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Growth of Patterned Surfaces
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During epitaxial crystal growth a pattern that has initially been imprinted on a surface approximately
reproduces itself after the deposition of an integer number of monolayers. Computer simulations of the
one-dimensional case show that the quality of reproduction decays exponentially with a characteristic
time which is linear in the activation energy of surface diffusion. We argue that this lifetime of
a pattern is optimized if the characteristic feature size of the pattern is larger(ihaR)!/@+2,
where D is the surface diffusion constanf; the deposition rate, and the surface dimension.
[S0031-9007(97)04838-2]

PACS numbers: 68.55.—a, 05.50.+q, 81.15.—-z

Modern techniques of manipulating crystal surfacesby a height functioni(x, r) with x indexing the lattice
allow one to imprint structures down to the atomic sizesites on ai-dimensional substrate. In the following, time
on them. With the tip of a tunneling microscope one canwill be measured in numbers of deposited monolayers.
arrange adsorbed atoms in a pattern. In heteroepitaxial When the growth process is initiated at time= 0 with
growth a two-dimensional array of quantum dots maysome structurei(x,0), consisting of, e.g., islands of a
form on the nanometer scale. With masking techniqueparticular shape on an otherwise flat substrateafzern,
arbitrary patterns with features as small as a micrometanew islands will form on top of the initial ones, and
along the surface and atomic size perpendicular to iall of them will expand laterally due to the attachment
can be fabricated. If one buries such a pattern undeof atoms at their edges. Therefore the pattern will be
an overlayer growing in layer-by-layer mode, the patterrdeformed during this early stage of growth. However,
will approximately reproduce itself periodically at the the original pattern will nearly be reproduced after the
completion of each layer. The question arises as to howleposition of one monolayer, because the new layer
this propagation of a pattern is influenced by the growtmucleates preferentially near the centers of islands in the
conditions. A theoretical understanding of such temporaprevious layer. As this correlation extends over long
correlations began to emerge only recently [1-5]. In theimes [1], one expects the approximate reproduction of the
following, the propagation of a pattern will be discussedpattern at later times as well. It makes sense to ask which
for the simplest case that the influence of elastic strain ofraction of the pattern is propagated throughonolayers.
surface diffusion is negligible and that diffusion across aWe call this fraction the propagation probabilipfz). It
step edge from an upper to a lower terrace is not inhibiteds given by
by Ehrlich-Schwoebel barriers [6]. t

Experimentally, it has long been known that layer-by- p(t) = <]_[ 6h<x’s>,h<x’0)+s>. Q)
layer (or Frank—van der Merwe) growth persists up to s=1
a timef7, after which the characteristic growth oscillations The brackets denote averaging over different lattice sites
are damped out and the surface becomes rough. Recenthnd different realizations of the growth process;.,; = 1
it has been shown thatdepends on the growth conditions if i = j and 0 otherwise denotes the Kronecker delta.

[2,7-9], i.e., the surface diffusion constait and the By defining p(¢) in this way, we measure thdeter-
deposition rateF, with a power law(D/F)?. Clearly, ministic reproduction of the initial pattern(x,0), seen
a pattern can at most survive as long as the surface grovesroboscopically after deposition df2,..., monolayers

layerwise. In fact, the lifetime of a pattern is much shorterin the comoving frame. It igleterministicin the sense
than?, as we are going to show: It dependsPpF only  that a given siter is counted as “surviving” after time
logarithmically rather than with a power law. only if it has survived throughll previous timed,...,r.

The lifetime of a pattern in layer-by-layer growth Of course, the height might also regain its initial value by
depends also on the feature size We shall identify chance once it has left it, but this is a stochastic process
the length scale that is important in the context of patterrand contributes to the noisiness of the pattern. Thus the
decay ag, ~ (D/F)"4*?_ For feature size = €,, the survival of informationis not described properly by the
lifetime increases rather abruptly. propagation probability (1), but by an appropriate entropy.

