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Quantum Chaos in an lon Trap: The Delta-Kicked Harmonic Oscillator
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We propose an experimental configuration, within an ion trap, by which a quantum mechanical delta-

kicked harmonic oscillator could be realized, and investigated. We show how to directly measure the
sensitivity of the ion motion to small variations in the external parameters. [S0031-9007(97)04776-5]

PACS numbers: 05.45.+b, 03.65.Bz, 42.50.Vk

In classical mechanics, deterministic chaos is ofterexplicitly a particular system, the delta-kicked harmonic
most simply described asxponential sensitivity to initial oscillator, how it may be implemented within an ion trap,
conditions, meaning that initially neighboring classical and how to carry out our general procedure for determining
trajectories diverge extremely rapidly with time. BecauseO. Finally we display some numerical results, showing
of the necessity of preserving the inner product, this kindvhat one would expect to see when carrying out such
of divergence between two possible initial states cannoan experiment. Markedly different results are indeed
occur quantum mechanically. The question of what thembserved numerically, dependent on whether the initial
constitutes the quantum mechanical equivalent of chaosondition is in a classically stable or chaotic area of phase
immediately arises. An interesting proposal by Peres [1§pace.
is to examine the initial statéy) evolving under two We first consider a general Hamiltonian of the form
slightly differing (classically chaotic) Hamiltonian#&, H = Hlg){(g1| + H2lg2) (g2, where|g,) and |g,) are
and H,. Defining U,,(r) as the corresponding unitary stable electronic ground states of a single trapped ion.

evolution operators, the overlap The state of the ion is set initially to be
0 = yl0x()T T1(1) )PP 1) 1
is predicted to behave very differently, depending on l(0)) = ﬁ(lglﬂa) + ls2)18)). (2)

whether the initial state is in a stable or chaotic area o
phase space. Thu3 is a measure to distinguish between
regular and irregular quantum dynamics. In fact much
work on the subject of quantum chaos has been carried ou
theoretically; experimental realizations however remai
somewhat scarce [2], although there have recently bee
pioneering successes in atom optics [3] and in mesoscop
solid state systems [4]. In this Letter we propose &
realizable experimental configuration, with which one can
measureD directly. The system proposed is a single ion
trapped in a harmonic potential, subject to periodic kicks A A

from a standing wave laser. This is a quantum delta- (@) = 5{|g1>[U1(t)|a> — Ua(1)1B)]
kicked harmonic oscillator, a system capable classically N R

of stochastic dynamics, including Arnol'd diffusion [5] + g Ui ]a) + L 1B ()

I—|ere |la) and |B) are states of the ion’s motion. In

the applications described in this Lettdwy) and |8)

e coherent statedjs(0)) is then a Schrodinger cat

State, which has been achieved experimentally for a

apped ion [7]. After a time, the initial state evolves
lr (1)) = [lgn) U1 (1) lar) + |82>02(l) 18)1/+/2, where

1(#) and Ug(l‘) are the time evolution operators derived

om H, and i, respectively. Az /2 pulse is applied

(Ramsey type experiment) to the ion, yielding

under certain resonance conditions [6]. The probability for the ion to be in state,) is thus
Trapped ions are in many ways an ideal choice of sys- !
tem for the study of fundamental aspects of quantum me- P, = 3{1 — Re[(,BIU;(t)le(t) la)]}. (4)

chanics. One can take advantage of the small dissipation

in this system, together with the possibility obherent  Similarly, if we set|y(0)) = (Ig1)|a) + i|g2>|ﬁ>)/ﬁ,

manipulation of the ion’s motional state. Trapped ionsthe corresponding final probability is given by

have been used in recent experimental demonstrations of !

the generation of nonclassical states of motion [7], quan- p; = _{1 — |m[<,3|05f(,)fjl(t) la)]}. (5)

tum logic gates [8], and tomography of the density ma-

trix [9]. In addition there have been theoretical proposals By determlnmgP and P!, one can clearly deduce

for investigation of localization [10] and irregular collapse |<,8|U2 (1)U, (2) l)|?>. If A, andH, are slightly differing

and revival dynamics [11] due to quantum chaos in thischaotic Hamiltonians, anfly) = |8), then we have), as

system. defined in Eq. (1). We also note that whell is the
In this Letter we will first describe a general proceduresimple harmonic oscillator Hamiltonian, this collapses to

for determiningO as a function of time. We then describe 27 Q(8), whereQ(B) is the Q function for various initial
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B of the pure statd/, (1) |a). By repeated measurements
one can therefore determine tfefunction’s evolution in

