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We present numerical evidence for the approximate SO(5) symmetry of the Hubbard model
10-site cluster. Various dynamic correlation functions involving thep operators, the generators of the
SO(5) algebra, are studied using exact diagonalization, and are found to possess sharp collective
Our numerical results also lend support to the interpretation of the recent resonant neutron sca
peaks in the YBCO superconductors in terms of the Goldstone modes of the spontaneously b
SO(5) symmetry. Perturbations such as longer-ranged hoppings and interactions do not suppresp

resonance in interesting parameter regimes. [S0031-9007(97)04845-X]
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Although the single band Hubbard model has be
extensively studied in recent years in connection w
high-Tc superconductivity, its low-energy content has
far eluded both analytical and numerical investigatio
While being deceptively simple, this model may ha
many possible competing ground states, and it has pro
to be very difficult to organize the low-energy degrees
freedom. Recently, a new analytic approach based o
symmetry principle has been suggested. It was noti
that the Hubbard model enjoys an approximate SO
symmetry, unifying antiferromagnetism (AF) withd-wave
superconductivity (SC) [1]. This symmetry principle give
a simple description of the transition from an AF groun
state to a SC ground state as the chemical potentia
varied, and it gives a unified treatment of the low-ener
collective degrees of freedom of the Hubbard model.

Motivated by its potential importance to the high-Tc

problem, we undertake a numerical finite size study to t
this approximate symmetry in the single band Hubba
model. The central object of our study is the so-calledp

operator defined as follows:

p
y
syd ­

X
k

scoskx 6 coskydcy
k1Q,"c

y
2k," ,

Q ­ sp, pd .
(1)

This operator carries spin 1, charge 2, and total mom
tum sp, pd. Charge conjugation and spin lowering oper
tion gives five other similar operators. Here the subsc
a ­ s, d refers to the internals-wave ord-wave symme-
try of this composite operator. Thep operators were first
introduced by Demler and Zhang [2] to explain the res
nant neutron scattering peaks in the YBCO supercond
tors [3], and are constructed by following the analogy w
theh operators considered by Yang [4]. More recently
was found [1] that together with the total spin and char
operators, the sixp operators form the generators of th
SO(5) algebra, and furthermore, they rotate AF and
order parameters into each other. In Refs. [1,2], it w
argued that thepd operators are approximate eigenope
0031-9007y97y79(24)y4902(4)$10.00
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tors of the Hubbard Hamiltonian. This implies that th
SO(5) symmetry is an approximate symmetry of the Hu
bard model [1], and one can use it to constrain the fo
of the low-energy effective Hamiltonian. Numerical ev
dence for an approximate SO(5) symmetry and for sup
spin multiplets in thet-J model has recently been foun
by Eoler, Hanke, and Zhang [5].

In this Letter, we present exact numerical diagonaliz
tion studies of the dynamic correlation functions involvin
thep operators and the AF and SC order parameters.
verify that thep operators are approximate eigenoperato
of the Hubbard model, and show that the properties of
various mixed correlation functions are consistent with t
anticipated pattern of the SO(5) symmetry breaking. O
exact numerical calculation is performed on a

p
10 3

p
10

site Hubbard cluster, using standard exact diagonaliza
(ED) methods based on the Lanczos algorithm [6].

Let us first consider the autocorrelation function of th
p operators, defined as follows:

p1
a svd ­ 2

1
p

IkCN
0 jpa

1

v 2 H 1 EN12
0 1 ih

3 py
ajCN

0 l . (2)

Here H is the standard Hubbard Hamiltonian,jC
N
0 l its

ground state withN electrons, andEN
0 the corresponding

ground state energy.I takes the imaginary part of a
correlation function. Throughout this paper, we measu
the energy of a spectral function from the ground sta
energy of the intermediate state. Sincep

y
syd changes

particle number by two, the natural energy scale of t
intermediate states is the ground state energy of aN 1 2
electron system.

