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Quantum Chaos on Graphs
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We quantize graphs (networks) which consist of a finite number of bonds and nodes. We
that their spectral statistics is well reproduced by random matrix theory. We also define a cla
phase space for the graph, where the dynamics is mixing and the periodic orbits (loops on the g
proliferate exponentially. An exact trace formula for the quantum spectrum is developed and
to investigate the origin of the connection between random matrix theory and the underlying ch
classical dynamics. Being an exact theory, and due to its relative simplicity, it offers new insi
into this problem which is at the forefront of the research in quantum chaos and related fi
[S0031-9007(97)04707-8]
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Quantized graphs (networks) were used frequently
model systems of interest in quantum chemistry [1
solid state physics [2], and transmission of waves [3
The mathematical properties of the Schrödinger opera
on graphs were also investigated [4,5]. We cannot
justice to all the previous studies. Rather, we cite
few review papers or representative works, where furth
bibliographies can be found. Our main purpose is
show that quantum graphs provide a simple model wh
displays most of the phenomena encountered in quan
systems which are chaotic in the classical limit. I
particular, the generic spectral statistics displayed
quantum graphs can be investigated in detail, and
origin is traced to specific topological properties of th
classical periodic orbits.

Graphs consist ofV verticesconnected bybonds. The
connectivity matrixCi,j , i, j ­ 1, . . . , V takes the value
1 if the verticesi and j are connected by a bond, an
0 otherwise. The valency of a vertex is given byyi ­PV

j­1 Ci,j and the total number of directed bonds is2B ­PV
i,j­1 Ci,j . We denote byb ­ si, jd the bond directed

from i to j, andb̂ its reverses j, id. The positive direction
on the bondb ­ si, jd points from minsi, jd to maxsi, jd.
As will be shown below, the topological characterizatio
of the graph which was given above is sufficient for th
study of “classical dynamics” on graphs. For the quantu
description we need the metric information, namely, t
lengths of the bondsLb, b ­ 1, . . . , 2B and Lb ­ 2Lb̂ .
To avoid degeneracies we shall henceforth assume
theLb are not rationally related.

The Schrödinger operator is defined on the graph in
following way [4]: On each bond the wave function is
solution of the one-dimensional equationµ

2i
d

dx
2 A

∂2

Cbsxd ­ k2Cbsxd , (1)

where ResAd fi 0 breaks time reversal symmetry. A
each vertex, the wave function must be uniquely define
The conservation of the probability current is imposed
the boundary conditions (Neumann) [4]
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¥
Cijsxdjx!0 ­ 0 . (2)

This set of boundary conditions ensures that t
Schrödinger operator is self-adjoint, and hence the ex
tence of an unbounded, discrete spectrum of real wa
numbershknj for which a nontrivial solution exists.

The secular equation for the quantized graph [4] c
be solved numerically to provide an arbitrarily large s
quence of eigenvalues. The resulting (integrated) ne
est neighbor distributions for the fully connected squa
(tetrahedron) withA ­ 0 andA fi 0 are shown in Fig. 1
together with the predictions of random matrix theo
(RMT) for the GOE and GUE ensembles. We made sim
ilar comparisons for other simple graphs and observ
the same degree of agreement. Thus, we face an exc
ingly simple class of systems which belongs to the sa
spectral universality class as quantum systems which
chaotic in the classical limit. We shall show that qua
tum graphs share many properties with generic quant
Hamiltonians, and their simplicity enables us to get ne

FIG. 1. Integrated nearest neighbor distribution based on
lowest 80 000 levels of a single realization of a tetrahedron.DI
indicates the deviation from the RMT results.
© 1997 The American Physical Society



VOLUME 79, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 15 DECEMBER 1997

a

e
o
a

d

to

d

a

o

c
g

t

a

t.
h

-
n-

to

a
ty

er
.
al
an
es

t a
tex
ll
of

on
ili-

a

y

ing

n-
)

rm
understanding of the connection between RMT and qu
tum chaos.