To construct such a system quantum mechanically,
which can also be used to carry out the procedure

time [12]. described in Egs. (3)—(5), we begin with a single ion
Our proposed model system is a harmonic oscillator in a harmonic potential (e.g., a linear ion trap [7]); in
p? my2x2 addition we require a time dependent standing wave laser
Hy = m + T (6) configuration. The ion has two ground states and two
periodically perturbed by nonlinearly position-dependen e?(cited states, and the laser is'elliptically. po!arized [see
delta kicks: tFlg. 2(a)]. Theo+ ando— polarized contributions thus

separately couple two different two level systems, with
7) different Rabi frequencies:

H, = K cogkx) i 8(t — nr1), A
H=H) + 5 Z{wo(|€j><€j| — lgj) gD

so thatH = Hy + H;. Here x is the position,p the =

momentum,n the massy the oscillator frequencyk = . ()0, Nl o

2ar/ A the wave number; = time, = the time delay be- * C(_)S(kx)[ﬂ"(t)e » lej) (gjl + Helb, ()

tween the kicks, and the kick strength. Under the reso- Where o is the transition frequency between the

nance condition' = 27r/q (r/q is a positive rational, €lectronic statesle;) and |g;), . is the laser fre-

where ¢ > 2), classically there are thin channels of duency, andQ,,(r) are the (time dependent) Rabi

chaotic dynamics in the phase space [6]. The resuItin(‘t)’equenc'es-2 In a rotating frame defined hy =

Arnol'd stochastic web [see Fig. 1(a)] spreads through aI?XF_{_iwaZj=1(|ej><_ej| — lg)){g;D/2), and in the

of phase space; Arnol'd diffusion [5] can occur in systemdimit of large detuning |A|_ = |wL_—_w0| > |Q_1,2(f)|,

of less than two dimensions when the conditions for thde1) and|ez) can be adiabatically eliminated to give

KAM (Kolmogorov-Arnol'd-Moser) theorem [13] are not =i+ o i Q7

fulfilled, as is the case here [6]. The corresponding quan- " QA b= J

tum mechanical system has also been studied theoretically X [cod2k®) + 111g,)(g;] )
The laser is rapidly and periodically switched, giving a

[14] [see Figs. 1(b)-1(d) for the time averag@dfunc-
tion of this system].
series of short Gaussian pulses:

b) Qj(l‘)z _ QJZ Z e*(tfm-)Z/az’ (10)
n=-—w
2 which approximate a series of delta kicks in the limit—
0. Note also that we require > 1/A; otherwise the
Po laser is too spectrally broad, making adiabatic elimination
of |e;) and|e,) impossible. Thus, finally, we have
2 R R 2
A= Ay + D Kjlcod2ks) + 1]1g;) (gl
-4 2 0 2 4 =1
d X 9
) X > 8(r— nr), (11)
2 2 n=—w
- ™
- _ - A
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FIG. 1. Stroboscopic phase space portraits (from kick to kick) g> &~

for the delta-kicked harmonic oscillator, whetgg = 1/6 and
k = 0.2, after averaging over 11000 kicks. The position
and momentunp axes are in units ok andmwv A, respectively.  FIG. 2. Atomic level configuration proposed for our proce-
(a) Poincaré surface of section, showing the classical stochastifure. (a) The atom first experiences a series of short laser
web. Regular dynamics take place within the cells definecpulses from an elliptically polarized standing wave. Level$

by the web. (b) Time averaged function for the (unstable) and|e;) are coupled by, polarized light, and leveltg,) and
initial condition |a) wherea = 7/2n andn = 0.25, centered  |¢) by o polarized light, where the corresponding intensities
at (1,0). (c) Time averaged function for the (stable) initial ~ differ. (b) After a definite number of kicks, the levels) and
conditiona = i7/n/3 ((0,2/+/3)) andn = 0.5. (d) As for  |g,) experience ar/2 pulse (e.g., a Raman transition, using the
(c), wheren = 0.25. Note the “tunneling” out of the original auxiliary level |r)). (c) The population ofg;) is determined
ring of cells for the larger value of. by fluorescence, using the auxiliary levdl).
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which corresponds almost exactly to Egs. (6) and (7), for a) i
two different K; = ficy/7 Q3i/8A. There are extra ost/ ¥ [
lg;)(g,| terms, but these will only contribute phases to AV Ve Ve ey e e
the evolution of the initial state of Eq. (2), and can easily (1’0 100 200 300 400 500 600 700 800 900 1000
be accounted for. b iIS—___ T T
Taking |a) = |B), the initial state of Eg. (2) thus O T N T S
evolves as T A

1 < _.
W) = = > eI Er gy, (12)
j=1

where the Floguet time evolution operatds are given
by

Fj _ e—ifﬁ&ure—ik/ 605{217(&*4-&)]|g/)(gj|/\/§172, (13) N T N AN \ , \\'

LN LR RN LAY LN
> LN LN B

where at and a, respectively, create and annihilate a Yo 100 200 300 400 S0 600 700 800 900 1000
single phonon quantum, and the common phase term o .