Figures 1(a) and 1(b) plot thep1
d svd correlation func-

tion for U ­ 8t, with electron densitiesknl ­ 0.6 and
0.8, respectively. We see that these dynamic correlat
functions are dominated by a sharp peak, well separa
from a higher energy continuum. Ifp

y
d was an exact

eigenoperator of the Hubbard Hamiltonian, its dynamic
© 1997 The American Physical Society



VOLUME 79, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 15 DECEMBER1997

a
t

t
n

e
e

r

e

d
t

it

ut

y.

n

e
n
ble
t

ad
e

r
r

ult

g.

y

F

-

th
,
ng

A
ri-
e-
ic

d-
of
FIG. 1. Dynamic correlation functions of the
p

10 3
p

10
Hubbard model withU ­ 8t: (a) p

1
d svd spectrum atknl ­

0.6, (b) p
1
d svd spectrum atknl ­ 0.8, (c) bubble approxi-

mation to p
1
d svd as shown in (b), (d)p1

s svd at knl ­ 0.8,
(e) off-diagonal correlation functionSdsvd at knl ­ s0.8y1.0d,
as defined in the text, and (f ) spin correlation functionx

1
Q svd.

autocorrelation function should consist of a single pe
Here we see that it is only an approximate eigenopera
in the sense that there is also a high-energy continuum
addition to the resonance peak. The ratio of the spec
weight under the peak to the total spectral weight is fou
to be0.63, 0.68 for U ­ 4t and0.46, 0.31 for U ­ 8t in
Figs. 1(a) and 1(b), respectively. The separation betw
the peak and the continuum, and the large relative sp
tral weight of the peak demonstrate that thep

y
d operator is

an eigenoperator of the Hubbard model to a good deg
of approximation. The energies of these peaks are1.06t,
0.66t (U ­ 4t), 0.55t, and0.24t (U ­ 8t), respectively,
andscale inversely withU.

We see that the qualitative features of our ED agre
with the t-matrix calculation of Ref. [2]. Our ED show
that the p

1
d svd correlation function is indeed dominate

by a single peak whose spectral weight is proportional
the hole density1 2 n. Furthermore, the energy of the
p resonance peak is also proportional to the hole dens
with a scale comparable to the AF exchangeJ ­ 4t2yU.
k.
or
in

ral
d

en
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ee

s

o

y,

The p resonance is a composite particle made o
of two electrons. Near half-filling, it is very difficult
for a single electron or hole to propagate coherentl
In view of this fact, it is rather surprising that a two
electron Green’s functionp1

d svd has a coherent peak.
To demonstrate that thep peak is a genuine collective
behavior, we plot in Fig. 1(c) the bubble approximatio
to thep

1
d svd correlation function. This approximation to

p
1
d svd consists of a particle-particle bubble with a fully

dressed one particle Green’s function (of the
p

10 3
p

10 )
site cluster inside the bubble. It fully takes into account th
single-particle dressing effects, only the vertex correctio
is neglected. From these figures, we see that the bub
approximation yields a broad spectral distribution, withou
any identifiable resonance peak. The height of the bro
spectral distribution is 1 order of magnitude less than th
height of thep peak found in the full calculation.This
calculation demonstrates that the collective behavior, o
in other words, the vertex correction, is responsible fo
the existence of thep resonance.

Figure 1(d) gives the result forp1
s svd atU ­ 8t at den-

sity n ­ 0.8. The spectrum is broadly distributed and no
resonance peak can be identified. We interpret this res
as evidence that in contrast top

y
d , py

s is not an approxi-
mate eigenoperator of the Hubbard model near half-fillin
This result is consistent with the conclusion of thet-matrix
calculation [2]. The crucial difference between thep

1
d svd

andp1
s svd correlation function has recently been used b

Zhang [1] to argue thatthere is an approximate symmetry
between AF andd-wave SC, but no symmetry between A
and extendeds-wave SC near half-filling.

In the YBCO superconductors [3], below the supercon
ducting transition temperatureTc, a resonance peak ap-
pears in the polarized neutron scattering amplitude wi
momentum transfersp, pd, and a resonance energy of 25
33, and 41 meV, depending on doping. Demler and Zha
[2] identified this experimental feature with thep reso-
nance, and showed that the particle-particlep resonance
can be mixed into the particle-hole channel belowTc, and
therefore appear in the neutron scattering cross section.
number of other theoretical papers [7] explain the expe
mental feature in terms of a particle-hole threshold b
havior near the superconducting gap or possible exciton
states inside the gap. More recently, thep resonance has
been interpreted more broadly by Zhang [1] as the Gol
stone boson associated with the spontaneous breaking
the SO(5) symmetry belowTc.

