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In the current density functional theory of linear and nonlinear time-dependent phenomena, the
ment of exchange and correlation beyond the level of the adiabatic local density approximation is s
to lead to the appearance of viscoelastic stresses in the electron fluid. Complex and frequency-dep
viscosity/elasticity coefficients are microscopically derived and expressed in terms of properties o
homogeneous electron gas. As a first consequence of this formalism, we provide an explicit fo
for the linewidths of collective excitations in electronic systems. [S0031-9007(97)04789-3]
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Time-dependent density functional theory (TDFT) [
is frequently invoked as a tool for studying the dyna
ics of many-particle systems. This theory maps the di
cult problem of interacting electrons in a time-depend
external potentialV s$r , td to the simpler one of noninter
acting electrons in an effective time-dependent poten
Veffs$r, td ­ V s$r, td 1 yH s$r , td 1 yxcs$r , td [where yH is
the Hartree potential, andyxc is the exchange-correlatio
(xc) potential] yielding the same densityns$r, td. In order
to obtain a practical computational scheme, the xc po
tial is usually approximated as a function of the instan
neous local density,

yALDA
xc sssns$r, tdddd ­

µ
dexcsnd

dn

∂
n­ns$r ,td

, (1)

whereexcsnd is the xc energy density of the homogeneo
electron gas of densityn. This scheme is known a
the “adiabatic local density approximation” (ALDA) [2]
Because the conditions of validity of the ALDA (slowl
varying density and potential intime as well as in space
are seldom met in experiments, a few attempts have b
made [3,4] to improve upon the ALDA. The objectiv
of these attempts was to obtain approximations for
xc potential which would still be local in space, but n
in time. All these approximations were found to suff
from inconsistencies, such as the failure to satisfy
so called “harmonic potential theorem” (HPT) [4–6],
other basic symmetries. Only recently, it has beco
clear that the root of these difficulties lies in the fa
that the xc potential in TDFT is an intrinsically nonloc
functional of the density, that is, a functional that does
admit a gradient expansion [7,8].

Fortunately, a local gradient expansion is still possi
if the theory is formulated in terms of thecurrent density.
This was shown in Ref. [7] by Vignale and Kohn, wh
developed the time-dependent current density functio
approach to the linear response theory, and gave
0031-9007y97y79(24)y4878(4)$10.00
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explicit expression for the linearized xc vector potenti
$axcs$r, vd for a system of slowly varying density, subjec
to a spatially slowly varying external vector potential at
finite frequencyv. Their expression becomes exact in th
limit k ø vyyF, kF andq ø vyyF, kF , wherek21 and
q21 are the characteristic length scales for variation of t
external potential and equilibrium density, respective
and kF and yF are the local Fermi momentum an
velocity. However, the final expression for$axcs$r , vd in
Ref. [7] is rather formidable, and its physical meaning
far from transparent. Furthermore, it is restricted to t
linear response regime. It is the purpose of this paper
overcome these limitations.

In the following we derive a consistent local theor
of the nonlinear dynamical response of a quantum el
tronic system of “slowly varying density”, in the sens
specified above. The effect of the xc potential beyo
the ALDA will be shown to be analogous to the intro
duction of viscoelastic stresses in classical fluid dynam
and elasticity theory [9]. The generalized viscosity coe
ficients (or, equivalently, the generalized bulk and she
moduli) are complex and frequency-dependent functio
of the density, and can be calculated in terms of t
local field factors of the uniform electron gas [10,11
An important consequence of the xc viscosity is to pr
vide a damping mechanism for long-lived collective e
citations which cannot efficiently decay into particle-ho
pairs—the only form of damping allowed within the
ALDA [12].

We begin by recasting the linear response theo
of [7,8] in a form that is suitable for the nonlinea
generalization. Letn0s$rd be the ground-state density
of the system, and letxKS,ijs$r, $r 0, vd be the current-
current response function of a system of noninteracti
electrons whose ground-state density is alson0s$rd. The
system is perturbed by a weak external vector poten
$a1s$r, td ­ $a1s$r, vde2ivt [13], and we want to calculate
© 1997 The American Physical Society
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the amplitude of the current-density response$j1s$r , td ­
$j1s$r , vde2ivt , to first order in$a1. The answer is

j1,is$r, vd ­
Z X

j

xKS,ijs$r, $r 0, vdfa1,js$r 0, vd

1 aH1,js$r 0, vd 1 axc1,js$r 0, vdg d $r 0 , (2)

