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Quantum Chaos in an Ion Trap: The Delta-Kicked Harmonic Oscillator
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We propose an experimental configuration, within an ion trap, by which a quantum mechanical
kicked harmonic oscillator could be realized, and investigated. We show how to directly measu
sensitivity of the ion motion to small variations in the external parameters. [S0031-9007(97)0477

PACS numbers: 05.45.+b, 03.65.Bz, 42.50.Vk
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In classical mechanics, deterministic chaos is oft
most simply described asexponential sensitivity to initial
conditions, meaning that initially neighboring classica
trajectories diverge extremely rapidly with time. Becau
of the necessity of preserving the inner product, this ki
of divergence between two possible initial states cann
occur quantum mechanically. The question of what th
constitutes the quantum mechanical equivalent of cha
immediately arises. An interesting proposal by Peres
is to examine the initial statejcl evolving under two
slightly differing (classically chaotic) HamiltonianŝH1

and Ĥ2. Defining Û1,2std as the corresponding unitary
evolution operators, the overlap

O ­ jkcjÛ2stdyÛ1std jclj2 (1)

is predicted to behave very differently, depending o
whether the initial state is in a stable or chaotic area
phase space. ThusO is a measure to distinguish betwee
regular and irregular quantum dynamics. In fact mu
work on the subject of quantum chaos has been carried
theoretically; experimental realizations however rema
somewhat scarce [2], although there have recently be
pioneering successes in atom optics [3] and in mesosco
solid state systems [4]. In this Letter we propose
realizable experimental configuration, with which one ca
measureO directly. The system proposed is a single io
trapped in a harmonic potential, subject to periodic kic
from a standing wave laser. This is a quantum del
kicked harmonic oscillator, a system capable classica
of stochastic dynamics, including Arnol’d diffusion [5
under certain resonance conditions [6].

Trapped ions are in many ways an ideal choice of sy
tem for the study of fundamental aspects of quantum m
chanics. One can take advantage of the small dissipa
in this system, together with the possibility ofcoherent
manipulation of the ion’s motional state. Trapped ion
have been used in recent experimental demonstration
the generation of nonclassical states of motion [7], qua
tum logic gates [8], and tomography of the density m
trix [9]. In addition there have been theoretical proposa
for investigation of localization [10] and irregular collaps
and revival dynamics [11] due to quantum chaos in th
system.

In this Letter we will first describe a general procedu
for determiningO as a function of time. We then describ
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explicitly a particular system, the delta-kicked harmoni
oscillator, how it may be implemented within an ion trap
and how to carry out our general procedure for determinin
O. Finally we display some numerical results, showin
what one would expect to see when carrying out suc
an experiment. Markedly different results are indee
observed numerically, dependent on whether the initi
condition is in a classically stable or chaotic area of phas
space.

We first consider a general Hamiltonian of the form
Ĥ ­ Ĥ1jg1l kg1j 1 Ĥ2jg2l kg2j, where jg1l and jg2l are
stable electronic ground states of a single trapped io
The state of the ion is set initially to be

jcs0dl ­
1

p
2

sjg1l jal 1 jg2l jbld . (2)

Here jal and jbl are states of the ion’s motion. In
the applications described in this Letter,jal and jbl
are coherent states;jcs0dl is then a Schrödinger cat
state, which has been achieved experimentally for
trapped ion [7]. After a timet, the initial state evolves
to jcstdl ­ fjg1lÛ1std jal 1 jg2lÛ2std jblgy

p
2, where

Û1std and Û2std are the time evolution operators derived
from Ĥ1 and Ĥ2, respectively. Apy2 pulse is applied
(Ramsey type experiment) to the ion, yielding

jcstdl0 ­
1
2

hjg1l fÛ1std jal 2 Û2st d jblg

1 jg2l fÛ1std jal 1 Û2std jblgj . (3)

The probability for the ion to be in statejg1l is thus

Pg ­
1
2

h1 2 RefkbjÛ
y
2 stdÛ1std jalgj . (4)

Similarly, if we set jcs0dl ­ sjg1l jal 1 ijg2l jbldy
p

2,
the corresponding final probability is given by

P0
g ­

1
2

h1 2 ImfkbjÛ
y
2 stdÛ1std jalgj . (5)

By determiningPg and P0
g, one can clearly deduce

jkbjÛ
y
2 stdÛ1std jalj2. If Ĥ1 andĤ2 are slightly differing

chaotic Hamiltonians, andjal ­ jbl, then we haveO, as
defined in Eq. (1). We also note that whereĤ2 is the
simple harmonic oscillator Hamiltonian, this collapses t
2pQsbd, whereQsbd is theQ function for various initial
© 1997 The American Physical Society
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b of the pure statêU1std jal. By repeated measurement
one can therefore determine theQ function’s evolution in
time [12].