¢~ i*7/2 has been dropped. The, = Q?nzaJE/SA FIG 3. (a_)_ P, (solid line) and P, (dotted line) for the
are dimensionless kick parameters, which, with deter-  initial conditiona = /27 (1 = 0.5, ki = 0.2, k» = 0.225).

, ; : b) O (solid line), Ré(a|F"TF" dashed line), and
mine fully the phase space behavior of the classical deltq('m)((alﬁﬁ(fﬁila» (éone?anlne) férlaglze(same initial)condi-

kicked harmonic oscillator [6]. In the quantum mechanicakjon (c),(d): Same as (a) and (b), for the initial condition
problem there is an additional parameter, the Lamb-Dickg, = iz /5+/3.
parametem = k/ii/2mv. As n? = fi, by progressively
reducingn, one can explore the transition from quantum to
classical chaos [15]. This can be accomplished by “tightyhether the initial condition is classically unstable, as
ening” or “loosening” the trapping potential, i.e., increas-jn Figs. 3(a) and 3(b), where the corresponding classical
ing or decreasing the trapping frequency initial condition is a hyperbolic fixed point, or stable
After n kicks, we perform am/2 pulse between the [Figs. 3(c) and 3(d), elliptic fixed point]. This is already
levels |g;) and |g,), by, e.g., a Raman transition or a poticeable in the plots af, andP’, beforeO is extracted
magnetic field [see Fig. 2(b)]. By fluorescence, using alfFigs. 3(a) and 3(c)]. In line with previous numerical
auxiliar_y level | £), with repeated measurements one cafyork for the kicked top [1],0 decays for an unstable
determineP, andP, [see Fig. 2(c)], as defined in Egs. (4) initial condition, and undergoes quasistable oscillations
and (5). for a stable initial condition.
1 ) At s As O is a measure of how close the two parallel
Pg =5 {1 - cos(8xn/v2n*) Rel(alFy" Fila)] evolutions are at a given time, it can be seen that if the
initial condition is classically unstable [Fig. 3(b)] the two
(14) states become rapidly increasingly orthogonal (more “far
apart”), whereas in the case of a stable initial condition,
for some time the difference between the states remains on
2 Atnan average about the same. This in some sense corresponds
— coddkn/V2y?) Iml(alF" Fla)]}, to the classical definition of chaos, where under the
where §x = k, — k1. From Eq. (14) one can easily influence of thesamedynamics, very slightlydifferent
extract the overlap = [(a|F;" F}|a)|?. initial states diverge rapidly if their origin is in an unstable
In order to relate the quantum mechanical behavior ofirea of phase space [1].
the system to the classical one, we have to use an initial Figure 4 shows the same fay = 0.25. In line with
condition equivalent to the classica(0) and p(0). We  the fact that this is more in the semiclassical regime than
use a coherent stater), where @ can be expressed as Fig. 3, the decay [Figs. 4(a) and 4(b)] is more rapid, and
a = [kx(0) + ikp(0)/mv]/4n. Thus we can see that the oscillations [Figs. 4(c) and 4(d)] are more stable. The
when 7 is small, « is large, and|a) is therefore more slow decay of the quasistable oscillations whenr= 0.5
macroscopic, in some sense matassical This can be [Fig. 3(d)] can be traced back to the tunneling that takes
seen by comparing Fig. 1(c) with Fig. 1(d); fer = 0.5  place in this regime (see Fig. 1), absent wher= 0.25.
population “tunnels” through a classically forbidden area, Numerically the procedure is carried out in a truncated
which does not occur when = 0.25 [16]. Fock basis of 400 states whem = 0.5, or 800 when
Figure 3 shows the values a?, and P/ that one n = 0.25. Increasing the size of the Fock basis does not
would measure for this scheme, and the valueofthat qualitatively change the observed dynamics.
one would thus obtain, fo, = 0.5 after 0—1000 kicks. In conclusion we have shown a general procedure for
The plots obtained are clearly different, depending ordetermining the overlap paramet@roriginally proposed

— sin(dkn /2 n2) Im[{a|F," Fila)]},

Pl — %{1 ~ sin(8xn/v2 n?) Re(al Bl )]
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FIG. 4. Corresponds exactly to Fig. 3, except that 0.25.
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