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Quantum Chaos on Graphs

Tsampikos Kottos and Uzy Smilansky

Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
(Received 22 July 1997

We quantize graphs (networks) which consist of a finite number of bonds and nodes. We show
that their spectral statistics is well reproduced by random matrix theory. We also define a classical
phase space for the graph, where the dynamics is mixing and the periodic orbits (loops on the graph)
proliferate exponentially. An exact trace formula for the quantum spectrum is developed and used
to investigate the origin of the connection between random matrix theory and the underlying chaotic
classical dynamics. Being an exact theory, and due to its relative simplicity, it offers new insights
into this problem which is at the forefront of the research in quantum chaos and related fields.
[S0031-9007(97)04707-8]

PACS numbers: 05.45.+b, 03.65.Sq

Quantized graphs (networks) were used frequently to < . d\o _
model systems of interest in quantum chemistry [1], Z< i+ dx>lp”(x)|x*° -0 @)
solid state physics [2], and transmission of waves [3].
The mathematical properties of the Schrodinger operatothis set of boundary conditions ensures that the
on graphs were also investigated [4,5]. We cannot d&chrodinger operator is self-adjoint, and hence the exis-
justice to all the previous studies. Rather, we cite dence of an unbounded, discrete spectrum of real wave
few review papers or representative works, where furthefumbersik, } for which a nontrivial solution exists.
bibliographies can be found. Our main purpose is to The secular equation for the quantized graph [4] can
show that quantum graphs provide a simple model whic#e solved numerically to provide an arbitrarily large se-
displays most of the phenomena encountered in quantuffience of eigenvalues. The resulting (integrated) near-
systems which are chaotic in the classical limit. Inest neighbor distributions for the fully connected square
particular, the generic spectral statistics displayed bytetrahedron) withA = 0 andA # 0 are shown in Fig. 1

guantum graphs can be investigated in detail, and it{ogether with the predictions of random matrix theory
origin is traced to specific topological properties of the(RMT) for the GOE and GUE ensembles. We made sim-

classical periodic orbits. ilar comparisons for other simple graphs and observed

Graphs consist of verticesconnected byonds The the same degree of agreement. Thus, we face an exceed-
connectivity matrixC; j,i,j = 1,...,V takes the value ingly simple class of systems which belongs to the same
1 if the verticesi and j are connected by a bond, and spectral universality class as quantum systems which are
0 otherwise. The valency of a vertex is given by=  chaotic in the classical limit. We shqll show t_hat gquan-
Z{‘%l C;,; and the total number of directed bondeis =  tum graphs share many properties with generic quantum
Zi,j=l Ci;. We denote byb — (i, j) the bond directed Hamiltonians, and their simplicity enables us to get new

fromi to j, andb its reversd j,i). The positive direction
on the bondb = (i, j) points from miri, j) to maxi, j).

j=1

As will be shown below, the topological characterization 1.0 ; - -//n—«— -

of the graph which was given above is sufficient for the 1) // 1

study of “classical dynamics” on graphs. For the quantum 08 | / i
———- Numerical data |

description we need the metric information, namely, the
lengths of the bond4.,,b = 1,...,2B andL, = —L;.
To avoid degeneracies we shall henceforth assume that
the L, are not rationally related [ % ]
The Schrédinger operator is defined on the graph in the 0.4 / 3 o000 —M/\ \ /;K\ {1
GOE

4

0.010
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following way [4]: On each bond the wave function is a oms| |, / \\m“w/‘\GUE 11
solution of the one-dimeznsional equation 02 | / {
d -0.010 L 1 L
(5 - mw-Pne, @ | /GUE AT
d.x 0.0 1 1 1
where Re(A) # 0 breaks time reversal symmetry. At 0 1 2 3

each vertex, the wave function ,rT_]USt be un[qqely deﬁnedFlG. 1. Integrated nearest neighbor distribution based on the
The conservation of the probability current is imposed bylowest 80000 levels of a single realization of a tetrahedr.
the boundary conditions (Neumann) [4] indicates the deviation from the RMT results.
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understanding of the connection between RMT and quarthe stability factors are given by

tum chaos. o ) Yy .
The matching conditions (2) can be translated into ver- A, = l_[ <1 — —> Z =T, (9)
tex scattering matrices, which provide a unitary transfor- s=1 Us/ L=t Ui

mation between the outgoing and incoming waves at eac

vertex. Thev; X v; scattering matrix at th&th vertex is nere,u,, is the number of vertices where nontrivial, #

1) backscattering occurs. At the othey vertices on the
loop the scattering is not backwards, amgl — (u, +
v,) = 0. A, plays the role of the Lyapunov exponent.
Substituting (8) into (6) and taking the derivative with
?espect tak one gets an exact trace formula

