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In the current density functional theory of linear and nonlinear time-dependent phenomena, the treat-
ment of exchange and correlation beyond the level of the adiabatic local density approximation is shown
to lead to the appearance of viscoelastic stresses in the electron fluid. Complex and frequency-dependent
viscosity/elasticity coefficients are microscopically derived and expressed in terms of properties of the
homogeneous electron gas. As a first consequence of this formalism, we provide an explicit formula
for the linewidths of collective excitations in electronic systems. [S0031-9007(97)04789-3]
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Time-dependent density functional theory (TDFT) [1] explicit expression for the linearized xc vector potential
is frequently invoked as a tool for studying the dynam-a,.(7, w) for a system of slowly varying density, subject
ics of many-particle systems. This theory maps the diffito a spatially slowly varying external vector potential at a
cult problem of interacting electrons in a time-dependenfinite frequencyw. Their expression becomes exact in the
external potentiaV/ (7, t) to the simpler one of noninter- limit k < w/vg, kp andg < w/vg, kg, wherek~! and
acting electrons in an effective time-dependent potentia§ ~! are the characteristic length scales for variation of the
Vet (7,1) = V(7,1) + v (7, 1) + vy (7, 1) [wherevy is  external potential and equilibrium density, respectively,
the Hartree potential, and,. is the exchange-correlation and kg and vg are the local Fermi momentum and
(xc) potential] yielding the same density7, 7). In order velocity. However, the final expression fég.(7, w) in
to obtain a practical computational scheme, the xc potenRef. [7] is rather formidable, and its physical meaning is
tial is usually approximated as a function of the instantafar from transparent. Furthermore, it is restricted to the

neous local density, linear response regime. It is the purpose of this paper to
ALDA, o de.(n) overcome these limitations.
Ve (n(F 1)) = <T> . 1) In the following we derive a consistent local theory
n=n(r,t

of the nonlinear dynamical response of a quantum elec-
wheree, (n) is the xc energy density of the homogeneoustronic system of “slowly varying density”, in the sense
electron gas of density,. This scheme is known as specified above. The effect of the xc potential beyond
the “adiabatic local density approximation” (ALDA) [2]. the ALDA will be shown to be analogous to the intro-
Because the conditions of validity of the ALDA (slowly duction of viscoelastic stresses in classical fluid dynamics
varying density and potential itime as well as in space) and elasticity theory [9]. The generalized viscosity coef-
are seldom met in experiments, a few attempts have beditients (or, equivalently, the generalized bulk and shear
made [3,4] to improve upon the ALDA. The objective moduli) are complex and frequency-dependent functions
of these attempts was to obtain approximations for thef the density, and can be calculated in terms of the
xc potential which would still be local in space, but notlocal field factors of the uniform electron gas [10,11].
in time. All these approximations were found to suffer An important consequence of the xc viscosity is to pro-
from inconsistencies, such as the failure to satisfy theside a damping mechanism for long-lived collective ex-
so called “harmonic potential theorem” (HPT) [4—6], or citations which cannot efficiently decay into particle-hole
other basic symmetries. Only recently, it has becomgairs—the only form of damping allowed within the
clear that the root of these difficulties lies in the factALDA [12].
that the xc potential in TDFT is an intrinsically nonlocal We begin by recasting the linear response theory
functional of the density, that is, a functional that does nobf [7,8] in a form that is suitable for the nonlinear
admit a gradient expansion [7,8]. generalization. Letno(7) be the ground-state density

Fortunately, a local gradient expansion is still possibleof the system, and lejks;;j(7, 7, w) be the current-

if the theory is formulated in terms of thmurrent density  current response function of a system of noninteracting
This was shown in Ref. [7] by Vignale and Kohn, who electrons whose ground-state density is alg¢’). The
developed the time-dependent current density functionaystem is perturbed by a weak external vector potential
approach to the linear response theory, and gave aiy(7,t) = a,(7, w)e '’ [13], and we want to calculate
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the amplitude of the current-density respoﬁsé}, t) =  theory of Fermi liquids [17]. We find
J1(7, w)e~®! to first order ina,. The answer is

2
im Re fL (w.n) — + fhp(.n) — L0 g
hutw) = [ 3 awsulE 7o)l 7o) 00 3 dn
J (7)
+ an (7, @) + axer; (7, @)]d7', (2)  gng

whereay; is the first-order change in the Hartree poten- . i 2Er F2/5 — F1/3
tial (written in vector-potential form [13]), and.; is the lim Refier(w.n) = si 1+ FJ3 0 (8)
first-order xc vector potential, which contains the many- ¢ !
body effects. Note thaiy. in general has both longitu- where F,, F;,... are the usual dimensionless Landau
dinal and transverse components, even wigfs purely  parameters of the homoegeneous electron gas [17]. As for
longitudinal. The local-density approximation fat.i  the imaginary parts, one finds |f93c,L(T) ~ —coun o for

was first derived in Ref. [7], Eq. (19). We have found ,, —, o, where the approximate values of the coefficients
that that complicated formula can be written in a physi-¢ ; ;) are tabulated in Ref. [11].

