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Structure Formation with a Self-Tuning Scalar Field
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A scalar field with an exponential potential has the particular property that it is attracted into a
solution in which its energy scales as the dominant component (radiation or matter) of the Universe,
contributing a fixed fraction of the total energy density. We study the growth of perturbations in
a cold dark matter dominate@ = 1 universe with this extra field, with an initial flat spectrum of
adiabatic fluctuations. The observational constraints from structure formation are satisfied as well,
or better, than in other models, with a contribution to the energy density from the scalar field
Q4 ~ 0.1 which is small enough to be consistent with entry into the attractor prior to nucleosynthesis.
[S0031-9007(97)04726-1]

PACS numbers: 98.80.Cq

The simplest viable cosmology which follows from expansion rate of the Universe with scale faatordots
inflation, a flat universe with pressureless matter ancire derivatives with respect to conformal timg/ =
5% baryonic dark matter, has been unable to fit bothgnd a7, = 2.4 x 10'8 GeV is the reduced Planck mass

the cosmic background radiation (CBR) fluctuations andyyitiplying (1) by ¢ and integrating, one obtains
measurements of mass fluctuations on scales of a few

Mpc. The paradigm of inflation is sufficiently compelling po(a) = play)e I, 6[1‘5(“)]%, (4)

that there have been various attempts at modifying this _

“standard cold dark matter” (sCDM) scenario [1]. Thewherep, = 222¢2 + V(@) is the total scalar energy, and
possibility that some part of the energy density of theg = V(¢)/p,. Since0 < £ < 1, the energy density of
Universe is in a form other than particlelike matter hasa scalar field has the range of possible scaling behaviors
been envisaged, in particular in the form of a constanp o« 1/4™ with 0 = m =< 6, and the scaling is completely
energy (\CDM) [2] or time-dependent coherent energy determined by the ratio of its potential to its kinetic energy.
density in a scalar field [3,4]. In this Letter we discuss The special cosmological solutions in which we are
the cosmology of a model with a scalar field which has anterested here are attractor solutions which were given
simple exponential potential. Itis distinctly different from in [3,6] of (1)—(3) for the case of an exponential potential
other scalar field cosmologies, in that its energy density (¢) = V,e~*¢/M, with A a constant. In these solutions
plays a role from very early times, rather than just atthe scalar field evolves so that its total energy density
recent epochs, and resembles much more the “mixed dagcales in the same way as the dominant component (i.e.,
matter” (MDM) model [5] in which there is a component p, « 1/a") and contributes dixed fraction of the total

of matter which is collisionless during a period of the energy density given by

growth of structure. The required potential arises in

particle theories and has (mainly for this reason) been 0, = P¢ _n
. . . . . ! ¢ 3
quite extensively discussed in the context of inflationary Po T Pn A (5)
models. V() n
Let us first explain the properties of an exponential &= ﬁ =1- i
potential which make it a particular and interesting case. w® (¢)

The equations of motion in an expanding universe for th
homogeneous mode of a scalar fiéldvith potentialV (¢)
coupled to ordinary matter onIy through gravity are

For A > 1//n. Note that the contribution of the scalar
field is determined by the single parametar To
understand qualitatively why the scalar field tends to

b+ 2H ¢ + aPV'(¢p) = _2 _( 20) + a*V'(¢) f[his soI_ution irrespective of Where it starts from, it is
dr instructive to look at a few special solutions of Eqgs. (1)—
=0, (1) (3) away from the attractor (5). First consider the case