The matching conditions (2) can be translated into v
tex scattering matrices, which provide a unitary transf
mation between the outgoing and incoming waves at e
vertex. Theyi 3 yi scattering matrix at theith vertex is

s
sid
ji,ij0 ­

≥
2dj,j0 1

2
yi

¥
Ci,jCi,j0 . (3)

Note that backscattering is singled out both in magnitu
and sign. Scattering from a “dead-end” vertexsyi ­
1d is trivial since s

sid
ji,ij ­ 1. The secular equation is

obtained by imposing a consistency condition on the wa
functions on all the bonds: a wave which is anoutgoing
wave from i to j appears also as anincoming waveat j
with the appropriate phase. This can be translated in
secular equation of the form [5]

Zsk, Ad ­ detfI 2 Ssk, Adg ­ 0 . (4)

Here, the graph “scattering matrix”Ssk, Ad ­ Dsk; AdT is
a unitary matrix in the2B dimensional space of directe
bonds. It is a product of a diagonal unitary matrixDsk, Ad
which depends on the metric properties of the graph,
a constant orthogonal matrixT which depends exclusively
on the topology.

Dij,i0j0sk, Ad ­ di,i0dj,j0eikjLij j1iALij ;

Tji,nm ­ dn,iCj,iCi,ms
sid
ji,im .

(5)

The spectral counting functionNskd is given by [6]

Nskd ­ N̄skd 1
1
p

Im
X̀
n­1

1
n

trfSskdgn, (6)

where

N̄skd 2 N̄s0d ­
1

2p
hdetf2Sskdg 2 dets2T dj ­

kL

2p
.

(7)

Here L ­ 2
PB

b­1 Lb is twice the total length of the
graph. The mean level densitȳd ­ ≠kN̄skd is indepen-
dent ofk andN̄s0d ­ 1y2. The Heisenberg length is als
constantslH ­ 2pd̄ ­ L d. This is a peculiarity of sys-
tems in one dimension, which will be of great importan
in the following. The oscillatory part of the countin
function is expressed in terms oftrfSskdgn. The latter
are given as sums over periodic loops of periodn on the
graph:

trfSskdgn ­
X

p[Pn

npgpAr
pesiklp1iAbp dreirmpp , (8)

where the sum is over the setPn of primitive periodic
orbits whose periodnp is a divisor ofn, whichr ­ nynp .
Periods which are related by exact symmetry are coun
once, and their multiplicitygp appears explicitly. lp and
bp are the length and the directed length, respectively,
n-
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the stability factors are given by

Ap ­
mpY

s­1

Ç µ
1 2

2
ys

∂ Ç npY
t­1

2
yt

; e2
lp
2

np . (9)

Heremp is the number of vertices where nontrivialsys fi

1d backscattering occurs. At the othernp vertices on the
loop the scattering is not backwards, andnp 2 smp 1

npd $ 0. lp plays the role of the Lyapunov exponen
Substituting (8) into (6) and taking the derivative wit
respect tok one gets an exact trace formula

dskd ­
X̀
n­1

dsk 2 knd

­
L

2p
1

1
p

X
p,r

lpgp cosrsklp 1 Abp 1 mppd

e
lp
2

npr
.

(10)

It bears a striking formal similarity to the well known ex
act and semiclassical trace formulas for chaotic Hamilto
ian systems [7,8]. In particular, the number ofn-periodic
loops on the graph is1n tr Cn, whereC is the connectiv-
ity matrix. Since its largest eigenvalue is proportional
the mean valencȳy ­ 2ByV , periodic loops proliferate
exponentially with topological entropyølog ȳ. The ver-
tex labels, together with the connectivity matrix, provide
symbolic (Bernoulli) dynamics on the graph. The stabili
amplitudes decrease exponentially withn but not enough
to make the series fordskd absolutely convergent (positive
entropy barrier). Finally,mp is the analog of the Maslov
index. Its origin is topological, and it counts the numb
of times nontrivial backscattering occurs along the loop