cally transparent form. To this end, we introduce the XC From these results, one concludes that the real parts

“electric field” Exc1(F, w) = = dxe1(F, w). Then of the xc viscosity coefficients (which agree with the or-
- DA dinary notion of fluid viscosities) have finite values in
—eExc1,i(F, ) = — Vivg i (7, w) the limit @ — 0. The imaginary parts of the viscos-

ity coefficients are better understood in terms of bulk
(3)  and shear moduli of an isotropic elastic mediukiy"

and ,ufZ“. According to elasticity theory [9], we de-
(e is the absolute value of the electron charge, aiglthe ~ fine K (0) = o Im & and usl™ (@) = @ Im 7. The
speed of light). The first term is the linearization of the superscriptdyn is a reminder that these adynamical
ALDA expression (1), and the dynamical correction iscontributions to be added to the usual static ones, al-

1 Z ao’xc,ij(;a (1))

+ >
no(Fr) ; ar;

the divergence of the viscoelastic stress tensor ready present in the ALDA. The static elastic constants
su ous 2 . areK;‘Calt = n’d?ex.(n)/dn* and uit = 0, resrgectively.
Oxcij = ﬁxc(a_rl- + a—r’ -3V ﬁ5ij> Equations (7)dand (8) show that fas — 0 Kx2' van-
S ! ishes, whileuy:' has a finite value. A similiar state of
+ LoV o i) (4) affairs holds for the noninteractinkinetic contributions

. . . o to the bulk and shear moduky” = 0 andui = p(n),
Here u(7, w) = ji(F, @)/no(7) is the velocity field, and  \yhere p(n) is the noninteracting Fermi pressure (see be-
e[ @, no(F)] and{y.[w, no(r)] are complex viscosity co- |ow), and K = ndp(n)/dn, ui® = 0. The general
efficients. Th(hay are related }tlo the homogeneous electrofynclusion is that dynamical (post-ALDA) effects do not
gas functionsfy. (w, n) and fx. 7 (@, n) (L for longitudi-  modify the bulk modulus, but they cause the appearance
nal, 7" for transverse) used in Ref. [7] as follows: of a nonvanishing shear modulus and viscosity.

_ n [, 4 d*e..(n) _Equat!ons (3) and (4) _clearly dis_play the basic symme-
bxel@,n) = T |:fxc,L ~ 3 frer T 7} (5)  tries which were used in the derivation of [7,8]. First
of all, the fact that the force exerted by the xc potential
and per unit volume—eno(7)Exc1 (7, ) — n1 (7, w)ﬁvxco(?)
n? can be written as the divergence of a symmetric rank 2
xe(w,n) = Tig et (6)  local tensor guarantees that the net force and the net
torque acting on a volume element of the fluid have no
The functions f){lc,L(T)(w’n) are defined in terms of contribution from the volume element itself (Newton’'s
the dynamical local field factorsi,r)(k,w) [14] as third law). Therefore, the HPT, the “zero-force” and
ffc,L(T)(w’”) = —lim—o4me’Gra(k, w)/k>. They “zero-torque” theorems of [7,8] are manifestly satisfied.
have recently been calculated, within a mode-couplingdNote that the force exerted by the xc “magnetic field”
approximation scheme, at zero temperature, by ContB,. = V X a,. is legitimately disregarded in this argu-
et al. [10,11]. Because the local field factors are singulament, being of higher order in the gradient expansion [see
for small £ and w, it is important to keep track of also below]. Besides, it is rigorously absent in the linear
the order of the limitsk — 0 and @ — 0. The fI'’'s  response theory, if there is no static magnetic field).
are defined by taking the limik — 0 first. Thus the Thus far, we have used the condition of slow density
limit for o — 0 of ffc,L(w,n) differs from the familiar variation (k,g < w/vg) only in approximating the xc
limy—o4me’Gy(k,0)/k* = —d?e..(n)/dn>. However, vector potential. If this condition is met in the physical
rigorous low frequency limits [15] can be obtained [16] system under study, we caaiso use it to approximate
from an analysis of the transport equation in the Landathe Kohn-Sham (KS) response functiopks;;(7, 7/, ®).
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Then Eq. (2) for the current reduces (after considerable akion [9] with complex and frequency-dependent viscosity
gebraic manipulation) to a linearized Navier-Stokes quaeoeﬁicients:

