
VOLUME 79, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 15 DECEMBER 1997

720

o a
erse,

in

well,
eld
sis.

4740
Structure Formation with a Self-Tuning Scalar Field
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A scalar field with an exponential potential has the particular property that it is attracted int
solution in which its energy scales as the dominant component (radiation or matter) of the Univ
contributing a fixed fraction of the total energy density. We study the growth of perturbations
a cold dark matter dominatedV ­ 1 universe with this extra field, with an initial flat spectrum of
adiabatic fluctuations. The observational constraints from structure formation are satisfied as
or better, than in other models, with a contribution to the energy density from the scalar fi
Vf , 0.1 which is small enough to be consistent with entry into the attractor prior to nucleosynthe
[S0031-9007(97)04726-1]
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The simplest viable cosmology which follows from
inflation, a flat universe with pressureless matter a
5% baryonic dark matter, has been unable to fit bo
the cosmic background radiation (CBR) fluctuations a
measurements of mass fluctuations on scales of a
Mpc. The paradigm of inflation is sufficiently compelling
that there have been various attempts at modifying t
“standard cold dark matter” (sCDM) scenario [1]. Th
possibility that some part of the energy density of th
Universe is in a form other than particlelike matter ha
been envisaged, in particular in the form of a consta
energy (LCDM) [2] or time-dependent coherent energ
density in a scalar field [3,4]. In this Letter we discus
the cosmology of a model with a scalar field which has
simple exponential potential. It is distinctly different from
other scalar field cosmologies, in that its energy dens
plays a role from very early times, rather than just
recent epochs, and resembles much more the “mixed d
matter” (MDM) model [5] in which there is a componen
of matter which is collisionless during a period of th
growth of structure. The required potential arises
particle theories and has (mainly for this reason) be
quite extensively discussed in the context of inflationa
models.

Let us first explain the properties of an exponenti
potential which make it a particular and interesting cas
The equations of motion in an expanding universe for t
homogeneous mode of a scalar fieldf with potentialV sfd
coupled to ordinary matter only through gravity are

f̈ 1 2H Ùf 1 a2V 0sfd ­
1
a2

d
dt

sa2 Ùfd 1 a2V 0sfd

­ 0 , (1)

H 2 ­
1

3M2
p

µ
1
2

Ùf2 1 a2V sfd 1 a2rn

∂
, (2)

Ùrn 1 nH rn ­ 0 , (3)
where rn is the energy density in radiation (n ­ 4) or
nonrelativistic matter (n ­ 3), H ­

Ùa
a is the conformal
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expansion rate of the Universe with scale factora, dots
are derivatives with respect to conformal timet, 0 ­

d
df

and MP ­ 2.4 3 1018 GeV is the reduced Planck mass
Multiplying (1) by Ùf and integrating, one obtains

rfsad ­ rsaode
2

Ra

ao
6f12jsadg da

a , (4)

whererf ­
1

2a2
Ùf2 1 V sfd is the total scalar energy, and

j ­ V sfdyrf. Since0 , j , 1, the energy density of
a scalar field has the range of possible scaling behav
r ~ 1yam with 0 # m # 6, and the scaling is completely
determined by the ratio of its potential to its kinetic energ

The special cosmological solutions in which we a
interested here are attractor solutions which were giv
in [3,6] of (1)–(3) for the case of an exponential potenti
V sfd ­ Voe2lfyMp , with l a constant. In these solution
the scalar field evolves so that its total energy densityrf

scales in the same way as the dominant component (
rf ~ 1yan) and contributes afixed fraction of the total
energy density given by

Vf ;
rf

rf 1 rn
­

n
l2

j ;
V sfd

1
2a2

Ùf2 1 V sfd
­ 1 2

n
6

,

(5)

for l . 1y
p

n. Note that the contribution of the scala
field is determined by the single parameterl. To
understand qualitatively why the scalar field tends
this solution irrespective of where it starts from, it i
instructive to look at a few special solutions of Eqs. (1)
(3) away from the attractor (5). First consider the ca
that the scalar field energy density is very domina
initially, with Vf much larger than in (5). In the limit
rn ­ 0 there is, forl ,

p
6, a different set of attractors

[8] in which

j ­ 1 2
l2

6
rf ~

1
al2 fstd ~ lnstd . (6)
© 1997 The American Physical Society
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For l .
p

