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Growth of Patterned Surfaces
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During epitaxial crystal growth a pattern that has initially been imprinted on a surface approxima
reproduces itself after the deposition of an integer number of monolayers. Computer simulations
one-dimensional case show that the quality of reproduction decays exponentially with a charact
time which is linear in the activation energy of surface diffusion. We argue that this lifetime
a pattern is optimized if the characteristic feature size of the pattern is larger thansDyFd1ysd12d,
where D is the surface diffusion constant,F the deposition rate, andd the surface dimension.
[S0031-9007(97)04838-2]

PACS numbers: 68.55.–a, 05.50.+q, 81.15.–z
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Modern techniques of manipulating crystal surfac
allow one to imprint structures down to the atomic si
on them. With the tip of a tunneling microscope one c
arrange adsorbed atoms in a pattern. In heteroepita
growth a two-dimensional array of quantum dots m
form on the nanometer scale. With masking techniq
arbitrary patterns with features as small as a microm
along the surface and atomic size perpendicular to
can be fabricated. If one buries such a pattern un
an overlayer growing in layer-by-layer mode, the patte
will approximately reproduce itself periodically at th
completion of each layer. The question arises as to h
this propagation of a pattern is influenced by the grow
conditions. A theoretical understanding of such tempo
correlations began to emerge only recently [1–5]. In
following, the propagation of a pattern will be discuss
for the simplest case that the influence of elastic strain
surface diffusion is negligible and that diffusion across
step edge from an upper to a lower terrace is not inhib
by Ehrlich-Schwoebel barriers [6].

Experimentally, it has long been known that layer-b
layer (or Frank–van der Merwe) growth persists up
a time t̃, after which the characteristic growth oscillatio
are damped out and the surface becomes rough. Rece
it has been shown thatt̃ depends on the growth condition
[2,7–9], i.e., the surface diffusion constantD and the
deposition rateF, with a power lawsDyFdd. Clearly,
a pattern can at most survive as long as the surface gr
layerwise. In fact, the lifetime of a pattern is much shor
than t̃, as we are going to show: It depends onDyF only
logarithmically rather than with a power law.

The lifetime of a pattern in layer-by-layer growt
depends also on the feature sizer. We shall identify
the length scale that is important in the context of patt
decay as,0 , sDyFd1ysd12d. For feature sizer * ,0, the
lifetime increases rather abruptly.

Propagation probability.—To simplify the discussion,
we assume that the grown crystal is simple cubic [10] a
that overhangs and defects can be neglected. Then
surface configuration at a given timet can be represente
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by a height functionhsx, td with x indexing the lattice
sites on ad-dimensional substrate. In the following, tim
will be measured in numbers of deposited monolayers.

When the growth process is initiated at timet ­ 0 with
some structurehsx, 0d, consisting of, e.g., islands of a
particular shape on an otherwise flat substrate (apattern),
new islands will form on top of the initial ones, and
all of them will expand laterally due to the attachme
of atoms at their edges. Therefore the pattern will
deformed during this early stage of growth. Howeve
the original pattern will nearly be reproduced after th
deposition of one monolayer, because the new lay
nucleates preferentially near the centers of islands in
previous layer. As this correlation extends over lon
times [1], one expects the approximate reproduction of t
pattern at later times as well. It makes sense to ask wh
fraction of the pattern is propagated throught monolayers.
We call this fraction the propagation probabilitypstd. It
is given by

pstd ;

*
tY

s­1

dhsx,sd,hsx,0d1s

+
. (1)

The brackets denote averaging over different lattice sitex
and different realizations of the growth process.di,j ­ 1
if i ­ j and 0 otherwise denotes the Kronecker delta.

By defining pstd in this way, we measure thedeter-
ministic reproduction of the initial patternhsx, 0d, seen
stroboscopically after deposition of1, 2, . . . , monolayers
in the comoving frame. It isdeterministicin the sense
that a given sitex is counted as “surviving” after timet
only if it has survived throughall previous times1, . . . , t.
Of course, the height might also regain its initial value b
chance once it has left it, but this is a stochastic proce
and contributes to the noisiness of the pattern. Thus
survival of information is not described properly by the
propagation probability (1), but by an appropriate entrop
It will be dealt with in a longer paper.

If the probability of return to the initial height (in the
comoving frame) at timet was considered, irrespective
of the values at intermediate times, one would probe
© 1997 The American Physical Society
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two-point function. Such a two-point function is expecte
to decay algebraically for long times. More precise
it should scale like the value of the height distributio
function at the average height. For self-affine surfac
the width of the height distribution increases liketb .
Thus the probability to recover the initial height after th
deposition oft monolayers should decay ast2b .

