opposite direction. In other words, the
HamiltonianHL describes adirectedhopping in a random
potential. This model can be considered as a quantu
counterpart of a directed percolation model introduced b
Obukhov [10]. Such models may describe properties o
disordered systems without a center of inversion. Th
finite h in Eq. (2) can be due to, e.g., the possibility o
a virtual tunneling into a dielectric in an electric field.
This would not lead to an imaginary contribution to the
chemical potential as in open quantum dots, but migh
make hopping in different directions nonequivalent.

It is interesting to note that Green functions used i
Ref. [10] contained as the energy spectrum the com
binations sp 1 iad2 with a constant vectora, which
corresponds to the continuum version of the Hamilton
ian, Eq. (1). The non-Hermitian operators describe
by Eqs. (1) and (2) enter also Fokker-Planck equation
derived for models of random walks in random medi
with constrained drift forces [4–6]. The so-called noisy
Burgers equation studied recently in a number of work
[11–13] can be reduced by the Cole-Hopf transformatio
to a linear equation containing similar non-Hermitian
operators with a direction [14].

“Conventional” (nondirected) disordered systems ex
hibit a variety of different phenomena. Depending on
the geometry of the sample and strength of disorder, o
can have conduction, localization, or, e.g., quantum chao
One can guess that the models described by Eqs. (1) a
(2) also contain these effects although the effects may
peculiar. In analogy with the directed percolation, it is
reasonable to call the corresponding phenomenadirected
quantum chaos, directed localization,etc.

The main results of Ref. [7] were derived for 1D
and 2D samples from numerical computations, althoug
some qualitative conclusions were made considering
© 1997 The American Physical Society 491
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one-impurity model. At the same time, very well de
veloped analytical methods of study of convention
disordered systems exist and it is highly desirab
to develop analogous schemes for the directed d
order problems. This would help to understand th
localization-delocalization transitions, but also consid
new phenomena like directed quantum chaos.

In this Letter it is shown that problems of directe
disorder described by Eqs. (1) and (2) can be reduc
to calculations within a nonlinear supermatrixs model.
This approach proved to be very useful for a broa
variety of different problems (for a review see [15]). Th
s model derived below is applicable in any dimensio
and differs from previous ones by a newh-dependent
term. Problems of quantum chaos correspond to the ze
dimensional version and are most simple for calculation
Some new results are obtained for this case classifi
below asdirected quantum chaos.

Recently a “ballistic”s model was derived by averag-
ing over either rare impurities or energy [16]. Apparently
properh terms can be written for this case, too.

Although the imaginary vector potentialh enters
Eqs. (1) and (2) almost in the same way as the physi
vector potentialA, the presence ofi changes considerably
the derivation of thes model. A simple replacement
seycd A ! ih in the s model of Refs. [15,17], would
a

s
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lead to the absence of the ground state. This is beca
eigenenergies of the Hamiltonians, Eq. (1) or Eq. (2
are not necessarily real, and retardedGR

e and GA
e Green

functions can have now poles everywhere in the compl
plane of . As a result, these functions cannot be writte
in the usual form of convergent Gaussian integrals, whi
was a necessary step in derivation of thes model.

First of all, one should choose a proper quanti
to calculate. According to a discussion of Ref. [7
important information can be obtained by studying a joi
probability Pse, yd of real e

0
k and imaginarye

00
k parts of

eigenenergies or, in other words, the density of compl
eigenenergies. This function is introduced as

Pse, yd ­ V 21

*X
k

dse 2 e0
kd ds y 2 e00

k d

+
, (3)

where V is the volume of the system, the sum is take
over all eigenstates, andk· · ·l stands for averaging over
the disorder. In contrast to the average density of sta
in conventional disordered systems, the functionPse, yd
at h fi 0 distinguishes between localized and extend
states. For the localized states it is proportional tods yd
but is a nontrivial function for extended ones.

It is convenient to rewrite Eq. (3) as
Pse, yd ­
1

pV
lim
g!0

*X
k

g2

fse 2 e
0
kd2 1 s y 2 e

00
k d2 1 g2g2

+
, (4)
,

],

l

les
which allows one to express the functionPse, yd in terms
of a Gaussian integral over supervectorsck. This can be
done using the fact that the ratio in the sum in Eq. (4) c
be composed of the elements of the matrixM21

k , where

Mk ­

µ
ig 2 se 2 e

0
kd 2is y 2 e

00
k d

is y 2 e
00
k d ig 1 se 2 e

0
kd

∂
.

In order to replace the integrals over allck by integrals
over supervector fieldscsrd, one should use vectorsuksrd
andyksrd and their conjugatesuksrd andyksrd

uk ­
1
2

√
fksrd 1 f

p
ksrd

fksrd 2 f
p
ksrd

!
,

yk ­
1
2

√
fksrd 2 f

p
ksrd

fksrd 1 f
p
ksrd

!
,

wherefksrd and fksrd are right and left eigenfunctions
of the Hamiltonian H, Eq. (1) [or HL, Eq. (2)]; the
symbol p is a complex conjugation. With the vector
uksrd andyksrd one can make Fourier expansion for an
2-component vector field.

