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Measuring the State of a Bosonic Two-Mode Quantum Field
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(Received 28 May 1997)

A measurement scheme is proposed to determine the state of a bosonic two-mode system complete
Without relying on the existence of a reference field, we reconstruct the quantum state from joint
number measurement only, in casefr, N̂totg ­ 0. Based on an analogy to angular momentum, we
have obtained an explicit inversion procedure for the density matrix of the system and discuss its
application. [S0031-9007(97)04719-4]
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Tomographic methods already had a well establis
history in many areas of applied classical physics, e
medical imaging, geological sciences, or signal proce
ing, before it was recognized that the quantum mechan
state is also an “object” that can be viewed from differe
directions. Recording the information that is gained fro
a particular measurement from all possible view points
the object determines a quantum state uniquely.

For the measurement of the state of a magnetic dip
(a discrete degree of freedom) Newton and Young
introduced the concept of rotating quantum states i
tomographic physics. More recently, it was applied
the context of cavity QED [2], as well. Howeve
state rotation is also the center piece ofphase space
tomography[3,4], which is applicable to systems with
continuous degree of freedom.

The latter method has found many beautiful experim
tal realizations such as the pioneering measurement o
state of a single quantized cavity mode [5,6]. Succ
sively, it has been applied to the study of molecular sta
[7], motional states of trapped ions [8–12], and atom
beams [13]. The method has even found its way bac
classical diffractive optics [14] as it is based on the sup
position principle and the uncertainty relation.

By extending the original ideas of state measurem
to systems with more than 1 degree of freedom [15,1
or to systems that consist of identical particles, tomog
phy provides a systematic tool to study the implications
state entanglement or aspects of quantum statistics.
is of particular importance as the controlled generation
entangled states, e.g., Schrödinger cat states or maxim
entangled GHZ states [17,18], as well as Bose-Eins
condensation (BEC) of dilute alkali gases [19,20] are b
current research topics of central interest and experim
tally feasible.

Thus, tomography can be used in a complement
manner to the proposed schemes of engineering q
tum states [21] in the laboratory and to determine qu
tum correlations of noninteracting massive condensa
unambiguously.

The purpose of the present Letter is to presen
novel state measurement scheme for ana priori unknown
density matrix of a bosonic two-mode field,
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X̀

n0,n1,n0
0,n0

1­0

jn0, n1l kn0
0, n0

1jr
n0n0

0

n1n0
1

. (1)

In here hjn0, n1lj represents a two-mode number stat
basis withN̂totjn0, n1l ­ sn0 1 n1d jn0, n1l.

Different measurement procedures have to be devis
whether (i)fr, N̂totg fi 0 or (ii) fr, N̂totg ­ 0. The gen-
eral case (i) is characterized by the existence of coheren
between total number states. A measurement that prob
such coherences necessarily connects unequal num
manifolds. For optical photons this is easily accomplishe
by a heterodyne measurement, i.e., by mixing the exam
ined modes with an external coherent reference laser fie
Various such schemes have been studied in the past a
applied successfully in the optical domain. However, th
use of analogous methods in quantum statistical mecha
ics is precluded as there are no coherent reference fie
known at present. Moreover, situation (ii), i.e., states th
have a sharp total particle number or incoherent supe
positions of such states, occurs more naturally for atom
ensembles. Thus, we will focus on this case (ii) and dete
mine the quantum state of an ensemble of bosonic atom
from joint count rates only. It will suffice to determine
the probability distribution

PRsn0, n1d ­ kn0, n1jURrU
y
Rjn0, n1l , (2)

of obtaining n0 and n1 counts in modesa0 and a1,
respectively. This has to be repeated for a finite sequen
of different measurements on identically prepared en
sembles. The set of required unitary operationsUR will
be specified later on in this Letter [22].

This is of relevance for two mode condensates [19,20
e.g., two trapped magnetic sublevels in an external pote
tial ground state or two external modes of motion with
equal internal states. In the absence of two particle i
teractions (adiabatic state expansion) such a measurem
scheme can determine all quantum correlations of the sy
tem from particle number measurements only.

One possible realization of such a scheme is shown
Fig. 1. Two orthogonal position modesjxl, jyl are se-
lected by a double slit, and the field̂cz ­ dsz 2 xdĉx 1

dsz 2 ydĉy propagates downstream through two separa
atomic beam splitters, e.g., adiabatic momentum transf
© 1997 The American Physical Society
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FIG. 1. Two orthogonal position modesjxl, jyl of a massive
field ĉ are selected by a double slit. As the particles propaga
downstream, they are coherently superimposed by atomic be
splitters and collected by two detectors.

magnetic mirrors, or Bragg scattering. At the output sid
each of the modes will have a coherent admixture of t
other, i.e., ˆ̄cx ­ cosbĉx 1 e2ig sinbĉy . By adjusting
the relative phaseg of the partial fractions and, finally, by
observing the occupation number of the modes, it is po
sible to determine the quantum state.