In contrast to this, thet-point function pstd decays
exponentially; see Fig. 1. Although the exact evaluati
is nontrivial, this result is easily made plausible: Th
fraction pst 1 1d of surviving sites at timet 1 1 equals
the number of surviving sites at timet, pstd, times the
probability to propagate to the next layer. Assuming th
this probability can be identified withps1d, independent
of the surface configuration, which at timet, of course,
differs from the initial one, the exponential decay

pstd ­ exps2tytcd (2)

follows immediately. We shall show below that th
propagation probability does depend on the surface c
figuration. However, this dependence is so weak that
surface evolution during the lifetimetc of a pattern hardly
affects its exponential decay (2).

The main purpose of this Letter is to investigate t
dependence oftc on the microscopic growth paramete
DyF and the feature size of the pattern. Let us fi
discuss two limit cases. ForDyF ! 0, the sites are not
coupled by diffusion and the appropriate description
the growth process is given by the random deposit
model [11], where atoms are deposited randomly onto
substrate and remain at the deposition site forever. In
model, the fractionSjstd of surface sites in layerj after

FIG. 1. Propagation probabilitypstd of a flat surface as a
function of a number of deposited monolayerst for different
values ofDyF ­ 0, 100, 101, . . . , 108 from left to right. The
characteristic time of the exponential decay increases w
increasingDyF.
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time t is a Poisson distribution,Sjstd ­ exps2tdtjyj!.
Therefore,ps1d ­ S1s1d ­ exps21d, so thattc ­ 1.

For DyF ¿ 1, a monotonous increase oftc as a func-
tion of DyF is expected. When the initial “pattern” is
simply a flat surface, one expectstc ! ` for DyF ! `,
because layer-by-layer growth persists forever for infi
itely high diffusion constant. The computer simulation
of molecular beam epitaxy (MBE) on a one-dimension
substrate, to be presented in the next section, confirm t
picture and show a dependence

tc , lnsDyFd (3)

with a cutoff attc ­ 1 for smallDyF.
In the following we shall discuss three different initia

patterns: (1) A completely flat surface, (2) a rough surfa
as it evolves from the flat one after timẽt, when the
oscillations due to layer-by-layer growth have died ou
and (3) a periodic modulation of the surface with a fixe
feature size. The first arises as a natural limit of a patte
with a characteristic feature sizer ! `. The second
represents the simplest generic configuration for whi
the growth kinetics has no periodic time dependence a
more. Both will be used to study the pattern deca
process systematically in the next section. Finally, th
third choice will lead to the optimization condition for
pattern survival and will be studied afterwards.

Model and simulation results.—Atoms are deposited
onto a one-dimensional substrate of typical sizeL ­ 104

with a rate ofF atoms per unit time and area. Atoms wit
no lateral neighbor are allowed to diffuse with diffusio
constantD. Atoms with lateral neighbors are assumed
be immobile, so that, e.g., dimers are immobile and stab
Growth commences with a flat substrate,hsx, 0d ­ 0 for
all sites x ­ 1, . . . , L. (The other initial configurations
will be discussed below.) On deposition atx, hsx, td is
increased by one.

Figure 1 confirms the exponential decay (2) of th
propagation probability. The initial configuration survive
the better the higher the value ofDyF, as expected. The
lifetimes tcsDyFd are shown in Fig. 2. For smallDyF
the lifetime approaches 1 as derived above for rando
deposition, and for largeDyF it increases like lnsDyFd.

The results for a rough surface as initial patter
are very similar. The propagation probability (1) wa
averaged over 100 different initial patterns, all obtaine
by depositing 50, respectively, 200 monolayers on
flat substrate. For the values ofDyF considered here
the periodic oscillations of the surface morphology hav
stopped by then, as shown in [2]. Interestingly, th
lifetime of a rough surface pattern is shorter than that
the flat surface (see Fig. 2), but we could not observe a
difference between the rougher surface (200 monolaye
and the less rough one (50 monolayers). This will becom
plausible, when considering how the lifetime of a patte
is affected by the feature size.
4855
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FIG. 2. Pattern lifetimetc as a function ofDyF for a flat
(±) and a rough (h) surface. The solid line indicates the
minimum lifetime tc ­ 1 for DyF ! 0. The dotted lines
represent logarithmic fits to the last five decades ofDyF.

Periodic patterns.—In this section, we study the de-
pendence of the lifetime on the typical feature size of a
artificially prepared initial configuration. To this end, it is
useful to recall the different length scales associated w
ideal MBE.