6 there is not a single attractor, but all solution
have j ! 0 asymptotically (and, therefore,r ~ 1ya6).
The conditionl . 1y

p
n for the attractor (5) means tha

the energy density in the scalar field scalesfasterthan the
radiation or matter. It will therefore always catch up wi
the radiation or matter if it starts dominant over it. If, o
the other hand, the scalar field energy starts subdomin
[i.e., with Vf much less than in the attractor (5)]
will also catch up with the other components, becau
in this case it scalesslower than the other components
To see this qualitatively consider the solution forn ­ 4
(radiation) to (1)–(3) withV sfd ­ 0 andrf ­ 0 in (2):

fstd ­ fo 1 Ùfoto

µ
1 2

to

t

∂
. (7)

The logarithmic dependence of the field ont in (6), which
also holds in the attractor (5), has become a slower e
lution due to the larger damping in the radiation dom
nated case. In an exponential potential the logarithm
dependence allows the potential energy to remain s
dominant or comparable relative to the kinetic ener
(,1yt3). With the evolution of (7) however the poten
tial energy [even if initially negligible, as we assumed
derive (7)] will always ultimately dominate over the k
netic energy, increasingj and causing the scalar energ
to scale slower (as in an inflationary type solution).

The existence of this particular “self-tuned” cosmolog
cal solution (5) is quite specific to the exponential pote
tial with l . 1y

p
n. A less steep potential will always

lead to complete scalar field dominance (e.g., as in the
ponential withl , 1y

p
n ) [7]; a steeper potential (e.g.

,e2f2yM2
P ) will always decay asymptotically relative to

the other components. Further an exponential potentia
in fact one which arises quite generically in particle phys
theories involving compactified dimensions (with intern
dimensions characterized byMP). For this reason it has
been considered quite extensively in the context of infl
tion [8–10], since forl ,

p
2 the solutions (6) describe

“power-law” inflation (with a ~ t2yl2
in terms of physi-

cal time t ­
R

a dt). Examples of specific supergravit
theories in which such potentials are obtained are give
[9], and various higher dimensional theories of gravity
which they arise are discussed in detail in [10,11].

If such a field does exist, it will enter the attracto
and contribute a fraction of the energy density (fixed
l) at some time determined by its initial energy de
sity. Big Bang nucleosynthesis (BBN) provides the e
liest constraint on how large such a contribution c
be. The expansion rate of the Universe at nucleos
thesis is increased over its standard model value by
same amount asDNeff relativistic degrees of freedom
with Vf ­

3
4

7DNeffy4
10.7517DNeffy4 , whereVf is the fraction con-

tributed in the matter era. There is some disagreem
on the precise nucleosynthesis constraint onDNeff, but a
bound ofDNeff ­ 0.9 is given by various authors [12] o
even a more conservative one ofDNeff ­ 1.5 by others
[13], which corresponds toVf , 0.1 2 0.15.
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Prima facie this constraint would seem to requir
entry into the attractor after nucleosynthesis if the sca
field is to play any significant role cosmologically [3]
The requirement of entry after nucleosynthesis wou
apparently mandate the unattractive fine tuning (typi
of scalar field models) of the initial energy density
the potential to some small value. It was in fact th
incorrectness of this second assumption which motiva
the present study: If, prior to nucleosynthesis, t
energy density in the exponential field withl .

p
6

dominates over that in the radiation, there will typical
be a long transient period afterrf , rg during which
the scalar energy is very subdominant [much less th
its value in the attractor (5)]. This is simply becaus
the ratio j ! 0 in the kinetic energy dominated pur
scalar cosmology, but is of order one in the attrac
with radiation. During the time thatj is increasing
(potentially many expansion times as it cannot grow fas
than a6) the scalar field energy continues to redsh
away as1ya6. Such a dominance by kinetic energy ca
occur in certain postinflationary cosmologies which ha
considerable interest in their own right [14,15]. It ha
transpired from the present Letter however that the fi
reason for disregarding this model is also incorrect, a
that entry to the attractor prior to nucleosynthesis is in fa
consistent—quite simply because the small contributi
has a compensating long time to act.