Our proposed model system is a harmonic oscillator

H0 ­
p2

2m
1

mn2x2

2
, (6)

periodically perturbed by nonlinearly position-depende
delta kicks;

H1 ­ K cosskxd
X̀

n­2`

dst 2 ntd , (7)

so that H ­ H0 1 H1. Here x is the position,p the
momentum,m the mass,n the oscillator frequency,k ­
2pyl the wave number,t ­ time, t the time delay be-
tween the kicks, andK the kick strength. Under the reso
nance conditionnt ­ 2pryq (ryq is a positive rational,
where q . 2), classically there are thin channels o
chaotic dynamics in the phase space [6]. The result
Arnol’d stochastic web [see Fig. 1(a)] spreads through
of phase space; Arnol’d diffusion [5] can occur in system
of less than two dimensions when the conditions for t
KAM (Kolmogorov-Arnol’d-Moser) theorem [13] are not
fulfilled, as is the case here [6]. The corresponding qua
tum mechanical system has also been studied theoretic
[14] [see Figs. 1(b)–1(d) for the time averagedQ func-
tion of this system].

FIG. 1. Stroboscopic phase space portraits (from kick to kic
for the delta-kicked harmonic oscillator, whereryq ­ 1y6 and
k ­ 0.2, after averaging over 11 000 kicks. The positionx
and momentump axes are in units ofl andmnl, respectively.
(a) Poincaré surface of section, showing the classical stocha
web. Regular dynamics take place within the cells defin
by the web. (b) Time averagedQ function for the (unstable)
initial condition jal wherea ­ py2h andh ­ 0.25, centered
at s1, 0d. (c) Time averagedQ function for the (stable) initial
condition a ­ ipyh

p
3 ssss0, 2y

p
3dddd and h ­ 0.5. (d) As for

(c), whereh ­ 0.25. Note the “tunneling” out of the original
ring of cells for the larger value ofh.
t

f
g
ll
s
e

n-
lly

k)

tic
d

To construct such a system quantum mechanica
which can also be used to carry out the procedu
described in Eqs. (3)–(5), we begin with a single io
in a harmonic potential (e.g., a linear ion trap [7]); i
addition we require a time dependent standing wave la
configuration. The ion has two ground states and tw
excited states, and the laser is elliptically polarized [s
Fig. 2(a)]. Thes1 and s2 polarized contributions thus
separately couple two different two level systems, wi
different Rabi frequencies:

Ĥ ­ Ĥ0 1
h̄
2

2X
j­1

hv0sjejl kejj 2 jgjl kgjjd

1 cosskx̂d fVjstde2ivLt jejl kgjj 1 H.c.gj , (8)

where v0 is the transition frequency between th
electronic statesjejl and jgjl, vL is the laser fre-
quency, and V1,2std are the (time dependent) Rab
frequencies. In a rotating frame defined bŷU ­
expf2ivLt

P2
j­1sjejl kejj 2 jgjl kgjjdy2g, and in the

limit of large detuning jDj ­ jvL 2 v0j ¿ jV1,2stdj,
je1l andje2l can be adiabatically eliminated to give

Ĥ ­ Ĥ0 1
h̄

8D

2X
j­1

Vjstd2

3 fcoss2kx̂d 1 1g jgjl kgjj . (9)

The laser is rapidly and periodically switched, giving
series of short Gaussian pulses:

Vjstd2 ­ V2
j

X̀
n­2`

e2st2ntd2ys2

, (10)

which approximate a series of delta kicks in the limits !

0. Note also that we requires ¿ 1yD; otherwise the
laser is too spectrally broad, making adiabatic eliminatio
of je1l andje2l impossible. Thus, finally, we have

Ĥ ­ Ĥ0 1

2X
j­1

Kjfcoss2kx̂d 1 1g jgjl kgjj

3
X̀

n­2`

dst 2 ntd , (11)

FIG. 2. Atomic level configuration proposed for our proce
dure. (a) The atom first experiences a series of short la
pulses from an elliptically polarized standing wave. Levelsjg1l
and je1l are coupled bys1 polarized light, and levelsjg2l and
jel by s2 polarized light, where the corresponding intensitie
differ. (b) After a definite number of kicks, the levelsjg1l and
jg2l experience apy2 pulse (e.g., a Raman transition, using th
auxiliary level jrl). (c) The population ofjg1l is determined
by fluorescence, using the auxiliary levelj fl.
4791
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which corresponds almost exactly to Eqs. (6) and (7),
two different Kj ­ h̄s

p
p V

2
j y8D. There are extra

jgjl kgjj terms, but these will only contribute phases
the evolution of the initial state of Eq. (2), and can eas
be accounted for.

Taking jal ­ jbl, the initial state of Eq. (2) thus
evolves as

jcsntdl ­
1

p
2

2X
j­1

e2inkjy
p

2 h2

F̂n
j jgjl jal , (12)

where the Floquet time evolution operatorsF̂j are given
by

F̂j ­ e2iâyânte2ikj cosf2hsây1âdg jgjl kgj jy
p

2 h2

, (13)

where ây and â, respectively, create and annihilate
single phonon quantum, and the common phase t
e2inty2 has been dropped. Thekj ­ V

2
j h2s

p
2py8D

are dimensionless kick parameters, which, withnt, deter-
mine fully the phase space behavior of the classical de
kicked harmonic oscillator [6]. In the quantum mechanic
problem there is an additional parameter, the Lamb-Dic
parameterh ­ k

p
h̄y2mn. As h2 ~ h̄, by progressively

reducingh, one can explore the transition from quantum
classical chaos [15]. This can be accomplished by “tig
ening” or “loosening” the trapping potential, i.e., increa
ing or decreasing the trapping frequencyn.