At this stage it is appropriate to introduce the classic
analog of the quantum graph. Classical trajectories c
be easily defined on the bonds, but not on the vertic
which are singular points. However, we can construc
Poincaré section by registering at each crossing of a ver
the direction at which the particle points. The set of a
possible vertices and directions is equivalent to the set
2B directed bonds. The evolution on this Poincaré secti
is well defined once we postulate the transition probab
ties Ub,b0 between the bondsb, b0 at a vertex. The quan-
tum Ssk, Ad matrix provides the desired probabilities vi
Ub,b0 ­ jSb,b0sk; Adj2 ­ jTb,b0 j2. Note thatUb,b0 does not
involve any metric information on the graph. The unitarit
of the graph scattering matrix guarantees

P2B
b­1 Ub,b0 ­ 1,

so that the number of classical particles is conserved dur
the evolution. Ifrbstd denotes the probability to occupy
the bondb at the (topological) timet, then

rbst 1 1d ­
X
b0

Ub,b0 rb0std . (11)

This is a Markovian master equation for the classical de
sity and the matrixUb,b0 is the evolution (Frobenius-Peron
operator. The largest eigenvalue in the spectrum ofU is
1, and the corresponding eigenvector describes a unifo
4795
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distribution (equilibrium). The other eigenvalues are in
side the unit circle, and therefore the system reaches
uniform distribution exponentially fast. This is characte
istic of a classically mixing system. Of prime importanc
in the discussion of the relation between the classical a
the quantum dynamics are the tracesun ­ trsUnd which
are interpreted as the mean classical probability to perfo
n-periodic motion. Recallingun

!n!` 1, one obtains a clas-
sical sum rule by substituting the periodic orbit expansi
of un,

un ­
X

p[Pn

npgpsjApj2dr !n!` 1 . (12)

Each periodic orbit is endowed with a weightjApj2

defined in terms of the stability amplitudes (9). It is th
probability to remain on the orbit. These weights are t
counterparts of the stability weightsjdetsI 2 Mpdj21 for
hyperbolic periodic orbits in Hamiltonian systems, whe
Mp is the monodromy matrix. Graphs, however, are o
dimensional and the motion on the bonds is simple a
stable. Ergodic (mixing) dynamics is generated, howev
because at each vertex a (Markovian) choice is one ou
y directions is made. Thus, chaos on graphs origina
from the multiple connectivity of the (otherwise linear
system. The morphology of periodic orbits undergo
a transition at n ø 2B. From the topological point
of view, all the periodic orbits become composites
irreducible loops whose period is less than2B. Metric
degeneracies become also abundant, even though
lengths of the bonds are assumed to be incommensur
It is interesting to note that when the quantum wa
numbers are measured in units of the inverse mean b
length, the Heisenberg lengthlH ­ L equals2B.

As a prelude to the study of the spectral statisti
of a graph, we shall investigate thecircular ensemble
of the Ssk, Ad matrices of the graph. Because of (4
the statistical properties of the spectrum of the2B
4796
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FIG. 2. The form factors1
2B trfSskdgn for the tetrahedron with

one dangling line and a loop.

eigenphases ofS will be reflected in the energy spectra
statistics. The ensemble is generated by averaging o
k (and also overA with kAl fi 0 when time reversal
symmetry is broken). Since the dimension ofS is
independent ofk and of A, one can choose arbitrarily
large averaging intervals for this purpose. We comput
1

2B kjtr Snj2l which is the form factor for the two point
correlation function of the eigenphases spectrum.
agrees quite well with the predictions of RMT (Fig. 2).

To investigate further the dynamical origins of th
rigidity (see Fig. 1), we study the two point form factor

Kst; k̄d ­
1

N

É X
jkn2k̄j#Dky2

ei 2pknL t

É2
2N dstd ,

(13)

where we consider a spectral interval of sizeDk , centered
about k̄ and involvingN ­ d̄Dk eigenvalues. t mea-
sures lengths in units of the Heisenberg lengthlH ­ L .
We consider first the caseA ­ 0. Splitting Kst; k̄d to
its diagonalfKDst, ¯kdg and nondiagonal partsfKNDst, k̄dg,
we write them in terms of periodic orbits
KDst, k̄d ­
2N