We have carried out a detailed calculation of the ev
lution of perturbations in this cosmology (which we refe
to asfCDM). We assume that the attractor is establish
at the beginning of our numerical simulation, deep in t
radiation era, and take an initial standard inflationary sca
invariant spectrum of adiabatic perturbations. The relev
equations are the linearized coupled Einstein-Boltzma
equations given in [16], supplemented by the scalar fi
and its perturbationsftotal ­ fstd 1 wst, xd, with evo-
lution equation

ẅ 1 2H Ùw 2 =2w 1 a2V 00w 1
1
2

Ùf Ùg ­ 0 (8)

and additional components to the perturbed ener
momentum tensor:

a2dT0
0 ­ 2 Ùf Ùw 2 a2V 0w ,

2a2≠idT0
i ­ Ùf=2w , (9)

a2dTi
i ­ 3 Ùf Ùw 2 3a2V 0w ,

whereg is the trace of the metric perturbation. We va
Vf andh (whereH0 ­ h100 skmysdyMpc is the Hubble
constant today), keeping the remaining cosmological
rameters fixed at the values of sCDM, and find the bes
model to both CBR and large scale structure. To do t
we use the COBE measurement of CBR anisotropies
large scales [17] to normalize our theory [18], estimate t
theoretical mass variance per unit lnk, D2skd, and compare
with that rendered from a collection of galaxy surveys [19
In Fig. 1 we showD2skd for two best fitfCDM models,
4741
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for sCDM, for aLCDM universe withVL ­ 0.6, and for
an MDM model withVn ­ 0.2 in the form of two massive
neutrinos species. It is clear that for these valuesfCDM
fares as well or better than the other models. Anot
useful quantity to work with is the mass fluctuations o
8h21 Mpc scales,s2

8 ­
R`

0
dk
k D2skd s 3j1skRd

kR d2jR­8. This
can be related to masses and abundances of rich clu
and supplies us with a very tight constraint on possible c
mologies; indeed current estimates gives8 ­ 0.6 6 0.1
[20]. A good fit tos8 is

s8sVfd ­ e28.7V
1.15
f sCDM

8 , (10)

wheres
CDM
8 is the COBE normalized sCDMs8. Again

we see that there is range of values ofVf andH0 which
satisfies the above constraintand is consistent with the
limits imposed by BBN. In Fig. 2 we compare theC,s of
our models with a compilation of data points [21]. Aga
they are consistent with the current data.

The evolution of perturbations in the presence of t
scalar field is simple to understand. On superhoriz
scales there is the usual growing mode withdc, w ~ t2

(wheredc is the density contrast in the CDM). This i
to be expected; the superhorizon evolution is insensit
to the “chemistry” of the matter and totally dominate
by gravity. On subhorizon scales in the radiation e
dc ~ ln t. The specific effect of the scalar field appea
on subhorizon scales in the matter era. The perturba
in the scalar field itself has the approximate solutionw ~

1
t3y2 J 3

2
sktd (whereJn is a Bessel function) which, when fe

back into the equation fordc gives an altered solution fo
the usual growing modedc ~ t22e , where2e ­ 5f1 2

s1 2 24Vfy25d1y2g. This solution shows explicitly how
even a small contribution from the scalar field can gi
a significant effect, as it acts all the way through t

FIG. 1. Mass variance per unit lnk computed from Boltzmann
code for different models compared with that inferred from
compilation of galaxy surveys [19].
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matter era. The expected suppression ofjdcj
2 for modes

larger thankeq is of order s1 1 zeqd2e , where keq is
the wave number of the horizon size at radiation-matt
equality. This last effect is reminiscent of the evolution o
perturbations in a mixed dark matter universe where o
has component of matter,rn , which is collisionless for a
period of time during the matter era [22].