The analogous setup for two orthogonal photonic mod
is depicted in Fig. 2. As one of the modes propagat
through a phase shifter, it accumulates an adjustable ph
difference with respect to the other. Successively, bo
modes are mixed by a nonbalanced beam splitter, and jo
photon count rates of the output modes are recorded.

The required linear transformationsUR are given by
polarization rotators or beam splitters in the case of t
photon field or, on the other hand, by any single partic
interactions, that mix two modes of a massive condensa
A generalization of this procedure to an arbitrary numb
of modes seems feasible by applying the required unita
transformations successively to all possible pairs [23].

The measurement procedure is essentially based
the Jordan-Schwinger analogy of harmonic oscillato
with the quantum description of angular momentum [24
For this purpose, we will consider four bosonic mode
ha0, a1, b0, b1j with fai , a

y
j g ­ dij, fbi , b

y
j g ­ dij that are

related by a unitary transformationµ
b0

b1

∂
­

µ
C00

C10

C01

C11

∂ µ
a0

a1

∂
­ U

y
R

µ
a0

a1

∂
UR . (3)

This transformation could describe the time evolution of
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FIG. 2. Setup of an optical beam splitter. Two optical mod
a0 and a1 of orthogonal propagation direction or polarizatio
are phase shiftedfUsgd, Usadg and mixed coherently in a
general nonbalanced beam-splitter devicefUsbdg.

dynamical systemfai ­ aistinitiald, bi ­ aistfinaldg or rep-
resent an input-output relationship between different mo
setssai ­ ain

i , bi ­ aout
i d. The constraint to preserve the

commutation relations also fixes the number of excit
tions within the system, i.e.,fUR, N̂totg ­ 0. Following
Schwinger’s concept of angular momentum, one can d
fine the rotation group by a set of bilinear combination
of creation and annihilation operators

L̂1 ­
1
2

say
0 a1 1 a

y
1 a0d, L̂2 ­

1
2i

say
0 a1 2 a

y
1 a0d ,

(4)

L̂3 ­
1
2

say
0 a0 2 a

y
1 a1d, fL̂i , L̂jg ­ iek

ijL̂k .

(5)
The analogy with angular momentum becomes compl
if a square operator̂L2 is defined according to

L̂2 ­
3X

i­1

L̂2
i ­ l̂sl̂ 1 1d, l̂ ­

1
2

sn̂0 1 n̂1d , (6)

and a certain quantization axise3 is chosen to select
a projection operatorm̂ ­ e3 ? L̂ ­

1
2 sn̂0 2 n̂1d. The

eigenvectorsjl, mle3 of this complete set of commuting
observables (CSCO)hL̂2, m̂j are

jl, mle3 ; jn0 ­ l 1 mla0 ≠ jn1 ­ l 2 mla1 . (7)

By choosing a rotated quantization axis, e.g.,v ­ Re3,
one obtains a different set of basis statesjl, mlv that are
labeled by the CSCO:hL̂2, v ? L̂j. They induce anl-
dimensional representation of the rotation group
4725
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jl, mlRe3 ­ URjl, mle3 ­
lX

m0­2l

D
sld
m0msRd jl, m0le3 . (8)

To be specific, we will adopt the Euler parametrizatio
[25] for the unitary rotation operatorsURsa,b,gd and the

corresponding Wigner matricesD
sld
m0msssRsa, b, gdddd

Usa,b,gd ­ e2iaL̂3 e2ibL̂2e2igL̂3 , (9)

D
sld
m0msa, b, gd ­ e3kl, m0jUsa,b,gdjl, mle3

­ e2im0ad
sld
m0msbde2img . (10)

The key idea of the measurement scheme is based
a representation of the initial density matrix Eq. (1) wit
respect to the angular momentum states

r ­
X̀

l,l0­0

lX
m­2l

l0X
m0­2l0

jl, mle3 kl
0, m0je3 r

ll0

mm0 . (11)

A temporal evolution or a unitary transformation betwee
different modes in a beam splitter maps an initial (inpu
stater onto a final (output) stater,

rsa, b, gd ­ URsa,b,gdrU
y
Rsa,b,gd . (12)

If the diagonal elements of Eq. (12) are taken with respe
to the angular momentum basis

PL
Msb, gd ­ e3 kL, Mjrsa, b, gd jL, Mle3 , (13)

one obtains an equation reminiscent of adiscrete Fourier
transform

PL
Msb, gd ­

2LX
n­22L

eignXLn
M sbd , (14)

XLn
M sbd ­

LX
m­2L

d
sLd
MmsbddsLd

M,n1msbdrLL
m,n1m . (15)

A final phase shifta is not observable from a numbe
measurement, thus vanishes identically.