Propagation probability—To simplify the discussion, It will be dealt with in a longer paper.
we assume that the grown crystal is simple cubic [10] and If the probability of return to the initial height (in the
that overhangs and defects can be neglected. Then, tlkemoving frame) at time was considered, irrespective
surface configuration at a given timecan be represented of the values at intermediate times, one would probe a
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two-point function. Such a two-point function is expectedtime 7 is a Poisson distribution$;(r) = exp(—)#//j!.

to decay algebraically for long times. More precisely, Therefore,p(1) = S;(1) = exp(—1), so thatr, = 1.

it should scale like the value of the height distribution For D/F > 1, a monotonous increase of as a func-

function at the average height. For self-affine surfacesion of D/F is expected. When the initial “pattern” is

the width of the height distribution increases lik€. simply a flat surface, one expeais— « for D/F — =,

Thus the probability to recover the initial height after thebecause layer-by-layer growth persists forever for infin-

deposition oft monolayers should decay as”. itely high diffusion constant. The computer simulations
In contrast to this, the-point function p(z) decays of molecular beam epitaxy (MBE) on a one-dimensional

exponentially; see Fig. 1. Although the exact evaluatiorsubstrate, to be presented in the next section, confirm this

is nontrivial, this result is easily made plausible: Thepicture and show a dependence

fraction p(¢ + 1) of surviving sites at time + 1 equals

the number of surviving sites at time p(z), times the te ~In(D/F) 3

probability to propagate to the next layer. Assuming that

this probability can be identified witlp(1), independent with a cutoff atz. = 1 for smallD/F.

of the surface configuration, which at time of course, In the following we shall discuss three different initial
differs from the initial one, the exponential decay patterns: (1) A completely flat surface, (2) a rough surface
as it evolves from the flat one after tinfe when the
p(t) = exp(—t/t.) (2) oscillations due to layer-by-layer growth have died out,

and (3) a periodic modulation of the surface with a fixed

follows immediately. We shall show below that the feature size. The first arises as a natural limit of a pattern
propagation probability does depend on the surface corwith a characteristic feature size— «. The second
figuration. However, this dependence is so weak that theepresents the simplest generic configuration for which
surface evolution during the lifetime of a pattern hardly the growth kinetics has no periodic time dependence any
affects its exponential decay (2). more. Both will be used to study the pattern decay

The main purpose of this Letter is to investigate theprocess systematically in the next section. Finally, the
dependence of. on the microscopic growth parameter third choice will lead to the optimization condition for
D/F and the feature size of the pattern. Let us firstpattern survival and will be studied afterwards.
discuss two limit cases. Fdv/F — 0, the sites are not Model and simulation results-Atoms are deposited
coupled by diffusion and the appropriate description ofonto a one-dimensional substrate of typical size= 10*
the growth process is given by the random depositiowith a rate ofF’ atoms per unit time and area. Atoms with
model [11], where atoms are deposited randomly onto theo lateral neighbor are allowed to diffuse with diffusion
substrate and remain at the deposition site forever. In thisonstantD. Atoms with lateral neighbors are assumed to
model, the fractionS;(z) of surface sites in layey after  be immobile, so that, e.g., dimers are immobile and stable.
Growth commences with a flat substratgx,0) = 0 for
all sitesx =1,...,L. (The other initial configurations
will be discussed below.) On deposition ath(x,t) is

increased by one.
Figure 1 confirms the exponential decay (2) of the
107 | ] propagation probability. The initial configuration survives
the better the higher the value bf/F, as expected. The
lifetimes ¢.(D/F) are shown in Fig. 2. For smalb/F
" the lifetime approaches 1 as derived above for random
107 ¢ \ ] deposition, and for larg® /F it increases like I(D/F).

