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We demonstrate experimentally that the transitions between adjacent integer quantum Hall (Q
states are equivalent to a QH-to-insulator transition occurring in the top Landau level, in the presen
of an inert background of the other completely filled Landau levels, each contributing a single un
of quantum conductance,e2yh, to the total Hall conductance of the system. The equivalence holds
for numerical parameters describing the transition, as well as for the recently discovered reflecti
symmetry of the resistivity. [S0031-9007(97)03595-3]

PACS numbers: 73.40.Hm, 72.30.+q, 75.40.Gb
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The study of the transition regions separating adjace
quantum Hall (QH) states is an active topic of resear
in the field of two dimensional electron systems [1–6
These transition regions were considered mainly in t
framework of scaling [6,7], extending to the high magnet
field (B) QH regime a methodology developed for the stud
of theB ­ 0 metal-insulator transition [8].

An experimental study by Wei and his collaborators [1
revealed some of the fascinating physics of these tran
tions. By focusing on the diagonal resistivity (rxx) peaks
separating adjacent QH minima, and on the Hall resistiv
(rxy) steps accompanying them, they demonstrated sc
ing behavior in InGaAsyInP samples characterized by
temperature-dependent conductivity that is governed
a single exponent,k, independent of Landau level (LL).
This apparentuniversality,which is an expected signature
of a quantum phase transition [6], is not always observe
e.g., see the study of GaAsyAlGaAs samples by Koch
et al. [3].

More recently, another class of transitions in the qua
tum Hall regime were studied [9–12]. TheseB-driven
transitions are not between adjacent QH states but betw
QH states and the insulating phase that terminates the
series. Since in the insulatorrxx ! `, these transitions
are not characterized by arxx peak and experimentally
they appear, on first sight, to be different from the inte
QH, plateau-to-plateau, transitions. It was soon realize
however, that a criticalB exists for these transitions as
well and results supporting the existence of scaling b
havior in their vicinity were also reported [12,13], with a
critical exponent that is consistent with thek obtained for
the inter-QH transitions. For these QH-to-insulator trans
tions, there is significant experimental evidence in supp
of the existence of the theoretically expected [14] univers
critical amplitude, with therxx value at the transition point
close tohye2 [11,12]. This should be contrasted with th
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inter-QH transitions, for which most researchers repor
critical amplitude that is not only significantlys40 80d%
smaller than the theoretically expected value, but in ma
cases is alsoT dependent [15], in conflict with the scaling
framework.

Theoretically, the transitions to the insulator are simil
to the inter-QH transitions; both occur as the Fermi ener
crosses the extended states in the center of a LL. Th
differ, however, in that the inter-QH transitions take plac
in the presence of a number of filled LLs, separated
a gap from the top LL where the action takes place.
one assumes that the only contribution of the backgrou
LLs is to the Hall conductance, each filled LL addinge2yh
to the value ofsxy , it may be possible, by numerically
removing that contribution from the experimental data,
test this equivalence. There is a similar scenario involvi
fractional QH states, in which the transitions take the for
of a QH-to-insulator transition of a set of quasiparticle
in parallel with a background (parent) QH liquid. Thi
insight has been systematized theoretically by Kivels
et al. [16], and their unified treatment of the transitions i
the integer and fractional regimes has been supported
recent experiments [11,12]. In this paper we will only b
concerned with integer QH transitions.

The purpose of this Letter is to report on an expe
mental test of the conjecture that the inter-QH and t
QH-to-insulator transitions are similar. For simplicity, w
focus on the transition from then ­ 2 to n ­ 1 integer
QH states (dubbed2-1), which occurs at the top spin-
split first LL, and compare it to then ­ 1-to-insulator
(1-0) transition in the same sample, which takes place n
the center of the lower spin-split first LL. To implemen
this comparison, we utilized a straightforward schem
closely akin to that used by McEuenet al. [17] to dis-
entangle different edge-state contributions to the resis
ity. Our method is as follows. First, we obtain traces
© 1997 The American Physical Society 479
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rxx andrxy for the2-1 transition using a Hall-bar shaped
sample etched in a high-density (n ­ 2.27 3 1011 cm22),
low-mobility (m ­ 10.8 3 103 cm2yV sec), MBE grown
GaAsyAlGaAs wafer. These resistivity traces, taken a
severalT ’s, are plotted in Fig. 1(a). The transition is typi
fied by arxx peak that widens withT and by the accompa-
nying step inrxy. Next, we convert ther’s to s’s using
the standard matrix conversion,

sxxsxyd ­
rxxsyxd

r2
xx 1 r2

xy
, (1)

and plot thes traces in Fig. 1(b). We then obtain the
conductivity of the topmost LL by subtracting from the
conductivity data the contribution of the lowest, full LL,

st
xx ­ sxx , (2)

st
xy ­ sxy 2 e2yh , (3)

assuming, as mentioned, that the only contribution of t
lowest LL ise2yh to the Hall conductivity (throughout this
paper, the indext refers to the contribution of the topmos
LL to the transport coefficients). Next we convertst

xx
and st

xy to new resistivities,rt
xx and rt

xy , which are the
resistivities of the topmost LL. This allows compariso
with the data obtained from the1-0 transition in the same
sample.