In the following, we are going to show that Eq. (14
can be inverted with respect to the initial density matr
r, if all of the probabilitieshL, M, kkPL

Msb, gkd $ 0j,
can be determined forjkj # 2L different rotation angles
gk ­ 2pkys4L 1 1d.

The inversion of Eq. (14) is based on two step
First, by introducing a discrete Fourier transform of th
probabilityPL

Msb, gkd, we get

X
Lm
M sbd ­

1
4L 1 1

2LX
k­22L

e2igkmPL
Msb, gkd ,

for jmj # 2L. So far, the inclination angleb is an
arbitrary constant.

Before inverting Eq. (15), it is worthwhile to note an
identity that is derived from the addition theorem fo
Wigner matrices as well as orthogonality relations f
Clebsch-Gordan coefficients [1,25]

dmm ­
2LX

j­0

LX
M­2L

C
LLj
2m,m1m,mC

L,L,j
2M,M,0

3
s21dm2M

d
s jd
0,msbd

d
sLd
MmsbddsLd

M,m1msbd . (16)

Finally, if this is applied to Eq. (15), one finds
4726
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rLL
m,m1m ­

2LX
j­0

LX
M­2L

s21dm2M

d
s jd
0,msbd

C
LLj
2m,m1m,mC

LLj
2MM0

3
1

4L 1 1

2LX
k­22L

e2igkmPL
Msb, gkd . (17)

In short, this relation links probabilitiesPL
Msb, gkd that

are determined experimentally from joint count rate
PRs0,b,gkdsn0, n1d [Eq. (2)] to the density matrix of an
a priori unknown stater. The inclination angleb that
was arbitrary so far should not coincide with the zeros o
associated Legendre polynomials that are proportional
d

s jd
0,msbd fi 0.
To illustrate this method, we have assumed that th

initial state r of the two-mode system is in an inco-
herent superposition of a pure (Schrödinger cat) sta
jcsNdl ­ sjN , 0l 1 j0, Nldy

p
2 and a thermal back-

ground rthskN̂totld, characterized by a mean excitation
kN̂totl and a thermodynamic potentialVNtot . Furthermore,
we assumed for simplicity that the two modes are energ
degenerate, i.e.,̂H ­ h̄vN̂tot

rsN, kN̂ld ­
1
2

sjcsNdl kcsNdj 1 eVNtot 2sN̂totykN̂totldd .

(18)

Such a state, i.e.,rsN ­ 7, kN̂totl ­ 3d is represented
in Fig. 3. It is important to note that this particular
state has no off-diagonal elements with respect to
total particle number, i.e.,fr, N̂totg ­ 0. Therefore,
it will be sufficient to observe joint count rates of
the output channels. The embedding Hilbert spac
is restricted to a total particle number ofNmax ­ 8
and is formed by dimsHNmaxd ­ 45 basis states.
The basis states were arranged in a lexicograph

FIG. 3. Initial density matrixr
n0n0

0

n1n0
1

of a bosonic two-mode
system vs the ordered pairs of quantum numbershsn0, n1dj and
hsn0

0, n0
1dj.
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FIG. 4. The joint probability distributionPRs0,b,gk dsn0, n1d for
measuringn0 counts in modeb0 and n1 counts in modeb1
plotted vs the index of the phase anglesgk and the ordered
pairs of quantum numbers. The phase angles were equidist
and the inclination angle was chosen arbitrarily asb ­ py5.

order along the coordinate axes, i.e.,sn0, n1d . sn0
0, n0

1d if
n0 . n0

0 or n0 ­ n0
0 andn1 . n0

1.
We have simulated the outcome of an experime

numerically by evaluating joint count probabilities
PRs0,b,gkdsn0, n1d [Eq. (13)] for various phase anglesgk

from the given initial statersN ­ 7, kN̂totl ­ 3d. This is
shown in Fig. 4. With this set of data and by applyin
the inversion theorem Eq. (17), the initial density matr
can be recovered completely.

We have also tested the reconstruction procedu
with respect to an initial density matrix that was cho
sen at randomrrandsNmax ­ 8d. The only constraints
were Trfrrandg ­ 1, r $ 0 (positive semidefinite) and
frrand, N̂totg ­ 0. Again, we obtained a faithful image of
the original state.

I am indebted to P. Zoller for many constructive con
tributions and acknowledge gratefully fruitful discussion
with M. Holland and J. Cooper, as well as the hospitali
here at JILA. This work was supported by the Austria
FFW, Grant No. S6507-PHY.

Note added.—After completing this work, we became
aware of a similar proposal [26]. The authors reco
structed the density matrix for a constant particle numb
numerically and notice a singular behavior for certain va
ues ofu.
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Universität Innsbruck, 6020 Innsbruck, Austria.
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