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Measuring the State of a Bosonic Two-Mode Quantum Field
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A measurement scheme is proposed to determine the state of a bosonic two-mode system completely.
Without relying on the existence of a reference field, we reconstruct the quantum state from joint
number measurement only, in cage, N,,.] = 0. Based on an analogy to angular momentum, we
have obtained an explicit inversion procedure for the density matrix of the system and discuss its
application. [S0031-9007(97)04719-4]
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Tomographic methods already had a well established
history in many areas of applied classical physics, e.g.,
medical imaging, geological sciences, or signal process-
ing, before it was recognized that the quantum mechanicah here {|ng,n)} represents a two-mode number state
state is also an “object” that can be viewed from differentbasis withNilng, n1) = (ng + ny) Ing, ny).
directions. Recording the information that is gained from Different measurement procedures have to be devised
a particular measurement from all possible view points ofvhether ()[p, Nioi] # 0 or (i) [p, Nii] = 0. The gen-
the object determines a quantum state uniquely. eral case (i) is characterized by the existence of coherence

For the measurement of the state of a magnetic dipo|@etween total number states. A measurement that probes
(a discrete degree of freedom) Newton and Young [1]such coherences necessarily connects unequal number
introduced the concept of rotating quantum states inténanifolds. For optical photons this is easily accomplished
tomographic physics. More recently, it was applied inby a heterodyne measurement, i.e., by mixing the exam-
the context of cavity QED [2], as well. However, ined modes with an external coherent reference laser field.
state rotation is also the center piece mifase space Various such schemes have been studied in the past and
tomography[3,4], which is applicable to systems with a applied successfully in the optical domain. However, the
continuous degree of freedom. use of analogous methods in quantum statistical mechan-

The latter method has found many beautiful experimenics is precluded as there are no coherent reference fields
tal realizations such as the pioneering measurement of tHgown at present. Moreover, situation (ii), i.e., states that
state of a single quantized cavity mode [5,6]. Succeshave a sharp total particle number or incoherent super-
sively, it has been applied to the study of molecular statepositions of such states, occurs more naturally for atomic
[7], motional states of trapped ions [8—12], and atomicensembles. Thus, we will focus on this case (i) and deter-
beams [13]. The method has even found its way back t&hine the quantum state of an ensemble of bosonic atoms
classical diffractive optics [14] as it is based on the superfrom joint count rates only. It will suffice to determine
position principle and the uncertainty relation. the probability distribution

By extending the original ideas of state measurement
to systems with more than 1 degree of freedom [15,16],
or to systems that consist of identical particles, tomograef obtaining ny and n; counts in modeszy and a,
phy provides a systematic tool to study the implications ofrespectively. This has to be repeated for a finite sequence
state entanglement or aspects of quantum statistics. Thig different measurements on identically prepared en-
is of particular importance as the controlled generation obembles. The set of required unitary operatiéhgs will
entangled states, e.g., Schrodinger cat states or maximalbe specified later on in this Letter [22].
entangled GHZ states [17,18], as well as Bose-Einstein This is of relevance for two mode condensates [19,20],
condensation (BEC) of dilute alkali gases [19,20] are botle.g., two trapped magnetic sublevels in an external poten-
current research topics of central interest and experimeriial ground state or two external modes of motion with
tally feasible. equal internal states. In the absence of two particle in-

Thus, tomography can be used in a complementaryeractions (adiabatic state expansion) such a measurement
manner to the proposed schemes of engineering quaseheme can determine all quantum correlations of the sys-
tum states [21] in the laboratory and to determine quantem from particle number measurements only.
tum correlations of noninteracting massive condensates, One possible realization of such a scheme is shown in
unambiguously. Fig. 1. Two orthogonal position modds), |y) are se-

The purpose of the present Letter is to present dected by a double slit, and the fiefg = 5(¢ — x)i, +
novel state measurement scheme fomgriori unknown  8(¢ — y)gZy propagates downstream through two separate
density matrix of a bosonic two-mode field, atomic beam splitters, e.g., adiabatic momentum transfer,