The island distance or diffusion length, is a function
of DyF,

, , sDyFdg . (4)

The exponentg depends on the substrate dimensio
on the size of the critical nucleus, and on the possib
fractality of the islands [8,9,12]. Its numerical value fo
the simulations presented here isg ­ 1y4.

The only dimensionless length scale,0 which can be
constructed from the dimensionful parametersD andF is

,0 , sDyFd1ysd12d. (5)

Physically, this length scale comes from comparing th
diffusion time to the adatom arrival time on an area o
sizeld [8,13]. ,0 and, are submonolayer quantities.

Finally, the layer coherence length,̃ depends onDyF
like

,̃ , sDyFd4gys42dd; (6)

see [2]. This is not a submonolayer quantity, as,̃ appears
as the typical length scale after the oscillation dampin
time, i.e., after deposition of̃t monolayers.

In order to study the length scale dependence of t
lifetime, we use a periodically modulated surface

hsx, t ­ 0d ­ Qsss sinspxyrdddd , (7)

whereQsxd ­ 1 if x $ 0 and 0 otherwise is the Heavi-
side function.
4856
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The measurements of the lifetime as a function of t
initial wavelengthr for different DyF (see Fig. 3) show
that, for r greater than a characteristic value dependi
on DyF, survival is strongly enhanced. Above this valu
the lifetime depends only a little on the feature size. F
smallr, the lifetime seems to saturate for increasingDyF.
These findings can be understood in the following way.

The mechanism of transporting the memory of th
surface structure from one monolayer to the next is th
nucleations take place near the center of islands t
have already formed one layer below. If the featu
size r is chosen so small that nucleations cannot ta
place on top of the pattern, this mechanism is suppres
and consequently the lifetime of the pattern is reduce
To suppress nucleations, the distance between sinks
adatoms, i.e., the feature sizer , has to be chosen so sma
that a freshly deposited adatom diffuses to the near
sink (i.e., a distancer), before the next atom is deposite
within the area,rd . This is the case forr & ,0. Hence,
,0 should be the length scale found in Fig. 3.

The scaling plot Fig. 4 shows that the characteris
length above which the survival is prolonged scales li
sDyFd0.3260.01, which suggests a length scale proportion
to sDyFd1y3. This is in accordance with the argumen
given above for the characteristic length scale being,0.
To assure that the characteristic length scale in Fig
is not ,̃, which for the parameters studied here also
proportional to sDyFd1y3, we studied epitaxial growth
with a critical nucleus of 2 instead of 1, which influence
,̃, but not ,0. This analysis shows that indeed,0 is
the characteristic length scale. Details on this will b
published in a longer paper.

The saturation oftc for small r as a function ofDyF
can now easily be understood: Ifr ø ,0, the memory of

FIG. 3. Lifetime tc as a function of the feature sizer of the
initial surface modulation forDyF ­ 104, 105, 106, and 107.
Around a characteristic feature size depending onDyF, the
lifetime increases rapidly.
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FIG. 4. Data from Fig. 3 with normalized lifetimes, and
feature sizer scaled withsDyFd0.32.

the initial periodic pattern is destroyed already after t
deposition of one monolayer. The surface will be ha
filled with islands which have a typical size, much larger
than r. Then the fraction of sites which propagated b
just one lattice constant is about 50%, irrespective, h
largeDyF is.

The faster decay of a rough surface compared to
flat surface as the initial pattern can be made plausi
with the following reasoning: The feature size of roug
surfaces may be identified with the typical terrace si
,. For the simulations presented here, where the criti
nucleus was 1,, is smaller than,0. Therefore the faster
decay of the pattern is consistent with our findings f
periodic patterns.

In conclusion, we have shown that a pattern deca
exponentially fast with a lifetime proportional to lnsDyFd.
With the Arrhenius law,D , exps2EykBTd, the lifetime
decreases linearly with the energy barrierE for surface
diffusion. The lifetime of a pattern is optimal if the
feature size of the pattern is larger thansDyFd1ysd12d.

An important extension of this work would be the stud
of the two-dimensional case. Whereas it is natural to e
pect an exponential decay of the propagation probabili
the dependence of the lifetime on the microscopic grow
parameters is an open question.
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In this paper, we neglected barriers for interlaye
transport (Ehrlich-Schwoebel barriers) [6]. The memo
mechanism will be enhanced by them, but the instabil
[14] associated with them will tend to make patter
reproduction worse. The competition between these t
effects is well worth studying as in many material
interlayer transport is inhibited.
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