In this Letter, we test the ideas of Refs. [1,2] by
studying the mixed correlation functions involving the
spin-density-wave order parameter

S1
Q ­

X
k

c
y
k1Q,"ck,#, S2

Q ­ S
1y
Q , (3)

and thepd operator, defined by
Sdsvd ­ 2
1
p

IkCN22
0 j

√
pd

1

v 2 sH 2 EN
0 d 1 ih

S1
Q 2 S1

Q
1

v 2 sH 2 EN22
0 d 1 ih

pd

!
jCN

0 l , (4)
4903
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and the dynamical spin correlation function itself, defin
by

x1
Q svd ­ 2

1
p

IkCN
0 jS2

Q
1

v 2 sH 2 EN
0 d 1 ih

3 S1
Q jCN

0 l . (5)
The correlation functionSdsvd satisfies an importan
exact sum ruleZ `

2`

dv Sdsvd ­ 2kCN22
0 jDdjCN

0 l , (6)

whereDd ­
P

kscoskx 2 coskydck,"c2k,# is the d-wave
superconducting order parameter. This sum rule follo
from the fact that thepd operator is an SO(5) symmetr
generator which rotates the AF order parameter into
d-wave SC order parameter [1]. Mixed correlation fun
tions likeSdsvd, which involve a symmetry generator an
an order parameter, are commonly used to prove the G
stone theorem on the Goldstone bosons associated
spontaneous symmetry breaking [8].

In Fig. 1(e) Sdsvd is plotted forU ­ 8t, for electron
density betweenn ­ 0.8 andn ­ 1. We see that the spec
trum is dominated by a single peak with relative weig
0.72, located at the same energy as thep resonance. We
also verified that the sum rule (6) is satisfied by expl
itly computing thed-wave order parameter defined on t
right-hand side. Therefore, our result shows thatthe 10-
site Hubbard cluster at densities betweenn ­ 0.8 and
n ­ 1 possesses considerabled-wave SC fluctuations
and furthermore, there is indeed a Goldstone pole
sociated with this spontaneous symmetry breaking, c
sistent with the SO(5) theory [1].The finite energy of
the Goldstone pole results from the fact that the SO(5
not only broken spontaneously by the SC order parame
but also broken explicitly by the chemical potential [1
We also calculatedSdsvd between the densitiesn ­ 0.6
and n ­ 0.8 and found it to be nearly zero. Similarly
the mixed correlation functionSssvd involving theps and
S1

Q operators vanishes for all densities. This result is c
sistent with other numerical evidence ford-wave pairing
fluctuations in the Hubbard model [9].

Finally, we show our calculation for the spin correlatio
function x

1
Q svd in Fig. 1(f) for U ­ 8t at densityn ­

1. We see thatthere is a sharp resonance feature
the same energy as thep resonance. The fact that
all three correlation functionsp1

d svd, Sdsvd, andx
1
Q svd

have resonance peaks at the same energy demons
that the peak in the spin correlation functionx1

Q svd
has a finite overlap with the particle-particle intermedia
statep

y
d jC

N22
0 l. Because of the finiteness of the mixe

correlation functionSdsvd and the right-hand side o
equation (6), a particle-particle excitation at densityn ­
0.8 makes a finite contribution to the spin correlatio
function atn ­ 1. This feature confirms the argument
Ref. [2] (see also Ref. [10]).

Work on larger systemss4 3 4d is in progress to sys
tematically check the finite-size dependence. While
analysis for the4 3 4 cluster is rather involved becaus
4904
d

s

e
-

ld-
ith

t

-

-
n-

is
er,

-

t

ates

e

e

of multiplet splittings, preliminary results at lower elec
tron densitysn # 0.625d indicate that the overall features
are similar: In all systems studied so far, thepd resonance
has a sharply defined low-energy peak, which is well sep
rated from a higher-energy continuum. The separation
large compared to the energy scale of the resonance a
therefore, likely to survive in larger systems.

Recently, Greiter [11] and Baskaran and Anderso
[12] raised some questions concerning the compatibil
between the Mott-Hubbard gap and the approxima
SO(5) symmetry as well as questions concerning t
effect of an additional diagonal hoppingt0 and nearest-
neighbor Coulomb interactionV .