Pr(no.ny) = (no.m|Ug pURIno.my), (2)
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V/x y/y FIG. 2. Setup of an optical beam splitter. Two optical modes
ap and a; of orthogonal propagation direction or polarization
FIG. 1. Two orthogonal position modes), |y) of a massive are phase shiftedU(y), U(«)] and mixed coherently in a
field ¢ are selected by a double slit. As the particles propagatgeneral nonbalanced beam-splitter deVité€3)].
downstream, they are coherently superimposed by atomic beam .
splitters and collected by two detectors. dynamical systerfu; = a;(tinitial), bi = a;(tgina1)] OF rep-
_ . h i resent an input-output relationship between different mode
ma%ne?chmlrrorj, or Ii:ahgg scatter;]ng. At :j e output ?I hesets(a,- — a™, b; = a®™). The constraint to preserve the
each of the modes will have a coherent admixture of the., mytation relations also fixes the number of excita-

other, i.e..y, = cosBi, + e VsinBi,. By adjusting . - . ,
1T x . g ; tions within the system, i.e ,Niot] = 0. Followin

the rela_ltlve phase of the partial fractions and, flna_lly_, by Schwinger's conc)(/ept of angg’[ujlﬁr n;(())tgnentum, one ce?n de-

observing the occupation number of the modes, it is POSfine the rotation group by a set of bilinear combinations

sible to determine the quantum state. : of creation and annihilation operators
The analogous setup for two orthogonal photonic modes

is depicted in Fig. 2. As one of the modes propagates; _ 1, t t S I S

through a phase shifter, it accumulates an adjustable phasél 2 (@oar + aiao), L, 2i (@oar = arao),

difference with respect to the other. Successively, both (4)

modes are mixed by a nonbalanced beam splitter, and joint 1

photon count rates of the output modes are recorded. is==(alap — alay), [Li,L;]=iefL.
The required linear transformatioriér are given by 2 ‘ 5)

polarization rotators or beam splitters in the case of th .
photon field or, on the other hand, by any single particI:rhe analogy with angular momentum becomes complete

P . )
interactions, that mix two modes of a massive condensat'ef.a squari operatat,” is defined according to
A generalization of this procedure to an arbitrary number »~, _ £ _ 54 s 1 .
of modes seems feasible by applying the required unitary Le= ;L" =+, L= 2 (o + 1), (6)
transformations successively to all possible pairs [23]. ] o o

The measurement procedure is essentially based ¢i'd @ certain quantization axis |slchosen to select
the Jordan-Schwinger analogy of harmonic oscillator® projection operatoriz = e; - L = 3(ip — 711). The
with the quantum description of angular momentum [24].eigenvectord/, m)., of this complete set of commuting
For this purpose, we will consider four bosonic modesobservables (CSCQL?2, 7} are
{ao, a1, bo, b1} with [ai’a;] = dij, [bi,b;r] = §;j that are [, mhe, = lno =1+ mhy, ® Iny =1 —m),,. (7)
related by a unitary transformation i L )
By choosing a rotated quantization axis, evg= Res,

<b0> _ <C00 C01><ao> _ U%(a())UR- (3)  One obtains a different set of basis staliesr), that are
by Cio Cui/ \ay ai labeled by the CSCO{L2,v - L}. They induce ani-
This transformation could describe the time evolution of adimensional representation of the rotation group
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- : LL <o (DM LLj
|l, m>Re3 = U’Rll, m>e3 = Z Dm’m(R) |l’m >e3~ (8) Pmp+m = Z () Ci’",M+m7MC*MMO
mi=—1 j=omM=—L dgy,(B)
To be specific, we will adopt the Euler parametrization | 2L
[25] for the unitary rotation operatorSz«,s,,) and the X i 11 Z e MEpl(B,yr). (A7)
corresponding Wigner matricés,(,i?m(R(a, B.7)) k=-2L
U py = € e Blagmivhs (9) In short, this relation links probabilitie®};(3, y;) that

