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Liquid Surface Wave Band Structure Instabilities
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We study interfacial instabilities between two spatially periodically sheared ideal fluids. Bloch
wave function decompositions of the surface deformation and fluid velocities result in a non-Hermitian
secular matrix with an associated band structure that yields both linear oscillating and nonoscillating
instabilities, enhanced near Bragg planes corresponding to the periodicity determined by converging or
diverging surface flows. The instabilities perssenwhen the dynamical effects of the upper fluid are
neglected, in contrast to the uniform shear Kelvin-Helmholtz (KH) instability. Periodic flows can also
couple with uniform shear anslippressstandard KH instabilities. [S0031-9007(97)04749-2]

PACS numbers: 47.20.Ft, 47.20.Ma, 68.10.—m

When two fluids of different density are uniformly treat the surface waves as being reflected or refracted
sheared, a Kelvin-Helmholtz (KH) instability, where much like wave scattering in optical, acoustic, or elec-
the interface deforms, may arise [1]. In this Letter, wetronic solid state physics, where band structures have been
exploit an analogy with solid state physics employingcalculated using linear eigenvalue analyses [11]. A re-
Bloch’s theorem which allows us to calculate the couplinglated problem of periodic surface wave scatterers such
betweenspatially periodic shear and surface capillary- as thin ice floes has been treated with similar meth-
gravity waves. Regular fluid flow patterns are ubiquitousods [12]. Here, the underlyinfow is periodic so we
[2] in nature and can exist in parameter regimes priotuse Bloch functions to describe the surface displacements
to the onset of chaotic or turbulent flows. For exampleand dynamic fluid pressure and derive a quadratic eigen-
Rayleigh-Bénard convection cells arise when heating ofalue equation with an associated non-Hermitian operator.
a fluid layer from below provides buoyancy [3] driving Within the nontrivial “band structure” we find a complex
the instability. Regular convective rolls in the form of eigenvalue spectrum corresponding to linear instabilities
rectangles and hexagons can appear [3,4]. that persist even in the one-fluid limit.

Periodic flows also occur in Langmuir circulation (LC)  Formulation.—Consider two ideal fluids separated by
windrows where wind stresses, turbulent stresses, aral flat wave-undisturbed interface at= 0 as shown in
Coriolis forces conspire to form convection rolls in the Fig. 1. Although the underlying flow field is typically
upper ocean [5]. These flows can be spatially periodicotational, we assume the flow associated with the im-
as often observed when the sea surface is contaminatgpdsed surface waves are irrotational. The surface wave
by oil, algae, or air bubbles [6]. On larger scales aredisplacements are assumed small and do not affect the
nearly periodic solar convection cells in stellar convectiveunderlying “quenched” flow. This requirement, and lin-
zones; here, magnetic fields may also affect the surfacearization, impliesn < A,a, where 5, A, and a are
wave dynamics [7]. Thus, surface wave propagation antlypical surface amplitudes, wavelengths, and flow field pe-
interfacial stability is an important aspect of stratified fluidsriodicities, respectively.
with wide applicability and their dynamics may be a way
of probing underlying flows.

Besides the large body of work on nonlinear surface
waves and surface instabilities, linear oscillatory instabili-
ties of the two-layer Bénard problem have been theoreti-
cally studied including thermal and Marangoni modes [4].
In the limiting one fluid Rayleigh-Bénard problem, with
fixed lower temperature and fixed upper thermal flux,
Benguria and Depassier [8] found interfacial oscillatory
instabilities for parameterprior to the onset of the
periodic roll states. Capillary-gravity wave instabilities
in the presence of shear wind profiles [9], and flow over
wavy bottoms [10] have also been considered. However

there has been no general treatment of surface wav —— a —
propagation in the presence of fully developed periodiG g 1 schematic of two ideal fluids separated by an inter-
convection. face with surface tensiorr under the action of gravity. The

Here, we assume a preexisting periodic flow and exdensities, velocities, and depths of the upper and lower fluids
plore its dynamical effects on interfacial instabilities. Wearep*, U*, andh™, respectively.
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The fluid velocities above and below the interface aresource can be found by superposing the solutions of many
=U* + Vo™, whereU* are the periodic flow fields frequency components. The general solutiong tdr, z)
(generated for example by the Rayleigh-Bénard instabiliand n(¥) are

ties [3], Langmuir circulation mechanisms [5], or elec- . zzcoshg(h* ¥ 2)
trohydrodynamic effects [13]) satisfying- U~ = 0, ¢~ Z pg e rW, n= Z nge'd’,
are the velocity potentials for the irrotational capillary— d q

gravity waves, andz = *h* is the position of the (3)

impenetrable, flat top (bottom) boundaries. For concretewhere g = g, lies in the surface plane, and =
ness, consider Rayleigh-Bénard instabilities to periodidim._y+/g? + €2. Equation (3) automatically satisfies
flows in the free surface Boussinesq approximation whiclhg*= = 0 as well as the boundary conditions at=
arise when Ra= agh’AT/vk > Rd = 1100, where +h™. Therefore, the problem is reduced to that of si-
a, g, AT, v, and « are the thermal expansion coef- multaneously solving Egs. (1) and (2) with the unknowns
ficient, gravitational acceleration, temperature dlfferenceo and n;. A Fourier decomposition for the periodic

T(z =0) — T(z = —h), kinematic viscosity, and ther- rows is
mal conductivity, respectively. The ideal fluid approxi- . .. .
mation is valid only for surface waves which are not U(F,z) = D U(G,2)e°7, (4)

significantly damped over many periods of the underly-
ing flow, e.g., for capillary waves, the attenuation length
ki' =30/(4vp w) > a.