(:)O'ij(;, w)

—imwj;(F,w) = no(ff)[—iw %ai(ﬁw) - V; (p;(:) + vy (7, ) + foIIDA(?,w)>:| + Z 9

; 8rj

Herep (n) = p(n) — p(no) is the first order change in The density and the current density are computed from the
the pressure of the noninteracting electron flyidn) =  KS orbitals according to the usual rules [3]. The form of
Bm2)3r2n5/3 /5m], andvy;, vaiP? are the first-order the nonlinear xc vector potential is dictated by the follow-
changes in the Hartree potential and ALDA xc potential.ing requirements: (i) the xforce density

Thefull stress tensow;; is defined as in Eq. (4), with the el/ 0 L =
viscosity coefficientfy. replaced by — p(no)/iw, Fxci=n ?KE +u- V)axc,,» - Z ukv,-am,k}
while Z,. remains unchanged. k

If, on the other hand, the conditions ¢ < w/vr (11)

are not well satisfied by our system, then it is better tamust be the divergence of a local symmetric rank two
revert to the original KS formulation (2), which treats stress tensor (Newton'’s third law). “Locality” here means
the noninteracting response exactly. The use of the locahat o ;;(7, ¢) is a function ofn(R, '), j(R, '), and their
density approximation (3) for the xc potential becomesgpatial derivatives, wherg < ¢, andR(¢'|7, 1) is the po-
then an uncontrolled approximation, but it may still work sjtion at timer’ of the fluid element which evolves info
well in practice. In particular, we note that Eq. (2) allows at time [18]. (i) Under transformation to an accelerated
for the phenomenon of Landau damping (damping Oframe of reference [5] with origin at(z), the stress ten-
collective modes by single electron-hole pairs), whilegg, 0vc.ij(F, 1) becomesol. (7, 1) = oryeij(F + (1), ).
Eq. (9) does not. o _(iii) Equation (10) must reduce to the linear response the-
Let us now discuss the generalization of the formalismyyry in the limit of small external perturbations, and to the

to thenonlinearresponse regime. In this case, one mustgnlinear Navier-Stokes equation in the limit of slowly
solve the full time-dependent KS equations for the KSyarying (in time) perturbation [19].

orbitals i, (7, 1) To within the accuracy of our approximation, i.e.,
P 1 R . . 2 to second order in the spatial derivativethe above
|:iﬁ Frle 2—<—ihV + —a(F, 1) + — ax (7, t)) - requirements uniquely determine the formagf:
t m & c £ aaxc,[(’-;, t) _ _ V-UALDA(; t)
) = valF 0 Jpali) = 0. (10) T
ij\r,t
. . . . Ly Wil g
starting, for example, with the static KS orbitals corre- n(r,t) 7 ar;
sponding to the external potentia}(7) at the initial time.
| where
. I Jui(F, 1) | oui(Ft) 2 o L
Oxe,ij(Fy 1) = f {n(n(r,t),t - t’)[ PP ]ar' -3V u(r,t’)é,-,}
— 00 j l
+ I 0,0 — )V - I_/)t(;,t/)(?ij}dt/, (13)

Gt — )= [7(n, w)exd—iw(t — t')]dw /2w, and | ated at times or at some earlier time’, is resolved
similarly for {. Here n(#,t) and u(7,t) are the time- by noting that the difference(7, ) — n(7,t) = fﬁ V-
dependent values of the density and velocity field. J(7,7)dr generates a higher order gradient correction.
Note that our formula foi. is still linear in (). The simple form of Eg. (12) is justified by our basic
This happens because, due to the constraint (ii) of gemassumption that the gradients of the density and velocity
eralized Galilean invariance, the velocity must enter thefields be small. By using the full expression (11) for the
stress tensor through its spatial derivatives, which are aglectromagnetic force on the left hand side of Eq. (12),
sumed to be small, even if the velocity itself is not small.and by replacind7, ') — [R('|7, ), '] on the right hand
Terms of higher order in the velocity would necessarilyside of Eq. (13), the approximation can be systematically
be of higher order in the gradient expression. For thémproved, so as to satisfy the local “zero-force” theorem
same reason, one can ignore the velocity-dependent terres all orders in the gradients. A straightforward general-
in the xc force [Eq. (11)],_and the difference between ization allows one to construct an approximation that also
and the “retarded positionR of the fluid element. Simi- satisfies the local “zero-torque” theorem.
larly, the apparent ambiguity of whether the density enter- Finally, we wish to comment on the condition
ing the viscosity coefficients in Eq. (13) should be evalu-k, g < o /vr which defines the limit of validity of our
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