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Quantum disordered problems with a direction (imaginary vector potential) are discussed and mapped
onto a supermatrixr model. It is argued that the OD version of themodel may describe a broad class
of phenomena that can be called directed quantum chaos. It is demonstrated by explicit calculations
that these problems are equivalent to those of random asymmetric or non-Hermitian matrices. A joint
probability of complex eigenvalues is obtained. The fraction of states with real eigenvalues proves to
be always finite for time reversal invariant systems. [S0031-9007(97)03575-8]
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New very interesting phenomena may occur in systemsherec™ and ¢ are creation and annihilation operators,
with non-Hermitian quantum Hamiltonians. Although the and{e,} are the unit lattice vectors. Considering the one-
Hamiltonian of a closed system in equilibrium must beparticle Hamiltonian, we do not need to specify statistics
Hermitian, non-Hermitian models can describe nonequiof the particles. [Equation (2) was used in Ref. [7] for
librium processes [1], open systems connected to resenumerical calculations.]
voirs [2], dynamics of neural networks [3], and have many In Eg. (2), the hopping probability alonly is higher
other interesting applications (see, e.g., [4—6]). than in the opposite direction. In other words, the

In a recent remarkable work [7], Hatano and NelsonHamiltonianH; describes airectedhopping in a random
considered a model of particles described by a randorpotential. This model can be considered as a quantum
Schrdédinger equation with an imaginary vector potentialcounterpart of a directed percolation model introduced by
This model arises as a result of mapping flux lines inObukhov [10]. Such models may describe properties of
a (d + 1)-dimensional superconductor to the world linesdisordered systems without a center of inversion. The
of d-dimensional bosons. Columnar defects introducedinite h in Eq. (2) can be due to, e.g., the possibility of
experimentally in order to pin the flux lines [8] lead a virtual tunneling into a dielectric in an electric field.
to the random potential in the boson system, wherea$his would not lead to an imaginary contribution to the
the component of the magnetic field perpendicular to thehemical potential as in open quantum dots, but might
defects results in the constant imaginary vector potentiainake hopping in different directions nonequivalent.
ih [9]. The prediction made in Ref. [7] is that already It is interesting to note that Green functions used in
a one-dimensional chain of the bosons has to undergBef. [10] contained as the energy spectrum the com-
a localization-delocalization transition as a function ofbinations (p + ia)> with a constant vector, which
disorder. This effect is new and very unusual for physicsorresponds to the continuum version of the Hamilton-
of disordered systems, which clearly shows that randonen, Eg. (1). The non-Hermitian operators described
models with the imaginary vector potentials deservedy Egs. (1) and (2) enter also Fokker-Planck equations
further discussion. derived for models of random walks in random media

The HamiltonianH of the simplest model of noninter- with constrained drift forces [4—6]. The so-called noisy
acting particles with a disorder and the imaginary vectoBurgers equation studied recently in a number of works

potentialih has the form [11-13] can be reduced by the Cole-Hopf transformation
H=(p + ih)?*/2m + U(r), (1) to a linear equation containing similar non-Hermitian
wherep = —iV andU(r) is a random potential. operators with a direction [14].

The non-Hermitian Hamiltonian, Eq. (1), differs from _“Conventional” (nondirected) disordered systems ex-
Hamiltonians for open dots [2]. It is real and contains thehibit a variety of different phenomena. Depending on
vector h that introduces a direction. Average physicalthe geometry of the sample and strength of disorder, one
quantities depend on the direction hf but the time- Can have conduction, localization, or, e.g., quantum chaos.
reversal symmetry is not broken. To understand bettePN€ can guess that the models described by Egs. (1) and
the physical meaning of the vectar, it is instructive to (2) also contain these effects although the effects may be

write a lattice Hamiltoniarf;, corresponding td peculiar. In analogy with the dirgcted percola_ltion, it is
; d reasonable to call the corresponding phenondirected
Ho=-75 DD (et e + e e e, guantum chaos, directed localizatioetc.
rov=l The main results of Ref. [7] were derived for 1D
n Z Ur)eler, ) and 2D samp!es from nu_merlcal computations, _althpugh
= some qualitative conclusions were made considering a
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one-impurity model. At the same time, very well de- lead to the absence of the ground state. This is because
veloped analytical methods of study of conventionaleigenenergies of the Hamiltonians, Eq. (1) or Eg. (2),
disordered systems exist and it is highly desirableare not necessarily real, and retardgéfl and G2 Green

to develop analogous schemes for the directed disfunctions can have now poles everywhere in the complex
order problems. This would help to understand theplane ofe. As a result, these functions cannot be written
localization-delocalization transitions, but also consideiin the usual form of convergent Gaussian integrals, which
new phenomena like directed quantum chaos. was a necessary step in derivation of thenodel.