(i) 2
a-ji,ij’ = (_51’11 + ‘U_i>Ci’jCi’j’ . (3)
Note that backscattering is singled out both in magnitud
and sign. Scattering from a “dead-end” vertex;, =
1) is trivial since aﬁ-ﬁ-?ij = 1. The secular equation is d(k) =
obtained by imposing a consistency condition on the wave

|
Mg

6(k - kn)

3
Il
—

functions on all the bonds: a wave which is antgoing L N 1 Z 1,8, cosr(kl, + Ab, + u,)

wavefrom i to j appears also as @ancoming waveat j . o, :

with the appropriate phase. This can be translated into a P ¢

secular equation of the form [5] (10)
Z(k,A) = defl — S(k.A)] = 0. 4) It bears a striking formal similarity to the well known ex-

act and semiclassical trace formulas for chaotic Hamilton-
Here, the graph “scattering matri§tk, A) = D(k;A)T is  jan systems [7,8]. In particular, the numbenrsperiodic
a unitary matrix in the2B dimensional space of directed |gops on the graph i% tr C", whereC is the connectiv-
bonds. Itis a product of a diagonal unitary mattk, A) ity matrix. Since its largest eigenvalue is proportional to
which depends on the metric properties of the graph, anghe mean valency = 2B/V, periodic loops proliferate
a constant orthogonal matrixwhich depends exclusively exponentially with topological entropstlogs. The ver-

on the topology. tex labels, together with the connectivity matrix, provide a
Djj ik, A) = 5i,i’5i,/"eik|Lij|+iAL”; 5 symbolic (Bernoulli) dynamics on the graph. The stability
' o (i) () amplitudes decrease exponentially wittbut not enough
Tjinm = 6niCjiCim0jiim - to make the series fat(k) absolutely convergent (positive

entropy barrier). Finallyu, is the analog of the Maslov
index. Its origin is topological, and it counts the number
of times nontrivial backscattering occurs along the loop.
At this stage it is appropriate to introduce the classical
analog of the quantum graph. Classical trajectories can

The spectral counting functiaN (k) is given by [6]

N(K) = N(K) + + Im i Liswr., o)
T —in

where be easily defined on the bonds, but not on the vertices
_ ~ 1 kL which are singular points. However, we can construct a
N(k) = N(0) = oy {de{—S(k)] — det(—T7)} = pyng Poincaré section by registering at each crossing of a vertex

the direction at which the particle points. The set of all

(7) possible vertices and directions is equivalent to the set of
Here £ =2Y%_ 1, is twice the total length of the 2B directed bonds. The evolution on this Poincaré section
graph. The mean level density = 9, N (k) is indepen- is well defined once we postulate the transition probabili-
dent ofk andN(0) = 1/2. The Heisenberg length is also ties Uy between the bonds, b at a vertex. The quan-
constant(iy = 2wd = L£). This is a peculiarity of sys- UM S(k,A) matrix provides the desired probabilities via
tems in one dimension, which will be of great importanceUs.s' = ISp./(k: A)I* = T}, 4|>. Note thatU,, ,» does not
in the following. The oscillatory part of the counting involve any metrlcmformatlc_m on the graph. The unitarity
function is expressed in terms of[S(k)]*. The latter Of the graph scattering matrix guarantees™, Uy = 1,

are given as sums over periodic loops of periodn the SO that the number of classical particles is conserved during
graph: the evolution. Ifp,(¢) denotes the probability to occupy

the bondb at the (topological) time, then
tI‘[S(k)]n _ Z npgpA;e(lkl"+lAb")relrM"7T , (8)
<P, pp(t + 1) =D Upppp(t). (11)
b/

where the sum is over the s&, of primitive periodic

orbits whose period,, is a divisor ofn, whichr = n/n,.  This is a Markovian master equation for the classical den-
Periods which are related by exact symmetry are countesity and the matrixU, ;. is the evolution (Frobenius-Peron)
once, and their multiplicity, appears explicitly./, and  operator. The largest eigenvalue in the spectruny a$

b, are the length and the directed length, respectively, antl, and the corresponding eigenvector describes a uniform
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distribution (equilibrium). The other eigenvalues are in- ‘ ' R '
side the unit circle, and therefore the system reaches the 10 b oa=0 PR PP )
uniform distribution exponentially fast. This is character- * A% °*pocostvo]

istic of a classically mixing system. Of prime importance
in the discussion of the relation between the classical and
the quantum dynamics are the traegs= tr(U") which
q y acgs= tr(U") 05 | /% Nﬁ ]
are interpreted as the mean classical probability to perform oL -
. CUE "
/

062

COE o,

.