! that the scalar field energy density is very dominant

H? = < ¢ + a®V($) + a pn>, (2) initially, with Q4 much larger than in (5). In the limit
3M; p. = 0 there is, forA < /6, a different set of attractors
pn + nHp, =0, (3) [8]inwhich
where p, is the energy density in radiatiom & 4) or A2 1
nonrelativistic matter{ = 3), H = 2 is the conformal E=1- 6 Py & ar ¢(7) < In(7).  (6)
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For A > /6 there is not a single attractor, but all solutions Prima facie this constraint would seem to require
have £ — 0 asymptotically (and, thereforgy = 1/4®).  entry into the attractor after nucleosynthesis if the scalar
The conditionA > 1/./n for the attractor (5) means that field is to play any significant role cosmologically [3].
the energy density in the scalar field scdkesterthan the The requirement of entry after nucleosynthesis would
radiation or matter. It will therefore always catch up with apparently mandate the unattractive fine tuning (typical
the radiation or matter if it starts dominant over it. If, on of scalar field models) of the initial energy density in
the other hand, the scalar field energy starts subdominattie potential to some small value. It was in fact the
[i.e., with Q4 much less than in the attractor (5)] it incorrectness of this second assumption which motivated
will also catch up with the other components, becaus¢he present study: If, prior to nucleosynthesis, the
in this case it scaleslower than the other components. energy density in the exponential field with > /6
To see this qualitatively consider the solution for= 4  dominates over that in the radiation, there will typically
(radiation) to (1)—(3) withV(¢) = 0 andpy = 0 in (2): be a long transient period aftgry, ~ p, during which
. . the scalar energy is very subdominant [much less than
o(r) = ¢, + ¢07,,<1 - —”). (7) its value in the attractor (5)]. This is simply because
T the ratio ¢ — 0 in the kinetic energy dominated pure
The logarithmic dependence of the field om (6), which  scalar cosmology, but is of order one in the attractor
also holds in the attractor (5), has become a slower evGgjth radiation. During the time that is increasing
lution due to the larger damping in the radiation domi-(potentially many expansion times as it cannot grow faster
nated case. In an exponential potential the logarithmighgn a%) the scalar field energy continues to redshift
dependence allows the potential energy to remain subyway asl/a®. Such a dominance by kinetic energy can
dominant or comparable relative to the kinetic energyopccur in certain postinflationary cosmologies which have
(~1/7%). With the evolution of (7) however the poten- considerable interest in their own right [14,15]. It has
tial energy [even if initially negligible, as we assumed totranspired from the present Letter however that the first
derive (7)] will always ultimately dominate over the ki- reason for disregarding this model is also incorrect, and
netic energy, increasing and causing the scalar energy that entry to the attractor prior to nucleosynthesis is in fact
to scale slower (as in an inflationary type solution). consistent—quite simply because the small contribution
The existence of this particular “self-tuned” COSI’ﬂOlOgi— has a Compensating |Ong time to act.

cal solution (5) is quite specific to the exponential poten- e have carried out a detailed calculation of the evo-
tial with A > 1/4/n. A less steep potential will always |ytion of perturbations in this cosmology (which we refer
lead to complete scalar field dominance (e.g., as in the exp as CDM). We assume that the attractor is established
ponential withA < 1/./n) [7]; a steeper potential (e.g., at the beginning of our numerical simulation, deep in the
~e~#/Mr) will always decay asymptotically relative to radiation era, and take an initial standard inflationary scale-
the other components. Further an exponential potential igwvariant spectrum of adiabatic perturbations. The relevant
in fact one which arises quite generically in particle physicsequations are the linearized coupled Einstein-Boltzmann
theories involving compactified dimensions (with internalequations given in [16], supplemented by the scalar field

dimensions characterized Byp). For this reason it has and its perturbationg,.; = ¢(7) + ¢(r,x), with evo-
been considered quite extensively in the context of inflatution equation
tion [8—10], since forA < /2 the solutions (6) describe
“power-law” inflation (with @ = /4’ in terms of physi- & +2H o — Vg + aV'p + 1 by =0 (8
cal timer = [adr). Examples of specific supergravity 2
theories in which such potentials are obtained are given iand additional components to the perturbed energy-
[9], and various higher dimensional theories of gravity inmomentum tensor:
which they arise are discussed in detail in [10,11]. 5 a0 . -

If such a field does exist, it will enter the attractor a’ 6Ty = —¢pp —aV'g,
and contribute a fraction of the energy density (fixed by —a28i5T,~0 = ¢V2¢, (9)
A) at some time determined by its initial energy den- 3 armi . 9t
sity. Big Bang nucleosynthesis (BBN) provides the ear- a’8T; =3¢ —3a’V'e,
liest constraint on how large such a contribution canwherey is the trace of the metric perturbation. We vary
be. The expansion rate of the Universe at nucleosyn¢) , andh (whereH, = 100 (km/s)/Mpc is the Hubble
thesis is increased over its standard model value by thgonstant today), keeping the remaining cosmological pa-
same amount ad N relativistic degrees of freedom, rameters fixed at the values of SCDM, and find the best fit
with 4 = % %, where(), is the fraction con- model to both CBR and large scale structure. To do this
tributed in the matter era. There is some disagreemente use the COBE measurement of CBR anisotropies on
on the precise nucleosynthesis constraintAdvi.¢r, but a  large scales [17] to normalize our theory [18], estimate the
bound of AN = 0.9 is given by various authors [12] or theoretical mass variance per uniklpA2(k), and compare
even a more conservative one AN, = 1.5 by others  with that rendered from a collection of galaxy surveys [19].
[13], which corresponds tf) 4 < 0.1 — 0.15. In Fig. 1 we showA?(k) for two best fit¢ CDM models,
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for sCDM, for aACDM universe withQ), = 0.6, and for
an MDM model with(),, = 0.2 in the form of two massive larger thank., is of order (1 + z.q)~ ¢, where k., is
neutrinos species. It is clear that for these valiy€DOM  the wave number of the horizon size at radiation-matter
fares as well or better than the other models. Anotheequality. This last effect is reminiscent of the evolution of
useful quantity to Work with is the mass fluctuations onperturbations in a mixed dark matter universe where one
84! Mpc scalesos = [i ‘”‘A2(k)(3/1("R 2lg—s. This has component of mattep, , which is collisionless for a
can be related to masses and abundances of rich clustdreriod of time during the matter era [22].
and supplies us with a very tight constraint on possible cos- Itis useful to pursue a comparison betwe28DM and