In this Letter it is shown that problems of directed First of all, one should choose a proper quantity
disorder described by Egs. (1) and (2) can be reducetb calculate. According to a discussion of Ref. [7]
to calculations within a nonlinear supermatdx model.  important information can be obtained by studying a joint
This approach proved to be very useful for a broadprobability P(e,y) of real ; and imaginarye; parts of
variety of different problems (for a review see [15]). The eigenenergies or, in other words, the density of complex
o model derived below is applicable in any dimensioneigenenergies. This function is introduced as
and differs from previous ones by a newdependent
term. Problems of quantum chaos correspond to the zero-
dimensional version and are most simple for calculations. ~ P(e,y) = V_1<Z Se — €)b(y — € > (3)
Some new results are obtained for this case classified k
below asdirected quantum chaos.

Recently a “ballistic’cc model was derived by averag- whereV is the volume of the system, the sum is taken
ing over either rare impurities or energy [16]. Apparently,over all eigenstates, and--) stands for averaging over
properh terms can be written for this case, too. the disorder. In contrast to the average density of states

Although the imaginary vector potentidh enters in conventional disordered systems, the functi®(e, y)
Egs. (1) and (2) almost in the same way as the physicalt h # 0 distinguishes between localized and extended
vector potentialA, the presence afchanges considerably states. For the localized states it is proportionabtg)
the derivation of thec model. A simple replacement but is a nontrivial function for extended ones.

(e/c)A — ih in the & model of Refs. [15,17], Would| It is convenient to rewrite Eq. (3) as

1y, r
P(e,y) = i !yano<%_ [(e — €)2 + (y — €)? + y2]2>’ (4)

which allows one to express the functiéite, y) in terms | where the8 x 8 matrix operatorH has the form

of a Gaussian integral over supervectggs This can be

done using the fact that the ratio in the surplln Eq. (4) can H =H — e+ iyA+ H'A, + iyAy7y.  (6)
be composed of the elements of the matdx *, where

. !/ . i
M, = <”’,(_ (f _,,)Ek) ,_ny( ~ Sk ,)>, In Eq. (6).H' = %(H + H")andH" = MH - H™)are
Ny = & 1y Tle™ & Hermitian and anti-Hermitian parts of the Hamiltonian,
In order to replace the integrals over &l by integrals respectively. In the continuum versiod” = hV/m.
over supervector fieldg(r), one should use vectorg(r)  The matricesA and r; are the same as in Refs. [15,17],

andwvy(r) and their conjugateg, (r) andv,(r) and the matrixA; anticommutes with\ being equal to
ur L(mm + @;(r))’
2\ di(r) — ¢ (r) A = <(1) (1)>, (7)
vy = L(mm - gggr))’
2\ dilr) + ¢y (r) wherel is the4 X 4 unit matrix. A proper preexponential

where ¢, (r) and ¢, (r) are right and left eigenfunctions term is rather lengthy and is not written here.

of the HamiltonianH, Eq. (1) [or H., Eq. (2)]; the Further steps of derivation of the model are standard.

symbol = is a complex conjugation. With the vectors One averages over the random potential and decouples

u(r) andv,(r) one can make Fourier expansion for anythe effective interaction by integration overx 8 super-

2-component vector field. matricesQ. The integral over the eigenvalues of is
Using 8-component supervectogs(r) with exactly —calculated using the saddle-point approximation. Bhe

the same structure as those in Refs. [15,17], one camodel is finally obtained by expansion ove€p and h.

rewrite Eq. (4) in terms of a functional integral with the As a result, the functio® (e, y) takes the form

Lagrangiant

o

V2
m AlQ]exp(—F[Q]DQ ., (8)

L = —ifJ(r).’]—[tp(r)dr, 5) P(e,y) = —|yi_’0 4y
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where the free energy function&[ Q] is written as presence of the facta¥ ~'/2, the ensemble described by
Ty ) Eq. (11) differs from ensembles of matrices with arbitrary
Flo] = 8 [ ST{Do(VQ + h[Q, Ar]) complex elements studied previously [19]. Fyodorov