\ \\ L The results for a rough surface as initial pattern
\ are very similar. The propagation probability (1) was

10° | \ \ averaged over 100 different initial patterns, all obtained
\ by depositing 50, respectively, 200 monolayers on a

0

10

p(t)

\ - flat substrate. For the values @&f/F considered here
107 \ , . , L\ the periodic oscillations of the surface morphology have
0 10 20 30 40 50 stopped by then, as shown in [2]. Interestingly, the
t lifetime of a rough surface pattern is shorter than that of

the flat surface (see Fig. 2), but we could not observe any

FIG. 1. Propagation probability (1) of a flat surface as a jtference between the rougher surface (200 monolayers)

function of a number of deposited monolayersor different

values of D/F = 0,10°,10',...,10° from left to right. The and the less rough one (50 monolayers). This will become
characteristic time of the exponential decay increases wittPlausible, when considering how the lifetime of a pattern
increasingD /F. is affected by the feature size.
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The measurements of the lifetime as a function of the
initial wavelengthr for different D/F (see Fig. 3) show
that, for r greater than a characteristic value depending
onD/F, survival is strongly enhanced. Above this value,
the lifetime depends only a little on the feature size. For
smallr, the lifetime seems to saturate for increasingr.
These findings can be understood in the following way.

The mechanism of transporting the memory of the
surface structure from one monolayer to the next is that
nucleations take place near the center of islands that
have already formed one layer below. If the feature
size r is chosen so small that nucleations cannot take
place on top of the pattern, this mechanism is suppressed
and consequently the lifetime of the pattern is reduced.
To suppress nucleations, the distance between sinks for
adatoms, i.e., the feature sizehas to be chosen so small
that a freshly deposited adatom diffuses to the nearest
sink (i.e., a distance), before the next atom is deposited
within the area~r?. This is the case for < ¢,. Hence,
€y should be the length scale found in Fig. 3.

The scaling plot Fig. 4 shows that the characteristic

Periodic patterns—In this section, we study the de- length above which the survival is prolonged scales like
pendence of the lifetime on the typical feature size of arfD/F)****°!, which suggests a length scale proportional
artificially prepared initial configuration. To this end, itis to (D/F)!/3. This is in accordance with the argument
useful to recall the different length scales associated wit§iven above for the characteristic length scale beifng
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FIG. 2. Pattern lifetimer, as a function ofD/F for a flat
(¢) and a rough [(J) surface. The solid line indicates the
minimum lifetime 7. = 1 for D/F — 0. The dotted lines
represent logarithmic fits to the last five decade®df .
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ideal MBE. To assure that the characteristic length scale in Fig. 3
The island distance or diffusion lengthis a function is not €, which for the parameters studied here also is
of D/F, proportional to(D/F)'/3, we studied epitaxial growth

with a critical nucleus of 2 instead of 1, which influences

¢~ (D/F)". (4) ¢, but not¢,. This analysis shows that indeefy is

Details on this will be

The exponenty depends on the substrate dimension
on the size of the critical nucleus, and on the possibl
fractality of the islands [8,9,12]. Its numerical value for
the simulations presented hereyis= 1/4.

The only dimensionless length scalg which can be
constructed from the dimensionful parametBrand F is

€ ~ (D/F)/@+2), (5)

Physically, this length scale comes from comparing the

diffusion time to the adatom arrival time on an area of
sizel? [8,13]. ¢, and{ are submonolayer quantities.
Finally, the layer coherence lengthdepends oD /F
like
t ~ (D/F)"/49; (6)

see [2]. This is not a submonolayer quantity faappears

as the typical length scale after the oscillation damping

time, i.e., after deposition afmonolayers.

In order to study the length scale dependence of the

lifetime, we use a periodically modulated surface
h(x,t = 0) = O(sin(mx/r)), @

where®(x) = 1 if x = 0 and 0 otherwise is the Heavi-
side function.
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the characteristic length scale.
ublished in a longer paper.
The saturation of. for small » as a function ofD/F
can now easily be understood: Af« €, the memory of
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FIG. 3. Lifetimet. as a function of the feature sizeof the
initial surface modulation forD/F = 10* 10°,10°, and 107.
Around a characteristic feature size depending Iof¥, the
lifetime increases rapidly.
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1.0 In this paper, we neglected barriers for interlayer
transport (Ehrlich-Schwoebel barriers) [6]. The memory
mechanism will be enhanced by them, but the instability

0.8 [14] associated with them will tend to make pattern
reproduction worse. The competition between these two

’% 0.6 | effects is well worth studying as in many materials
T interlayer transport is inhibited.
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