Using 8-component supervectorscsrd with exactly
the same structure as those in Refs. [15,17], one c
rewrite Eq. (4) in terms of a functional integral with the
LagrangianL

L ­ 2i
Z

csrd H csrd dr , (5)
n

y

an

where the8 3 8 matrix operatorH has the form

H ­ H 0 2 e 1 igL 1 H 00L1 1 iyL1t3 . (6)

In Eq. (6),H 0 ­ 1
2 sH 1 H1d andH 00 ­ 1

2 sH 2 H1d are
Hermitian and anti-Hermitian parts of the Hamiltonian
respectively. In the continuum versionH 00 ­ h=ym.
The matricesL and t3 are the same as in Refs. [15,17
and the matrixL1 anticommutes withL being equal to

L1 ­

µ
0 1
1 0

∂
, (7)

where1 is the4 3 4 unit matrix. A proper preexponentia
term is rather lengthy and is not written here.

Further steps of derivation of thes model are standard.
One averages over the random potential and decoup
the effective interaction by integration over8 3 8 super-
matricesQ. The integral over the eigenvalues ofQ is
calculated using the saddle-point approximation. Thes

model is finally obtained by expansion over=Q and h.
As a result, the functionPse, yd takes the form

Pse, yd ­ 2 lim
g!0

pn2

4V

Z
AfQg exps2FfQgdDQ , (8)
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where the free energy functionalFfQg is written as

FfQg ­
pn

8

Z
STrfD0s=Q 1 hfQ, L1gd2

2 4QsgL 1 yL1t3dgdr . (9)
In Eq. (9),D0 is the classical diffusion coefficient,f., .g is
the commutator, STr is the supertrace, andn is the density
of states of the system without disorder ath ­ 0. The
preexponential functionalAfQg equals

AfQg ­
Z

hfQ11
42srd 1 Q22

42srdg fQ11
24sr0d 1 Q22

24sr0dg

2 fQ21
42srd 1 Q12

42 srdg fQ21
24 sr0d 1 Q12

24 sr0dgj

3 drdr0. (10)
Numeration of matrix elements in Eq. (10) is the sa
as in Refs. [15,17]; Eqs. (8)–(10) can be used in a
dimension. The supermatrixQ has the same symmetry a
Q for the orthogonal ensemble in Refs. [15,17]. The fr
energy functionalFfQg, Eq. (9), has two additional term
with respect to the functional used for “conventiona
disorder problems. These terms contain the matrixL1,
which leads to new effective “external fields” in the fre
energy. We see that the replacement of the phys
vector potentialA by the imaginary quantityih changes
the symmetry ofFfQg. This reflects the fact thatA and
ih violate different physical symmetries.

Of course, one can include in Eqs. (1) and (2) t
vector potentialA, which would result in a standar
term in Eq. (9) describing a magnetic field. If this fie
is strong enough, one can use Eqs. (8)–(10) as bef
but in this caseQ is a supermatrix with the structur
corresponding to the unitary ensemble of Refs. [15,1
This is a system with the broken time reversal invarian

Calculation of the functionPse, yd can be carried ou
using methods presented in Ref. [15]. One can try to
renormalization group methods for study of the 2D ca
(corresponding to the 3D case for flux lines), transf
matrix method for the 1D case (thick films with parall
line defects and magnetic field), or calculate defin
integrals overQ for the 0D case (flux lines in long
cylinders). Leaving 1D and 2D cases for future stud
let us consider now the 0D case classified here as dire
quantum chaos.

In this limit one should integrate overQ, assuming that
this variable does not depend on coordinates. Then,
gradient terms inFfQg in Eq. (9) can be omitted and in
tegration overr, r0 in Eq. (10) easily performed. The 0D
form of FfQg obtained in this way allows one to make
very interesting conclusion even without starting expli
computation. This can be done comparing Eq. (9) w
results of a recent work [18] in which the supersymme
technique was used to study density of complex eig
values of “almost-Hermitian” random matricesX. These
matrices were written in the form

X ­ A 1 iaN21y2B (11)
with N 3 N statistically independent Hermitian matrice
A andB, and a numbera of the order of unity. Due to the
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presence of the factorN21y2, the ensemble described by
Eq. (11) differs from ensembles of matrices with arbitrary
complex elements studied previously [19]. Fyodorov
et al. [18] calculated the joint probability of the real
and imaginary parts of eigenvalues of the matricesX
corresponding to the functionPse, yd, Eq. (3).

Reducing in a standard way integration over the ma-
trices A and B to integration over supervectors and then
to supermatrices, the authors of Ref. [18] arrived in the
limit N ! ` at the 0D version of the free energyFfQg,
Eq. (9), withh2 , a2. The symmetry ofQ corresponded
to the supermatricesQ of Refs. [15,17] for the unitary en-
semble, which is due to the hermicity of the matricesA
andB. Apparently, if they used real symmetric matrices
A, antisymmetric matricesB, and imaginarya they would
obtain Eq. (9) with the supermatricesQ corresponding to
the orthogonal ensemble (below these cases are calle
simply orthogonal and unitary). This demonstrates that
the models of disorder, Eqs. (1) and (2), in a limited vol-
ume are equivalent to the ensembles of weakly nonsym
metric (or non-Hermitian if the time reversal symmetry is
broken) random matrices.