The comparison is made in Fig. 2, where we plotrt
xx

(solid lines) andrt
xy (short-dashed lines) as a function o

FIG. 1. (a)rxx (lower curves) andrxy vs n taken in the
vicinity of the n ­ 2 to 1 transition, atT ­ 42, 70, 101, and
137 mK. Note the narrowing of the transitions asT is lowered.
(b) sxx andsxy vs n, calculated from (a). The dashed lines in
both (a) and (b) indicatenc, inferred from the data in Fig. 2(a)
(see text).
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n for the 2-1 transition [Fig. 2(a)], and traces ofrxx and
rxy vs n obtained from the same sample near the1-0
transition terminating the QH series, in Fig. 2(b) (here
of course,rt ­ r). While for the rxx traces in both
graphs of Fig. 2 we present data at our lowestT range
(T , 150 mK), the rxy traces shown were taken at an
elevatedT (ø320 mK) for which reliable data can be
obtained. The difficulties with the Hall component data
at lowerT ’s will be discussed below.

A central point that can be observed in Fig. 2 is the
clear similarity of the overall appearance of the traces i
the two graphs. In particular, both sets ofrxx traces are
characterized by aT -independent crossing point of the
traces taken at differentT ’s which, for the1-0 transition,
has been identified as the QHE-to-insulator transition poin
[10,11]. It is thus natural to associate the2-1 transition
n, nc, with the crossing point of thert

xx traces observed
in Fig. 2(a). Adopting this identification ofnc, we now
proceed to explore its consequences in ther ands traces
of Fig. 1.

It is immediately obvious thatnc (dashed line in Fig. 1)
is not at the rxx peak. In fact, the position of therxx

FIG. 2. (a)rt
xx (solid lines) andrt

xy (long-dashed line) for
the 2-1 transition, calculated from the data in Fig. 1(a). The
T for the rt

xx data are 42, 70, 101, and 137 mK, and for the
rt

xy trace T ­ 330 mK. (b) Measuredrxx (solid lines) and
rxy (long-dashed line) for the1-0 transition. TheT for the
rxx data are 42, 84, 106, and 145 mK, and for therxy trace
T ­ 323 mK. Dashed line in both (a) and (b) indicates the
transition n inferred from the common crossing point of the
rt

xx (or rxx) traces.
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peak is clearlyT dependent, at the sameT range where
the crossing point inrt

xx [see Fig. 2(b)] is not. Instead,
a T -independent point can be seen at the high-n shoulder
of the rxx peaks. It is this point, rather than the peak’
center, that coincides with the transition as inferred from
the rt

xx traces. On the other hand, inspecting thesxx

traces in Fig. 1(b) reveals that thesxx peak is centered
around nc, and its position is much lessT dependent.
One can immediately draw the following conclusions
(a) associated with the2-1 transition is asxx peak, whose
position is T independent (at lowT ), and is centered
aroundnc, (b) a peak inrxx also exists in the vicinity
of the transition, but its center is offset by aT -dependent
amount fromnc, and (c) on therxx peak, the transition
point is characterized by aT -independent point located at
its shoulder. The fact that only one of either therxx or
the sxx peak is symmetric is hardly surprising becaus
obtaining one from the other involves the distinctly
asymmetric Hall component. Here, we demonstrate th
at low T , thesxx peak is the symmetric one.

We now turn to the Hall component of the transpor
First, by inspecting Fig. 1, one can identify the existenc
of crossing points in bothsxy andrxy. For thesxy traces,
the value at the crossing point is close to the midvalu
between the two QHE plateaus [14], but for therxy traces
it is not so, with the transition point clearly at a much lowe
value. Then position of these crossing points coincide
with nc, as it is identified from the crossing points of the
rxx traces.