L 2

X
p;r

jÃr
p j2

∑
dN

µ
rlp

L
2 t

∂∏2

,

KNDst, k̄d ­
2N

L 2

X
p,rfip0,r 0

Ãr
pÃr 0

p0eipsrmp2r 0mp0 ddN

µ
rlp

L
2 t

∂
dN

µ
r 0lp0

L
2 t

∂
cosk̄srlp 2 r 0lp0d , (14)
e

e

n,

xi-
e

st

of
where we use Ãp ­ nplpgpAp and dN sxd ­

sin N x
2 y N x

2 . KD is a classical expression, becaus
all interference effects are neglected, but for the on
which are due to exact symmetries. The sum rule (12) e
ables us to justify a Hannay and Ozorio De Almeida-lik
sum rule [9], from which it follows thatKDstd ø kglt
[10]. For t ø 1 Kstd ø KDstd. Because of the fact
that the quantum spectrum is real and discrete,Kstd must
approach 1 fort . 1. This is taken care of byKND.
In contrast to the diagonal part,KND depends crucially
on the phase correlations between the contributing term
e
s

n-

s.

In Hamiltonian systems in more than one dimensio
the size of the spectral intervalDk is limited by the
requirement that the smooth spectral density is appro
mately constant. Herēd is constant; hence one can tak
arbitrarily largeDk to make thedN sxd arbitrarily narrow.
In Fig. 3 we show the numericalKstd calculated with
two extreme values ofN .

As long astL is shorter than the length of the shorte
period orbit,Kstd ­ 0. Beyond this point, the low reso-
lution curve does not deviate much from the prediction
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FIG. 3. Two point form factor for the five star graph
(ø100 000 levels). The arrows indicate the location of th
short periodic orbits and their reciprocal lengths with respect
the Heisenberg length.

RMT, and it saturates at 1 whent . 1. We shall explain
the residual structure in the sequel. The high resoluti
data show a similar behavior, which can be better check
if one studiesK̃std ­

1
t

Rt

0 Kstd dt (see inset). However,
by increasing the resolution, correlations between perio
orbits with different lengths are suppressed, and the int
ference mechanism which builds upKND cannot be due to
the correlations in the spectrum of periodic orbit length
but to another source: Fort . 1y2 the periodic orbits
must traverse some bonds more than twice. The like
hood of periodic orbits which traverse the same edges
same number of times but with different backscatter i
dicesmp is increasing, and the interferences which bui
KND are due to the sign correlations among orbits of e
actly the same lengths (whenA fi 0 one has to restrict the
discussion to loops with the same directed length). T
distribution of backscatter indices of periodic orbits is
problem that was not yet addressed by probabilistic gra
theory. Our numerical results together with the gene
experience from quantum chaos allow us to conjectu
that the spectral form factor connects RMT with the di
tribution of backscatter indices on loops.

Finally, the structure observed in the functionKstd,
decorating the rather smooth background, can be
tributed to lowt to the short and rather scarce period
orbits. The arrows in the figure indicate their locatio
The structures neart ­ 1 reproduce a trend which was
predicted on different grounds in [11], namely, the spik
appear at lengthsL 2 lp (see arrows in Fig. 3). We can
explain this phenomenon with the help of Newton’s ide
to
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tities which relatetrfSskdgn to the coefficients of the char-
acteristic polynomial, and the inversive symmetry of th
latter [12]. Simple algebra gives

BX
n­1

tr S2B2n

2B 2 n
­ eiL k1f0

BX
n­1

str Sndp

n
1 . . . , (15)

where the phasef0 is independent ofk and . . . stands for
terms which involve amplitudes and phases of compos
orbits. Substituting (8) and taking the Fourier transform
we find that the contributions of the terms trS2B2n to the
length spectrum appear at lengthsL 2 lp , wherelp are
lengths associated with the shorter periodic orbits wi
periodsn.

Because of lack of space we are not able to discu
some more results and possible experimental demons
tions. The wealth of problems which have their counte
parts in graphs, and the lessons they can teach are far f
being exhausted.
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