Incompressibility demandg - v~ = A¢p™ = 0, where
A=A, + 9 is the three-dimensional Laplacian. The
linearized klnematlc boundary conditions at= *h*
and the interface at = 0 ared. ¢~ (x,z = *h) = 0 and

where G are the reciprocal lattice vectors appropriate
for the underlying flow periodicity. With (4), the ve-
locity potential ¢ will also satisfy Bloch’s theorem [11]:
o(F,z) = €97 f(7,z), wheref(7) is a function invariant
with respect to translations af.
. - N , Yl Substituting Egs. (3) and (4) into (1) and (2), and

aim(r) + UZ(F) - Vin(r) = Z'L”gi d0-(r,2), (1) shifting the reciprocal wave vectors into the first Brillouin
respectively [1], wherg, = 7 = (x,y). The linearized Z°Ne, we obtain
dynamic boundary condition at = 0 is found by bal- >
aﬁcingz—compone%t stresses from the dynamica)I/pressure Z(sz + B + C)n;(G) =0, (5)
with those from gravity and surface tension: ¢

_ . . o where the matrices in the limit of unbounded upper fluid
Z'Lr{)‘i[aﬂ"‘ + U 997 = p_tAin —gn, (2 (k" =, h~ = h) are given by

where we have for simplicity neglected any possible A(G,G') = (stanhg — Glh + )ég e, (6)
Marangoni effects that may arise when surfactants are S s> L > T
surface convected and assumed a constant surface tensionB(C-G) = ~2sUq - (¢ — ?)taan N ?lhéG,G’
o. Spatially varying surface tension or bending rigidity (4 lg — GltanHg — G|h

can be treated straightforwardly [12,14]. Henceforth, we G — é’ltanﬂgj — G|k

work in the frequency domain where all quantities vary O -8 (G- & 7
as e ', Wave evolution due to a nontime harmonlc ( ) (g ), (7)

.S |7 — GltanHg — Glh

C(G,G") =[50y - (G — G)Ptanig — Glh — Q3(G)185.¢ —— .
[ 0 q q ] G.G G — G'|tanHg — G|

éll

XU (G-G")-(G—G"U(G"—G)- (G- G, 8)
wheres = p*/p~, and ! w(q) is complex. The standard criteria for the Kelvin-
- oL s . Helmholtz propagating wave instability is recovered when
Q;(G) = (p—_|61 -G+ (1 — s)glg — G|) — U; are uniform [1]:
X tanhg — Glh. (9) (w — Uy - k)* + stanhkh(w — U - k)? —
Upon definingiz = w7, wWe arrive at an eigenvalue Q20) = 0.

problem,

0 1 M\ _ (7 (11)
-1 -1 -7 | = (10) : :
—ATC —ATB J\y; ¥ Note that when dynamical effects of the upper fluid are
that can be solved by standard means [15]. Because (1@gglected, { = 0), the roots of Eq. (11) are real, and no
is non-Hermitian, the corresponding dispersion relatiorlinear instability exists.
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Results and Discussion.Bistances, frequencies, choice of U~ (*2#/a) = 0.20, 0.75 shown in 2(a) and
and velocitiesU will be normalized and measured in 2(b) corresponds to surface velocities-ef and 30 cnfs.
units of a, 4/g/a, and ,/ga, respectively. First consider The band structures shown in Fig. 2(a) contain branch
only periodic flow in the lower fluid with no uniform cuts at certairy, satisfying the Bragg scattering condition.
component,U=(G = 0) = 0. Only the velocity at the There are open band gaps @t = 0, which decrease
SUI’faCEl_)]_(}_;,Z = 0) will influence surfacevavepropa- at larger w, similar to electronic and acoustic wave
gation. For simplicity we analyze one-dimensional rollspropagation in periodic media; the gaps normally found

approximately described by at g, = =7 are collapsed due to the converging flow
R 2 in each unit cell and are degenerate down to a smaller
U (r,z=0=U (2)% cos(—x>; (12) value ofg,. Under this periodic flow, growing surface
a

modes arise neaj, ~ =« when real degenerate roots

consequentlyl/ ~(G) = U~ (0)3/2mx for G = *27%/a, of Eq. (10) split into complex conjugate pairs. Even
and zero otherwise. This choice of phase fb‘r(?,z = though for the one fluid problemyniform streamflows
0) implies one converging and one diverging surface flonare stable according to (11), remarkably, an interface
region per unit cell and also simplifies the computationoverlying periodic flows is generally linearly unstable,
by making all elements of the matrix in Eg. (10) real. evenifp™ = 0. Periodic flows with finiteG couple with,
Using standard methods [15], we find the spectrum of (10fnd feed energy into, finite wave vector surface waves.
and obtain the band structure for surface capillary-gravity N Fig. 2(b), |U~(*27/a)l = 0.75, and the first
waves with underlying periodic flows . gap atg, =0 has_ also m_erged. Note that unstable