Second, as reported previously,rxy can remain constant
and quantized across the transition, into the insulatin
phase, near both the1-0 transition [18] and the1y3-
fractional QH-to-insulator transition [19]. As seen in
Fig. 2(a), rt

xy indeed remains constant across the2-1
transition, providing further evidence to the equivalence o
the transitions. The intriguing possibility thatrxy remains
quantized in the insulating regime is actually implicit in
a recent theoretical work of Ruzin and his co-worker
[20]. Their result is cast in the form of a “semicircle”
law, which imposes a relation between the elements of t
conductivity tensor for the2-1 transition,

sst
xxd2 1 sst

xyd2 ­
e2

h
st

xy . (4)

To test this we plot, in Fig. 3,st
xy vs sst

xxd2 1 sst
xyd2 for

traces obtained at severalT ’s from 26 222 mK. Overall,
the data follow the expected straight line at higherT ’s,
with systematic deviations at lowsxy that becomes more
significant asT is lowered. At present, we cannot delineat
the source of these deviations [18] or decide whether t
semicircle law is exact asT ! 0, or just an approximation
applicable at higherT ’s.

So far we discussed the similarity of the2-1 and 1-0
transitions on a qualitative level. One way of extractin
quantitative parameters from the QH-insulator transitio
is by conducting a scaling analysis of the data. I
Fig. 4 we present such an analysis of our transition
Using a scaling procedure similar to that used by Won
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FIG. 3. A plot of st
xy vs sst

xxd2 1 sst
xyd2 for the 2-1 transi-

tion. A straight line indicates a semicircle relation between the
conductivity components.

et al. [12] we plot rxx for the 1-0 transition [Fig. 2(a)]
and rt

xx for the 2-1 transition [Fig. 2(b)] versus the
scaling argument,sn 2 ncdyTk . While nc can be directly
obtained from the data, we vary the value ofk until we
obtain the optimal “collapse” of therxx traces obtained
at different T ’s. We emphasize that the data in Fig. 4
do not represent a significant test of scaling given its
limited range. The sole intention of our presentation of
the scaling analysis is to provide a quantitative measur
of the similarity of the transitions which is the main

FIG. 4. A scaling analysis of thert
xx (a) and rxx (b) data

in Figs. 2(a) and 2(b), respectively, intended to quantify the
similarity observed in Fig. 2 (see text). The scaling exponen
k, is determined to within 20%.
481
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FIG. 5. rt
xx and1yrt

xx vs Dn ­ n 2 nc at two temperatures.
Note the symmetry betweenrxxsDnd and1yrxxs2Dnd.

topic of this Letter. The resulting values of the critica
exponent,k ­ 0.45 6 0.05, are indeed the same for both
transitions. Incidentally, they are also in good agreeme
with results obtained in some of the studies of QH
transitions [1,12,13].

Another quantitative aspect of the transitions is the
critical resistivity. Both transitions depicted in Fig. 2 hav
a value of the critical resistivity atBc close tohye2, again
in good agreement with studies of the1-0 transitions [11].
As mentioned before, the issue of the universal critic
resistivities for the inter-QHE is still under debate. On
may argue that the process of eliminating the contributio
of the lowest LL from the2-1 data may result in an
incorrect critical resistivity value for thert

xx obtained for
that transition. To alleviate this concern we carefull
inspect the rawrxx data presented in Fig. 1(a). We reca
that the scaling theory of the QH transitions predicts n
one, but two, distinct universal critical amplitudes for th
2-1 transition. The first isrc

xx , the value ofrxx at Bc,
and the second isrp

xx , the peak value ofrxx which, as
discussed above, is distinct fromrc

xx . As can be seen,
both areT independent at the low-T range shown, with
rc

xx ­ 4.4 kV and rp
xx ­ 6.25 kV. Both these values

are within 20% of the expected [21] values ofhy5e2

and hy4e2, respectively, lending support to the universa
character of the transitions.

Finally, we take advantage of our analysis to chec
whether the recently observed reflection symmetry ofrxx

near the QH-to-insulator transitions also holds forrt
xx . In

Fig. 5 we replotrt
xx , normalized to its transition value

(20 kV), vs Dn ­ n 2 nc at two temperatures (solid
curves), along with its inverse (dashed curves), plotte
against (2Dn). Clearly, the reflection symmetry is eviden
for this transition as well.

To summarize, in this work we have demonstrate
the equivalence of the inter-QH, plateau-to-plateau tra
sitions, to the QH-to-insulator transition that terminate
the QH series, and tested the proposed semicircle relat
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between the longitudinal and Hall components of the con
ductivity tensor near the transitions.
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Note added.—After this paper was submitted, we
carried out an alternative analysis of the data discusse
here outside the framework of quantum critical scaling
This does not affect the central feature of our data tha
is of interest in this paper—the close connection betwee
the 1-0 and 2-1 transitions—but specialists in quantum
critical phenomena may wish to peruse a forthcoming
publication [22].
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