where $aH1 is the first-order change in the Hartree pote
tial (written in vector-potential form [13]), and$axc1 is the
first-order xc vector potential, which contains the man
body effects. Note that$axc1 in general has both longitu-
dinal and transverse components, even when$a1 is purely
longitudinal. The local-density approximation for$axc1
was first derived in Ref. [7], Eq. (19). We have foun
that that complicated formula can be written in a phys
cally transparent form. To this end, we introduce the
“electric field” $Exc1s$r , vd ; iv

c $axc1s$r, vd. Then

2eExc1,is$r, vd ­ 2 $,iy
ALDA
xc1 s$r, vd

1
1

n0s$rd

X
j

≠sxc,ijs$r , vd
≠rj

(3)

(e is the absolute value of the electron charge, andc is the
speed of light). The first term is the linearization of th
ALDA expression (1), and the dynamical correction
the divergence of the viscoelastic stress tensor

sxc,ij ­ h̃xc

µ
≠ui

≠rj
1

≠uj

≠ri
2

2
3

$, ? $udij

∂
1 z̃xc

$, ? $udij . (4)

Here $us$r , vd ; $j1s$r , vdyn0s$rd is the velocity field, and
$hxcfv, n0s$rdg andz̃xcfv, n0s $rdg are complex viscosity co-
efficients. They are related to the homogeneous elect
gas functionsfh

xc,Lsv, nd andfh
xc,T sv, nd (L for longitudi-

nal, T for transverse) used in Ref. [7] as follows:

z̃xcsv, nd ­ 2
n2

iv

∑
fh

xc,L 2
4
3

fh
xc,T 2

d2excsnd
dn2

∏
(5)

and

h̃xcsv, nd ­ 2
n2

iv
fh

xc,T . (6)

The functions fh
xc,LsTdsv, nd are defined in terms of

the dynamical local field factorsGLsTdsk, vd [14] as
fh

xc,LsTdsv, nd ; 2 limk!0 4pe2GLsTdsk, vdyk2. They
have recently been calculated, within a mode-coupli
approximation scheme, at zero temperature, by Co
et al. [10,11]. Because the local field factors are singul
for small k and v, it is important to keep track of
the order of the limitsk ! 0 and v ! 0. The fh

xc’s
are defined by taking the limitk ! 0 first. Thus the
limit for v ! 0 of fh

xc,Lsv, nd differs from the familiar
limk!0 4pe2GLsk, 0dyk2 ­ 2d2excsndydn2. However,
rigorous low frequency limits [15] can be obtained [16
from an analysis of the transport equation in the Land
-

-

i-
c

s

on

g
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r

u

theory of Fermi liquids [17]. We find

lim
v!0

Ref fh
xc,Lsv, nd 2

4
3

fh
xc,T sv, nd 2

d2excsnd
dn2

­ 0

(7)

and

lim
v!0

Refh
xc,T sv, nd ­

2EF

5n
F2y5 2 F1y3

1 1 F1y3
, (8)

where F0, F1, . . . are the usual dimensionless Landa
parameters of the homoegeneous electron gas [17]. As
the imaginary parts, one finds Imfh

xc,LsTd , 2c0,LsTdv for
v ! 0, where the approximate values of the coefficien
c0,LsTd are tabulated in Ref. [11].

From these results, one concludes that the real pa
of the xc viscosity coefficients (which agree with the o
dinary notion of fluid viscosities) have finite values i
the limit v ! 0. The imaginary parts of the viscos
ity coefficients are better understood in terms of bu
and shear moduli of an isotropic elastic medium,Kdyn

xc

and m
dyn
xc . According to elasticity theory [9], we de-

fine Kdyn
xc svd ­ v lm z̃xc andm

dyn
xc svd ­ v Im h̃xc. The

superscriptdyn is a reminder that these aredynamical
contributions to be added to the usual static ones,
ready present in the ALDA. The static elastic constan
are Kstat

xc ­ n2d2excsndydn2 and mstat
xc ­ 0, respectively.

Equations (7) and (8) show that forv ! 0 Kdyn
xc van-

ishes, whilem
dyn
xc has a finite value. A similiar state of

affairs holds for the noninteractingkinetic contributions
to the bulk and shear moduli:K

dyn
kin ­ 0 andm

dyn
kin ­ psnd,

wherepsnd is the noninteracting Fermi pressure (see b
low), and Kstat

kin ­ ndpsndydn, m
stat
kin ­ 0. The general

conclusion is that dynamical (post-ALDA) effects do no
modify the bulk modulus, but they cause the appearan
of a nonvanishing shear modulus and viscosity.