et al.[18] calculated the joint probability of the real
i ] A /- X and imaginary parts of eigenvalues of the matricés
In Eq. (9),Dy is the classical diffusion coefficiert, .] is corresponding to the functiaR(e, y), Eq. (3).
the commutator, STris the'supertrface, and the density Reducing in a standard way integration over the ma-
of states of the system without disordertat= 0. The  ticesA and B to integration over supervectors and then
preexponential functional[ 0] equals to supermatrices, the authors of Ref. [18] arrived in the
= 11 22 1t 220 limit N — o at the 0D version of the free enerdif 0],
Alel [{[Q42(r) * 0am]1Qu(r) + 0n(r)] Eqg. (9), withh? ~ 2. The symmetry of) corresponded
— 02! 12 21 (! 12000 to the supermatrice@ of Refs. [15,17] for the unitary en-
[000) + 021102 + 0] semble, which is due to the hermicity of the matrices
X drdr’. (10)  andB. Apparently, if they used real symmetric matrices
Numeration of matrix elements in Eq. (10) is the samey, antisymmetric matriceB, and imaginaryr they would
as in Refs. [15,17]; Egs. (8)—(10) can be used in anybtain Eq. (9) with the supermatrices corresponding to
dimension. The supermatr@ has the same symmetry as the orthogonal ensemble (below these cases are called
Q for the orthogonal ensemble in Refs. [15,17]. The freesimply orthogonal and unitary). This demonstrates that
energy functionaF[Q], Eq. (9), has two additional terms the models of disorder, Egs. (1) and (2), in a limited vol-
with respect to the functional used for “conventional” yme are equivalent to the ensembles of weakly nonsym-
disorder problems. These terms contain the matix  metric (or non-Hermitian if the time reversal symmetry is
which leads to new effective “external fields” in the free proken) random matrices.
energy. We see that the replacement of the physical For explicit calculations, Fyodoroet al.[18] used
vector potentialA by the imaginary quantityh changes the parametrization of Ref. [17]. However, due to the
the symmetry ofF[Q]. This reflects the fact thak and  presence of the new terms with and y in Eq. (9), the
ih violate different physical symmetries. calculations with this parametrization are very difficult.
Of course, one can include in Egs. (1) and (2) theSo, the final result was obtained for the unitary ensemble
vector potential A, which would result in a standard only. As concerns the orthogonal case, computations
term in Eq. (9) describing a magnetic field. If this field with this parametrization do not seem to be possible
is strong enough, one can use Egs. (8)—(10) as beforgt all. At the same time, study of the orthogonal
but in this caseQ is a supermatrix with the structure ensemble can be very important because it describes the
corresponding to the unitary ensemble of Refs. [15,17]vortices in superconductors and, as will be seen later, the
This is a system with the broken time reversal invariancefunction P(e, y) for the orthogonal ensemble at smélis
Calculation of the functiorP(e, y) can be carried out qualitatively different from that for the unitary one.
using methods presented in Ref. [15]. One can try to use Fortunately, one can circumvent the difficulties using a
renormalization group methods for study of the 2D casgiew parametrization. Leaving details for another publica-
(corresponding to the 3D case for flux lines), transfertjon, | want to present here only a general structure. The
matrix method for the 1D case (thick films with parallel supermatrixQ is written as
line defects and magnetic field), or calculate definite _
integrals overQ for the OD case (flux lines in long Q = 2002 (12)
cylinders). Leaving 1D and 2D cases for future study,yth supermatricesZ satisfying the condition€Z = 1
let us consider now the 0D case classified here as directe‘g]d[z’ A] = 0. The central parQ, is chosen as
quantum chaos.

—40(yA + yAyr3)ldr. (9)

In this limit one should integrate ove?, assuming that 00 — < cosgp -3 sinfp)
this variable does not depend on coordinates. Then, the 0 —738iNng —cos¢p /)’
gradient terms inF[Q] in Eq. (9) can be omitted and in- A b 0
tegration over,r’ in Eqg. (10) easily performed. The 0D ¢ = ( 0 iy )

form of F[Q] obtained in this way allows one to make a

very interesting conclusion even without starting explicitThe most lengthy part is calculation of the Jacobian, but
computation. This can be done comparing Eq. (9) withthen the computation is of no difficulty and the density of

results of a recent work [18] in which the supersymmetrycomplex eigenenergieB(e, y) for the unitary ensemble
technique was used to study density of complex eigengkes the form

values of “almost-Hermitian” random matric&& These 5

matrices were written in the form Ple,y) = T e F{‘ x_>
X=A+iaN" B (11) al 4a*

with N X N statistically independent Hermitian matrices

1
_ 2.2
A andB, and a numbe of the order of unity. Due to the X ]0 coshwr exp(—a’r7)dr,  (13)
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wherex = 27y/A, a*> = 2w Doh*/A, andA is the mean a localization-delocalization transition analytically. The

level spacing. one-dimensionab- model is also known to describe the
Equation (13) is exactly the result obtained in Ref. [18].quantum kicked rotor problem [20]. Maybe finikecor-

For the models of weak disorder, Egs. (1) and k,y) responds to a dissipation in this problem and one can find

depends only on the variabjebecauseis constant. For a transition here, too.

the random matrix model, Eqg. (11, depends ore and In summary, quantum disorder problems with a direc-
obeys the Wigner semicircle law. In the linait>> 1 one tion (imaginary vector potential) are considered. It is
obtains demonstrated that they can be mapped onto a new super-
matrix o model. The 0D version of the model describes
P(e,y) = 77_2” lx| = 242, (14) aclass of phenomena that can be called directed quantum
2a chaos. Using the ODr model, the equivalence of this

which means that the functioP(e, y) is practically con-  class of systems to ensembles of weakly asymmetric or
stant within the intervalx| = 2a>. Beyond this interval Non-Hermitian random matrices is established. The joint
the function exponentially decays. For the random maprobability of complex eigenvalues is computed explic-
trix model, this behavior corresponds to the well-knownitly: and it is discovered that the fraction of real eigenen-
“elliptic law,” Ref. [19]. For anya the functionP(e,y)  ©rdies for time reversal invariant systems is always finite.
is smooth, which means, in particular, that the probability
to find real eigenvalues is negligible.
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