Greiter argued that there is no low-energyp resonance.
Instead the energy of thep particle should be of orderU.
Figure 2 displays our ED results for thep resonance as
a function ofU at various fillings betweenknl ­ 0.2 to
0.8. We clearly see that the resonance energy scales w
1yU and not withU. This result can straightforwardly be
understood in strong coupling: because of the spin trip
nature of thep operator, the mutual interaction amon
the inserted electrons is of orderJ. If both electrons go
into empty sites, there is—in analogy to the quasipartic
band in the doped single-particle spectrum—a finite spe
tral weight at low energy of the order ofJ. If, on the other
hand, one or both of the inserted electrons go into sites
ready occupied, the energy of thep-pair will be of orderU
or 2U, respectively. Both the low-energy excitations, i.e
the sharpp resonance and also these high-energy exci
tions with small weight distributed aroundU, can be de-
tected in Figs. 1(a) and 1(b). However, it is the low-energ
p peak which makes a finite contribution to the spin co
relation function, and it is the primary object of interest.

Next, we consider the effect of a nearest-neighbor inte
actionHV ­ V

P
ki,jl ninj, whereni denotes the electron

density at sitei, on the approximate SO(5) symmetr
[12]. In the left panel of Fig. 3, we compare spectra o
the Sz ­ 0 member of thep

y
d operators with the zero-

momentum pair operatorD
y
d for different values ofV ,

with densitiesknl ­ 0.8. The energies of the dominan

FIG. 2. Energy of thep
y
d -resonance peak in a log-log plot as

a function ofU at fillings knl ­ 0.2 to 0.8.
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FIG. 3. Spectra at a densityknl ­ 0.8 and couplingUyt ­ 8
for the p

y
d (solid line) and theDy

d operator (dashed line) for a
series of valuesVyt (left panel) andt0yt (right panel) (reference
energy isEN12

0 ).

low-energy peaks are only marginally affected. Mo
importantly, the difference of the excitation energies
theD andp operators is practically independent ofV for
the parameter range considered.This difference gives
the energy required to remove ad-wave singlet pair with
momentums0, 0d from the system and reinsert ad-wave
triplet pair with momentum sp, pd. In a neutron-
scattering experiment a Cooper pair from the conden
is turned into ap-pair; we therefore expect the energ
difference of the peak energies in Fig. 3 to correspond
the energy of the peak in the inelastic neutron scatte
cross section, which is essentially unaffected byV .

In the right panel of Fig. 3, we consider the influen
of a next-nearest-neighbor hopping integralt0, with the
opposite sign ast, and again compare the correspondi
spectra of thep andDd operators at a densityknl ­ 0.8.
For values ofjt0ytj , 0.4 the overall picture is similar
to that seen for the nearest-neighbor interaction, i.e.,
difference in excitation energies is nearly independ
of t0yt. For values ofjt0ytj . 0.3 both the low-lying
resonances of theD-pair and thep-pair are shifted upward
in energy. Summarizing both the influence oft0 and V
perturbations on the approximate SO(5) symmetry, we n
that the weight of the peaks are only marginally affec
as long as the position is unchanged. This would sugg
that as long asd-wave pairing survives the influence of th
perturbations, so does thep resonance.

In conclusion, we have numerically verified one of t
most fundamental assumptions of the SO(5) theory of
Hubbard model [1], which asserts that the SO(5) symm
try generators, thepd operators, are approximate eige
t
f

te

to
g

g

he
nt

te
d
st

e
e-
-

operators of the Hubbard model both near and away fro
half-filling. Their dynamic autocorrelation function show
well separated resonance peaks with large relative sp
tral weight and low energy. This behavior is intrinsicall
collective, and cannot be reproduced by any calculatio
which neglect vertex corrections. In contrast to thepd

operators, theps operators do not show well separate
peaks near half-filling. This result shows that there is
approximate SO(5) symmetry only between the AF an
the d-wave SC order parameters, and no symmetry b
tween the AF and thes-wave SC order parameters. Clos
to half-filling, between the densitiesn ­ 0.8 andn ­ 1,
the 10-site Hubbard cluster has finited-wave supercon-
ducting fluctuations, which lead to a nonvanishing mixe
correlation function involving the SO(5) symmetry genera
tor and the AF order parameter. Because of the finiten
of this mixed correlation function, there is a contributio
to the dynamic spin correlation function from the particle
particle p resonance. These observations are consist
with the proposed explanation of the resonant neutron sc
tering peaks in the YBCO superconductors [2].
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