Equations (3) and (4) clearly display the basic symm
tries which were used in the derivation of [7,8]. Firs
of all, the fact that the force exerted by the xc potenti
per unit volume2en0s$rd $Exc1s$r, vd 2 n1s$r, vd $,yxc0s$rd
can be written as the divergence of a symmetric rank
local tensor guarantees that the net force and the
torque acting on a volume element of the fluid have
contribution from the volume element itself (Newton’
third law). Therefore, the HPT, the “zero-force” an
“zero-torque” theorems of [7,8] are manifestly satisfie
(Note that the force exerted by the xc “magnetic field
$Bxc ­ $, 3 $axc is legitimately disregarded in this argu
ment, being of higher order in the gradient expansion [s
also below]. Besides, it is rigorously absent in the line
response theory, if there is no static magnetic field).

Thus far, we have used the condition of slow dens
variation sk, q ø vyyFd only in approximating the xc
vector potential. If this condition is met in the physica
system under study, we canalso use it to approximate
the Kohn-Sham (KS) response function,xKS,ijs$r , $r 0, vd.
4879
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tion [9] with complex and frequency-dependent viscos
coefficients:
2imvj1,is$r , vd ­ n0s$rd
∑

2iv
e
c

ais$r, vd 2 ,i

µ
p1snd

n0
1 yH1s$r, vd 1 yALDA

xc1 s$r, vd
∂∏

1
X

j

≠sijs$r, vd
≠rj

. (9)
l
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m
s
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e-
e

,

Herep1snd ­ psnd 2 psn0d is the first order change in
the pressure of the noninteracting electron fluidfpsnd ­
s3p2d2y3h̄2n5y3y5mg, andyH1, y

ALDA
xc1 are the first-order

changes in the Hartree potential and ALDA xc potentia
The full stress tensorsij is defined as in Eq. (4), with the
viscosity coefficienth̃xc replaced byh̃xc 2 psn0dyiv,
while z̃xc remains unchanged.

If, on the other hand, the conditionsk, q ø vyyF

are not well satisfied by our system, then it is better
revert to the original KS formulation (2), which treat
the noninteracting response exactly. The use of the lo
density approximation (3) for the xc potential becom
then an uncontrolled approximation, but it may still wor
well in practice. In particular, we note that Eq. (2) allow
for the phenomenon of Landau damping (damping
collective modes by single electron-hole pairs), whi
Eq. (9) does not.

Let us now discuss the generalization of the formalis
to thenonlinear response regime. In this case, one mu
solve the full time-dependent KS equations for the K
orbitalscas$r, td"

ih̄
≠

≠t
2

1
2m

µ
2ih̄ $, 1

e
c

$as$r , td 1
e
c

$axcs$r , td
∂2

2

y0s$rd 2 yHs $r, td
∏

cas$r, td ­ 0 , (10)

starting, for example, with the static KS orbitals corre
sponding to the external potentialy0s$rd at the initial time.
.

al
s

f

t

The density and the current density are computed from
KS orbitals according to the usual rules [3]. The form o
the nonlinear xc vector potential is dictated by the follow
ing requirements: (i) the xcforcedensity

Fxc,i ­ n
e
c

∑µ
≠

≠t
1 $u ? $,

∂
axc,i 2

X
k

uk,iaxc,k

∏
(11)

must be the divergence of a local symmetric rank tw
stress tensor (Newton’s third law). “Locality” here mean
that sxc,ijs$r , td is a function ofns $R, t0d, $js $R, t0d, and their
spatial derivatives, wheret0 , t, and $Rst0j$r , td is the po-
sition at timet0 of the fluid element which evolves into$r
at timet [18]. (ii) Under transformation to an accelerate
frame of reference [5] with origin at$xstd, the stress ten-
sor sxc,ijs$r, td becomess0

xc,ijs$r , td ­ sxc,ijsss$r 1 $xstd, tddd.
(iii) Equation (10) must reduce to the linear response th
ory in the limit of small external perturbations, and to th
nonlinear Navier-Stokes equation in the limit of slowly
varying (in time) perturbation [19].