After n kicks, we perform apy2 pulse between the
levels jg1l and jg2l, by, e.g., a Raman transition or
magnetic field [see Fig. 2(b)]. By fluorescence, using
auxiliary level jfl, with repeated measurements one c
determinePg andP0

g [see Fig. 2(c)], as defined in Eqs. (4
and (5).

Pg ­
1
2

h1 2 cossdkny
p

2 h2d RefkajF̂
yn
2 F̂n

1 jalg

2 sinsdkny
p

2 h2d ImfkajF̂
yn
2 F̂n

1 jalgj ,

P0
g ­

1
2

h1 2 sinsdkny
p

2 h2d RefkajF̂
yn
2 F̂n

1 jalg
(14)

2 cossdkny
p

2 h2d ImfkajF̂
yn
2 F̂n

1 jalgj ,

where dk ­ k2 2 k1. From Eq. (14) one can easil
extract the overlapO ­ jkajF̂

yn
2 F̂n

1 jalj2.
In order to relate the quantum mechanical behavior

the system to the classical one, we have to use an in
condition equivalent to the classicalxs0d and ps0d. We
use a coherent statejal, where a can be expressed a
a ­ fkxs0d 1 ikps0dymngy4h. Thus we can see tha
when h is small, a is large, andjal is therefore more
macroscopic, in some sense moreclassical. This can be
seen by comparing Fig. 1(c) with Fig. 1(d); forh ­ 0.5
population “tunnels” through a classically forbidden are
which does not occur whenh ­ 0.25 [16].

Figure 3 shows the values ofPg and P0
g that one

would measure for this scheme, and the value ofO that
one would thus obtain, forh ­ 0.5 after 0–1000 kicks.
The plots obtained are clearly different, depending
4792
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FIG. 3. (a) Pg (solid line) and P0
g (dotted line) for the

initial condition a ­ py2h (h ­ 0.5, k1 ­ 0.2, k2 ­ 0.225).
(b) O (solid line), ReskajF̂ny

2 F̂n
1jald (dashed line), and

ImskajF̂ny
2 F̂n

1jald (dotted line) for the same initial condi-
tion. (c),(d): Same as (a) and (b), for the initial condition
a ­ ipyh

p
3.

whether the initial condition is classically unstable, a
in Figs. 3(a) and 3(b), where the corresponding classic
initial condition is a hyperbolic fixed point, or stable
[Figs. 3(c) and 3(d), elliptic fixed point]. This is already
noticeable in the plots ofPg andP0

g, beforeO is extracted
[Figs. 3(a) and 3(c)]. In line with previous numerical
work for the kicked top [1],O decays for an unstable
initial condition, and undergoes quasistable oscillation
for a stable initial condition.

As O is a measure of how close the two paralle
evolutions are at a given time, it can be seen that if th
initial condition is classically unstable [Fig. 3(b)] the two
states become rapidly increasingly orthogonal (more “fa
apart”), whereas in the case of a stable initial condition
for some time the difference between the states remains
average about the same. This in some sense correspo
to the classical definition of chaos, where under th
influence of thesamedynamics, very slightlydifferent
initial states diverge rapidly if their origin is in an unstable
area of phase space [1].

Figure 4 shows the same forh ­ 0.25. In line with
the fact that this is more in the semiclassical regime tha
Fig. 3, the decay [Figs. 4(a) and 4(b)] is more rapid, an
the oscillations [Figs. 4(c) and 4(d)] are more stable. Th
slow decay of the quasistable oscillations whenh ­ 0.5
[Fig. 3(d)] can be traced back to the tunneling that take
place in this regime (see Fig. 1), absent whenh ­ 0.25.

Numerically the procedure is carried out in a truncate
Fock basis of 400 states whenh ­ 0.5, or 800 when
h ­ 0.25. Increasing the size of the Fock basis does no
qualitatively change the observed dynamics.

In conclusion we have shown a general procedure f
determining the overlap parameterO originally proposed
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FIG. 4. Corresponds exactly to Fig. 3, except thath ­ 0.25.

by Peres [1]. We have described explicitly howO could
be determined for the delta-kicked harmonic oscillato
a classically chaotic system. We have described how
single ion trapped in a harmonic potential could be
practical experimental realization of the delta-kicked ha
monic oscillator, and how our scheme for determiningO
is realized in this configuration. In particular, our schem
presents a direct way for determiningO, by virtue of the
fact that we effectively have two Hamiltonians running i
parallel, within the same experimental system.
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