0 _ ' are determined experimentally from joint count rates
Dum(a. B.v) = el m Ut pip L m)e, Pros(no.n1) [EQ. (2)] to the density matrix of an
) ; ©0.5,y1) C e
=e ", (B)e 7. (10) a priori unknown statep. The inclination angle3 that
The key idea of the measurement scheme is based J¥2S arbitrary so far should not coincide with the zeros of
a representation of the initial density matrix Eq. (1) with @sSociated Legendre polynomials that are proportional to

respect to the angular momentum states d((),];)t(ﬁ) # 0.
» l v ) To illustrate this method, we have assumed that the
p=> D > ll.mell' mlepl,. (1) inital state p of the two-mode system is in an inco-
LU=0m=—lm'==1' herent superposition of a pure (Schrddinger cat) state

A temporal evolution or a unitary transformation between|y (n)) = (|N,0) + |0,N))/~/2 and a thermal back-

different modes in a beam splitter maps an initial (input)ground p., ((N.o)), characterized by a mean excitation

statep onto a final (output) statp, (Nor) and a thermodynamic potentiflly_. Furthermore,
pla,B,y) = UR(Q,B,y)pU;{(aﬁ,y). (12)  we assumed for simplicity that the two modes are energy

If the diagonal elements of Eq. (12) are taken with respeci€generate, i.eff = o N

to the angular momentum basis . 1 P
2 p(N,(N)) = E (|¢(N)><¢(N)| + eQNmt (Ntot/<Ntot>))_

P[{‘d(ﬁv 7) = 93<L7M|ﬁ(a9 B» 7) |L’M>93 ’ (13) 18
one obtains an equation reminiscent afiacrete Fourier . (18)
transform Such a state, i.ep(N = 7,{Nit) = 3) is represented
; 2L ; in Fig. 3. It is important to note that this particular
PL(B.y) = D eTXI(B). (14)  state has no off-diagonal elements with respect to a
L y="2L total particle number, i.e.[p,N] = 0. Therefore,
L (L)( )d(L) (B)pLt (15) it will be sufficient to observe joint count rates of
X 2 = d m v—m myv+m-* . .
W (B) m;L v (B)dpt.v+ Pm.y+ the output channels. The embedding Hilbert space

A final phase shifta is not observable from a number IS restricted to a total particle number Gfyay = 8
measurement, thus vanishes identically. and is formed by dif0y,,) =45 basis states.
In the following, we are going to show that Eq. (14) The basis states were arranged in a lexicographic
can be inverted with respect to the initial density matrix ,
p, if all of the probabilities{L, M, k||PL; (B, yx) = O}, Re[p”o’”o ]
can be determined fdik| < 2L different rotation angles ny,n|
v = 2wk/(4L + 1).
The inversion of Eq. (14) is based on two steps.

First, by introducing a discrete Fourier transform of the 0.2
probability P4, (B, vx), we get
2L

1
AL + 1,

D, e MEPL(B YL,

=-2L 0.1

Xt (B) =

for |u| = 2L. So far, the inclination angle is an
arbitrary constant.

Before inverting Eq. (15), it is worthwhile to note an
identity that is derived from the addition theorem for
Wigner matrices as well as orthogonality relations for

Clebsch-Gordan coefficients [1,25]
2L L LLi L /]’? 30
Suim =D D ClatpsmuCrimo 0s 2 )jg 40
j=0M=-L 7
(=pm—™ (L)

(L) /
X d(j) (B) de(ﬂ)dM»#er(B)' (16) FIG. 3. Initial density matriXp:?:f of a bosonic two-mode
0. system vs the ordered pairs of quantum numHers n;)} and

Finally, if this is applied to Eq. (15), one finds {(ng, n1)}.
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