To within the accuracy of our approximation, i.e.
to second order in the spatial derivatives,the above
requirements uniquely determine the form of$axc:

e
c

≠axc,is$r, td
≠t

­ 2 ,iy
ALDA
xc s$r , td

1
1

ns$r , td

X
j

≠sxc,ijs$r , td
≠rj

, (12)

where
sxc,ijs$r, td ­
Z t

2`

Ω
h̃sns$r , td, t 2 t0d

∑
≠uis$r , t0d

≠rj
1

≠ujs$r, t0d
≠ri

2
2
3

$, ? $us$r, t0ddij

∏
1 z̃ sns$r , td, t 2 t0d $, ? $us$r , t0ddij

æ
dt0 , (13)
ic
city
e

2),

lly
m

al-
lso

n

h̃sn, t 2 t0d ;
R

h̃sn, vdexpf2ivst 2 t0dgdvy2p, and
similarly for z̃ . Here ns$r, td and $us$r , td are the time-
dependent values of the density and velocity field.

Note that our formula for$axc is still linear in $us$r , td.
This happens because, due to the constraint (ii) of g
eralized Galilean invariance, the velocity must enter
stress tensor through its spatial derivatives, which are
sumed to be small, even if the velocity itself is not sm
Terms of higher order in the velocity would necessa
be of higher order in the gradient expression. For
same reason, one can ignore the velocity-dependent t
in the xc force [Eq. (11)], and the difference between$r
and the “retarded position”$R of the fluid element. Simi
larly, the apparent ambiguity of whether the density en
ing the viscosity coefficients in Eq. (13) should be eva
n-
he
as-
ll.
ly
he
rms

r-
u-

ated at timet or at some earlier timet0, is resolved
by noting that the differencens$r , t0d 2 ns$r , td ­

Rt
t0

$, ?
$js$r , td dt generates a higher order gradient correction.

The simple form of Eq. (12) is justified by our bas
assumption that the gradients of the density and velo
fields be small. By using the full expression (11) for th
electromagnetic force on the left hand side of Eq. (1
and by replacings$r , t0d ! f $Rst0j $r, td, t0g on the right hand
side of Eq. (13), the approximation can be systematica
improved, so as to satisfy the local “zero-force” theore
to all orders in the gradients. A straightforward gener
ization allows one to construct an approximation that a
satisfies the local “zero-torque” theorem.

Finally, we wish to comment on the conditio
k, q ø vyyF which defines the limit of validity of our
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approximate treatment of$axc. This restriction is
forced on us by the analytic structure of the function
fh

xcLsTdsk, vd which are singular along the linev ­ kyF ,
thus limiting the radius of convergence of the small-k
expansion. The condition is reasonably well satisfied
the characteristic frequencies of collective excitation
but it becomes increasingly restrictive as we lower th
frequency.

Let us now briefly discuss an application of the
formalism developed above. It is well known tha
high-frequency collective excitations which are no
efficiently Landau damped would appear as sharpd

functions within the ALDA. In this regime, the only
efficient damping mechanism, leading to a nonvanis
ing linewidth, is provided by the dynamical xc effects
Making again use of the analogy with classical hydro
dynamics [9], we can calculate the linewidth (twice th
imaginary part of the frequency) asG ­ jĒ0jyĒ, where
Ē0 ­ 2 Re

P
i,k

R
d $rup

i s$r, vd ,ksxc,iks$r , vd is the aver-
age energy dissipated per unit time by the viscosity, a
Ē ­ 2m

R
d $rn0s$rdj $us$r , vdj2 is the mechanical energy

stored in the oscillation, regarded as slowly decaying
time. Thus,

G ­
jRe

P
i,k

R
d $rup

i s $r, vd,ksxc,iks$r, vdj
m

R
d $rn0s$rdj $us$r , vdj2

, (14)

where $us$r , vd is the velocity field of the collective mode
calculated within the ALDA, andn0s$rd is the equilib-
rium density. This classical result is confirmed by
full quantum mechanical calculation of the poles of th
current-current response function. Plasmon oscillatio
in low-impurity quantum wells appear to be a promis
ing ground for the application of Eq. (14), since in thes
systems the density is slowly varying and band stru
ture effects are negligible. To obtain an order of mag
nitude estimate of the xc linewidth for plasmons o
small wave vectork, we consider the homogeneous cas
where Eq. (14) reduces to the known result [14]Gyvp ­
sn0k2ymv2

pdj Im fh
xcLsn0, vpdj. This limit can be experi-

mentally realized in wide parabolic quantum wells. Usin
results of Ref. [11] forfh

xcL in three dimensions, we get
Gyvp ­ 0.027skykFd2 for a typicalrs ­ 4. This is about
an order of magnitude smaller than the linewidth observ
for plasmons in simple metals [20], where also the ban
structure contributes. Detailed applications of Eq. (14)
quantum wells will be reported elsewhere.
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