For explicit calculations, Fyodorovet al. [18] used
the parametrization of Ref. [17]. However, due to the
presence of the new terms withh and y in Eq. (9), the
calculations with this parametrization are very difficult.
So, the final result was obtained for the unitary ensemble
only. As concerns the orthogonal case, computations
with this parametrization do not seem to be possible
at all. At the same time, study of the orthogonal
ensemble can be very important because it describes th
vortices in superconductors and, as will be seen later, th
functionPse, yd for the orthogonal ensemble at smallh is
qualitatively different from that for the unitary one.

Fortunately, one can circumvent the difficulties using a
new parametrization. Leaving details for another publica-
tion, I want to present here only a general structure. The
supermatrixQ is written as

Q ­ ZQ0Z (12)

with supermatricesZ satisfying the conditionsZZ ­ 1
andfZ, L1g ­ 0. The central partQ0 is chosen as

Q0 ­

µ
cosf̂ 2t3 sinf̂

2t3 sinf̂ 2 cosf̂

∂
,

f̂ ­

√
f 0
0 ix

!
.

The most lengthy part is calculation of the Jacobian, but
then the computation is of no difficulty and the density of
complex eigenenergiesPse, yd for the unitary ensemble
takes the form

Pse, yd ­
n

p
p

aD
exp

µ
2

x2

4a2

∂
3

Z 1

0
coshxt exps2a2t2d dt , (13)
493
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wherex ­ 2pyyD, a2 ­ 2pD0h2yD, andD is the mean
level spacing.

Equation (13) is exactly the result obtained in Ref. [18
For the models of weak disorder, Eqs. (1) and (2),Pse, yd
depends only on the variabley becausenis constant. For
the random matrix model, Eq. (11),n depends on and
obeys the Wigner semicircle law. In the limita ¿ 1 one
obtains

Pse, yd ø
pn

2a2D
, jxj # 2a2, (14)

which means that the functionPse, yd is practically con-
stant within the intervaljxj # 2a2. Beyond this interval
the function exponentially decays. For the random m
trix model, this behavior corresponds to the well-know
“elliptic law,” Ref. [19]. For anya the functionPse, yd
is smooth, which means, in particular, that the probabilit
to find real eigenvalues is negligible.

The situation drastically changes if the time-revers
symmetry is not broken. Although now the computatio
of Pse, yd is somewhat more lengthy, one can finally
express this function in a rather simple form

Pse, yd ­ Pr 1 Pc,

Pr ­ nds yd
Z 1

0
exps2a2t2d dt , (15)

Pc ­
pn

D
F

µ
jxj

2a

∂ Z 1

0
exps2a2t2d sinhsjxjtd tdt ,

whereFsyd ­ 2
p

p

R`

y exps2u2d du.
We see that the functionPse, yd contains the partPr

proportional tods yd. This means that a finite fraction of
eigenstates has real eigenenergies for any finitea. The
distribution of complex eigenenergies is described by th
smooth functionPc. The fraction of the states with real
eigenvalues vanishes only in the limita ! `. In this
limit one comes forjxj ¿ a to Eq. (14), which again
results for the random matrix model in the elliptic law.

The result about the finiteness of the fraction of eigen
states with real eigenenergies as well as Eq. (15) itself
new, although indications of a peculiar behavior of th
probability of real eigenvalues for asymmetric real matr
ces can be found in Ref. [19]. In Ref. [7] a mixture o
states with real and complex eigenvalues was found n
merically near the band center for the 2D model, Eq. (2
Perhaps the localization length in that region of paramete
exceeded the sample size. This would correspond to t
0D situation rather than 2D. If it is so, the analytical resu
agrees with the numerical observation.

Study of the directed disorder problems in higher d
mensions, although more difficult, is definitely of inter
est. Solution of thes model, Eqs. (14) and (15), in
one dimension seems to be possible using the transf
matrix method. This case corresponds to a thick film i
a parallel magnetic field in the problem of the vortice
in a superconductor. It would be interesting to obtai
494
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a localization-delocalization transition analytically. The
one-dimensionals model is also known to describe the
quantum kicked rotor problem [20]. Maybe finiteh cor-
responds to a dissipation in this problem and one can fi
a transition here, too.

In summary, quantum disorder problems with a direc
tion (imaginary vector potential) are considered. It i
demonstrated that they can be mapped onto a new sup
matrix s model. The 0D version of the model describe
a class of phenomena that can be called directed quant
chaos. Using the 0Ds model, the equivalence of this
class of systems to ensembles of weakly asymmetric
non-Hermitian random matrices is established. The joi
probability of complex eigenvalues is computed explic
itly, and it is discovered that the fraction of real eigenen
ergies for time reversal invariant systems is always finite
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