mologies; indeed current estimates giwg = 0.6 *+ 0.1 MDM to identify the key differences. First the scaling
[20]. A good fit toog is behavior of the additional background energy density dif-

(Qy) = ~8704° _cpM (10) fers: While for ¢ CDM the energy density i follows
Tellie) = € T8 the dominant form of energy quite closely, for MDp,
wherea P is the COBE normalized sCDM. Again

changes from scaling ak/a* to scaling asl/a®> when
we see that there is range of values(tbf andH, which  3kgT, = m,, whereT, (m,) is the massive neutrino tem-
satisfies the above constraiahd is consistent with the perature (mass) anis is the Boltzmann constant. For a
limits imposed by BBN. In Fig. 2 we compare tligs of  period between matter-radiation equality and this transi-
our models with a compilation of data points [21]. Again tion (), is smaller than its asymptotic value, and there is
they are consistent with the current data. less suppression of growth in the CDM than in the case of
The evolution of perturbations in the presence of thehe scalar field. A further difference is that the period of
scalar field is simple to understand. On superhorizoriime during which perturbations are suppressed is shorter
scales there is the usual growing mode wih ¢ = 7> in MDM compared to¢p CDM. In both cases there is a
(where é. is the density contrast in the CDM). This is wave numberk,, which separates growing modes from
to be expected; the superhorizon evolution is insensitivelamped modes. Fo$CDM this scale is roughly the
to the “chemistry” of the matter and totally dominated horizon, i.e., ks, « -, while for MDM it is the free
by gravity. On subhorizon scales in the radiation erastreaming scale, i.eky, = 8a1/2(my/1()ev)h Mpc™! «
8. = InT. The specific effect of the scalar field appearsr. Clearly in the latter case any given mode &f will
on subhorizon scales in the matter era. The perturbatiogventually start to grow. In particular modes arouqgl
in the scalar field itself has the approximate solutiore  will already have started to undergo collapse. A final
;/,Js(kq-) (whereJ, is a Bessel function) which, when fed important difference concerns the evolution of perturba-
back into the equation fo8. gives an altered solution for tions in the radiation era. For MDM, the perturbation
the usual growing modé, = 72~ ¢, where2e = 5[1 — in the massive neutrinos behaves much like radiation un-
(1 — 24Q4/25)"/?]. This solution ‘shows explicitly how til it is well inside the horizon, and this transition is set
even a small contribution from the scalar field can giveby the Jeans scale, i.e., wheén = 1/¢, = V3. For the
a significant effect, as it acts all the way through thescalar field, on the other hand, the transition occurs for

matter era. The expected suppressiondef’ for modes

:'” T T T T "'H': 100 T T rroir IR B |1!\|Hn
10 —— ¢CDM (h=.65, 0,=.12) E 7 B ]
Eo—— - ¢CDM (h=.5, Q,=.08) =] I
L ] 80
e E I
E 3 g
L ] 2
r 1 = 80 [~
— 0.1 & — S
= E 3 (oY
S u ] & L
0.01 E ERR
0.001 < 20 |-
¥ ] o
OOOO]. L m L L L ““Il L — O I‘ P\I\\II‘ 1 III!\II‘ 1 Il \IIII\‘
0.01 0.1 ! 1 10 100 1000
k (h Mpct) 1
FIG. 1. Mass variance per unitincomputed from Boltzmann FIG. 2. Comparison of different model predictions to current

code for different models compared with that inferred from aexperimental data. All models were COBE normalized and are
compilation of galaxy surveys [19]. labeled as in Fig. 1.
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