<ITrS"*>/2B

n-periodic motion. Recalling, »== 1, one obtains a clas-
sical sum rule by substituting the periodic orbit expansion
Of uny

0'0 1 1 1
0.0 0.5 1.0 1.5 2.0

Up = Z npgp(lAplz)r = 1. (12) n/2B
PEP FIG. 2. The form factorg‘—B tr[S(k)]* for the tetrahedron with

Each periodic orbit is endowed with a weight,|> °"€ dangling line and a loop.
defined in terms of the stability amplitudes (9). It is the
probability to remain on the orbit. These weights are the ] ]
counterparts of the stability weightde(/ — M,)|~! for e|ggnphases af will be ref'lected in the energy spectral
hyperbolic periodic orbits in Hamiltonian systems, whereStatistics. The ensemble is generated by averaging over
M, is the monodromy matrix. Graphs, however, are ong (and also overd with {4) # 0 when time reversal
dimensional and the motion on the bonds is simple ang§ymmetry is broken). Since the dimension 6f is
stable. Ergodic (mixing) dynamics is generated, howeverindependent ofc and of A, one can choose arbitrarily
because at each vertex a (Markovian) choice is one out d@rge averaging intervals for this purpose. We computed
v directions is made. Thus, chaos on graphs originatesg({|tr $”|*) which is the form factor for the two point
from the multiple connectivity of the (otherwise linear) correlation function of the eigenphases spectrum. It
system. The morphology of periodic orbits undergoesgrees quite well with the predictions of RMT (Fig. 2).
a transition atn =~ 2B. From the topological point To investigate further the dynamical origins of the

of view, all the periodic orbits become composites offigidity (see Fig. 1), we study the two pzoint form factor

irreducible loops whose period is less thaB. Metric _ 1 Dok Ln

degeneracies become also abundant, even though the K(7:k) = N Z e —No(r),
lengths of the bonds are assumed to be incommensurate. Ik —kI=A/2

It is interesting to note that when the quantum wave (13)
numbers are measured in units of the inverse mean bonghere we consider a spectral interval of sixg centered
length, the Heisenberg length = £ equals2B. aboutk and involving N = dA; eigenvalues.r mea-

As a prelude to the study of the spectral statisticssures lengths in units of the Heisenberg lengih= £ .
of a graph, we shall investigate ttercular ensemble We consider first the casé = 0. Splitting K(7; k) to
of the S(k,A) matrices of the graph. Because of (4)its diagonalKp(7, k)] and nondiagonal parf&xp (7, k)],
the statistical properties of the spectrum of tA8 | we write them in terms of periodic orbits

_ 2N - rl 2
Kolr.B) = 275 S 1A o — 1) [
£2 pir P L

- 2N .t ; rl
Knp(7, k) = 72 Z A;A;’el#(rﬂ"_rﬂ”’)éﬁ\f(f - 7')5:7\[(
p.r#plr!

r’lp/

L

- T> cosk(rl, — r'ly), (14)

where we use A, =n,l,g,A, and Sx(x)= |
sin% % Kp is a classical expression, becauseln Hamiltonian systems in more than one dimension,
all interference effects are neglected, but for the onethe size of the spectral interval; is limited by the
which are due to exact symmetries. The sum rule (12) errequirement that the smooth spectral density is approxi-
ables us to justify a Hannay and Ozorio De Almeida-likemately constant. Heré is constant; hence one can take
sum rule [9], from which it follows thaiKp(7) = (g)r  arbitrarily largeA, to make thed 5 (x) arbitrarily narrow.
[10]. For 7 <1 K(7) = Kp(r). Because of the fact In Fig. 3 we show the numericat'(7) calculated with
that the quantum spectrum is real and discr&te;) must  two extreme values of\ .

approach 1 forr > 1. This is taken care of byyp. As long asr L is shorter than the length of the shortest
In contrast to the diagonal parKnxp depends crucially period orbit,K(7) = 0. Beyond this point, the low reso-
on the phase correlations between the contributing terméution curve does not deviate much from the prediction of
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10* , ' , i tities which relatar[S(k)]" to the coefficients of the char-
acteristic polynomial, and the inversive symmetry of the
latter [12]. Simple algebra gives

=
a
—
o
[)
T
PX
s
O O O O
N A O
L B L)
| 2 Y L
X
6 e
1

[ ] B 2B—n B ny*
] tr S Lkt (trs™)

2 X FE 1 " 1 L = 0 + ...
o ST o
10" bV f where the phase, is independent ot and... stands for

{ terms which involve amplitudes and phases of composite

orbits. Substituting (8) and taking the Fourier transform,
we find that the contributions of the termsS## " to the
10" L length spectrum appear at lengthis — 1,, yvherel,, are
lengths associated with the shorter periodic orbits with
102 . } periodsn.
00 02 04 06 08 1.0 , Because of lack of space we are not able to discuss
_ _ some more results and possible experimental demonstra-
FIG. 3. Two point_form factor for the five star graph tions. The wealth of problems which have their counter-
(=100000 levels). The arrows indicate the location of the nans jn graphs, and the lessons they can teach are far from
short periodic orbits and their reciprocal lengths with respect tq_ _. !
: eing exhausted.
the Heisenberg length. ) .
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the residual structure in the sequel. The high resolution
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orbits with different lengths are suppressed, and the inter- ~ 308 (1971).
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