It is useful to pursue a comparison betweenfCDM and
MDM to identify the key differences. First the scaling
behavior of the additional background energy density d
fers: While forfCDM the energy density inf follows
the dominant form of energy quite closely, for MDMrn

changes from scaling as1ya4 to scaling as1ya3 when
3kBTn . mn, whereTn (mn) is the massive neutrino tem-
perature (mass) andkB is the Boltzmann constant. For a
period between matter-radiation equality and this tran
tion Vn is smaller than its asymptotic value, and there
less suppression of growth in the CDM than in the case
the scalar field. A further difference is that the period o
time during which perturbations are suppressed is shor
in MDM compared tofCDM. In both cases there is a
wave numberksu which separates growing modes from
damped modes. ForfCDM this scale is roughly the
horizon, i.e., ksu ~

1
t , while for MDM it is the free

streaming scale, i.e.,ksu ­ 8a1y2smny10eV dh Mpc21 ~

t. Clearly in the latter case any given mode ofdc will
eventually start to grow. In particular modes aroundkeq

will already have started to undergo collapse. A fin
important difference concerns the evolution of perturb
tions in the radiation era. For MDM, the perturbatio
in the massive neutrinos behaves much like radiation u
til it is well inside the horizon, and this transition is se
by the Jeans scale, i.e., whenkt . 1ycs ­

p
3. For the

scalar field, on the other hand, the transition occurs f

FIG. 2. Comparison of different model predictions to curren
experimental data. All models were COBE normalized and a
labeled as in Fig. 1.
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larger wavelengths,kt , 1. This means that perturba-
tions in the CDM will stop growing earlier infCDM
than in MDM. The accumulated effect of these differ
ences explains what we have observed—that, with h
the energy density of MDM with two massive neutrinos
fCDM brings about approximately the same suppressi
of power on small scales. However we findfCDM to
be consistent with the constraints from damped Lymana
systems [23].

Let us now turn to the effect that the scalar fiel
has on the CMB. We shall rely on the simplified pic
ture of [24] to understand the angular power spectru
C,, defined asCsud ­ k DT

T sndDT
T sn0dl ­ s4pd21

P
s2, 1

1dC,P,scosud, with n ? n0 ­ cosu. For , . 100 the
main features of theC,s are given by the power spec
trum of radiation perturbations at last scattering,kjdgj2l.
Ignoring projection effects, one has that the structure
the peaks and troughs are given by cos2skrsd, krs . 1,
wherers is the sound horizon in the baryon-photon fluid
rs ­

Rtp

0
dt

3f11Rstdg andR ­
3rB

4rg
. The spatial frequencyk

is roughly related to the angular frequency,. The fact that
the properties of theC,s are dominated by this quantity a
a . 1023 means that the effect off on the CBR will be
much smaller than its net effect ondc. Adding the scalar
field component brings about two effects which we ca
understand qualitatively. First the oscillations are shifte
to higher,s. Because of the additional energy density
the scalar field, the expansion rate will be larger and t
conformal horizon will be smaller for the same redshift i
fCDM compared to sCDM. This feeds through to give
different rs for the same value ofa, shifting the peaks as
observed. The other main feature is an increase in pow
in the peaks. This can be understood easily using the p
ture outlined in [24]. The oscillations indg are driven by
the evolution in the gravitational potentials, and here
in the MDM case [25] the change in the growth of metri
perturbations boosts the amplitude of the peaks by a f
percent.

We conclude that the cosmological model we hav
studied provides an interesting and distinct alternati
to other models which have been proposed. It has
attractive feature thatls­

p
3yVfd, the single extra

parameter compared to standard CDM, has a value wh
is of the order naturally expected in the many partic
physics theories in which the field arises. With th
launch of high resolution space based experiments, s
as the Planck explorer and the MAP satellite, it shou
be possible to distinguish the effect on the CBR of su
an exponential scalar field if it exists, or to rule out it
existence and place tighter constraints on the physi
theories in which these fields arise [26].
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