The central panels in Fig. 2 show the real (solid linesymodes are associated with both standing and low
and imaginary (height of hatched regions centered abo@oup velocity traveling waves since they appear pre-
Re{w}) parts ofw(q,,0): here,f]oi —0,h=205=0, dominantly nearg, = 0,w. These are damped or
and the inverse Bond number Bo= o/p~a’g = 0.01 saturated by a contribution from viscous dissipation,

. ed by a ¢o T

(which corresponds ta: ~ 2-3 cm for water or light M@} =2vlg — GI°.  For U~(2m/a) < 0.3641, the
alcohols; also the requiremehf ' > a is also satisfied). band structure glialltatlvely resembles that of Fig. 2(a).
We use the notatiog (k) to denote quantities plotted in When 0417 > U~ (2w /a) > 0.3641, the lowest two
the reduced (extended) zone scheme. The side pandl§@nches collapse such that unstable zero frequency

show w (0, k,) in the direction parallel to the rolls. The modes (i-e., Ro(q.. k,)} = 0, Im{w(qy, k,)} < 0) pro-
’ liferate and fill the whole zone. These growing modes are

static surface deformations similar to the Reynolds ridge

Frequency ® [16]. Upon further increasind/~ (27 /a) > 0.417, the
' ' — zero frequency growing modes develop a finite frequency
and stabilize neag, ~ 0. When U~ (27 /a) = 0.428,
the first gap alg, = 0 between the stable modes again
collapse; this alternating behavior repeats upon further
increasingl ~ (27 /a).

The band structures shown in Fig. 2 are only quan-
titatively altered (tilted) when a small uniform shear is
imposed in addition to the periodic flow. However, for
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,,,,, N B uniform shear { = 0.1,h = »,U; = 2.6, Bo~! = 0.1)
6543210 w4 n2 34 n k—> flows with an existing KH instability (with unstable wave
(b). vectors neak, ~ ) as determined by Eq. (11), the ef-
| hances these instabilities. However, when the uniform
shear instabilities spak, ~ 27 (s = 0.1,h = », Uy =
2.0, Bo~! =0.03), where there is an open gap, the
KH instability can besuppressedby a periodic flow
U~ (27 /a) = 0.20, although more instabilities arise at
higher k, as well. These effects are shown using the
-— ky q, — 0123456 dispersion relation is rather sensitive to the amount of
) o __underlying periodic flow and can change drastically with
FIG. 2. Triptych depicting the band structure for periodic \,ariation in any of the parameters.
flow in the lower fluid ¢ = 0, A = 2.0, Bo_l = 0.01). The Th q f the KH i bility i
central panel shows the dispersion relation in the direc- e upward convex tongue of the KH instability in
tion in the reduced zone scheme. (&) (2w/a) = 020; the ky — Uy plane is modified whenU™ (G # 0) is

fect of an additional periodic flow in the lower fluid en-
------- 0 extended zone scheme in Fig. 3. The structure of the
(b) U= (27 /a) = 0.75. added. For instabilities straddling the open gap Bragg
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3.0 flow configurations can be extended to consider more
20 | complicated periodic flow structures such as rectangu-
. lar and hexagonal patterns. This may lead to insights

1.0 ¢ with wide applicability, from Rayleigh-Bénard convec-
O o0 tion, Langmuir circulation, solar convection cells, and
MHD surface Alfvén waves in the presence of periodic

-1.0 | - magnetic fields (in addition to flows) [7]. Furthermore,
20t il ] the influence of defects and disorder in the periodic sur-
- face flows [18] can be considered to study surface wave

—30 ' ' ' ' : localization in the presence of randdﬁ(? 0) (and hence
00 20 40 60 80 100 120 p )
k randomB, C). For example, methods used to determine

X

_ _ _ _ _ ~ the complex spectrum density of states of random matrix
FIG. 3. Dispersion relation with and without an underlying operators [19] should yield information regarding the sea

periodic flow with a Unifomé UE = 2.0) OVef_lyi”(.ll Sgear- surface wave spectra in the presence of random underly-
Here,h = «, Bo™" = 0.03, ands = 0.1._ As a visual aid, we ing turbulent surface flows.

have imposed a Galilean shiftU, = (Uy + U s)/(1 + s)
and plotted only one-half of each branch. The pure shear

(U~ = 0) dispersion relation is shown associated with the
densely hatched instability region. The dotted line with
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