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Quantum Computers Can Search Arbitrarily Large Databases by a Single Query

Lov K. Grover*
3C-404A Bell Labs, 600 Mountain Avenue, Murray Hill, New Jersey 07974

(Received 16 June 1997)

This paper shows that a quantum mechanical algorithm that can query information relating to multip
items of the database can search a database for a unique item satisfying a given condition, in a sin
query [a query is defined as any question to the database to which the database has to return a (YESyNO
answer]. A classical algorithm will be limited to the information theoretic bound of at least log2 N
queries, which it would achieve by using a binary search. [S0031-9007(97)04644-9]

PACS numbers: 89.70.+c, 03.65.–w
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Imagine the following situation: There areN items
in a database (sayA1, A2, . . . , AN ). One of the items
is marked. An oracle knows which item is marked
however, the oracle gives only one bit (YESyNO) answers
to any questions that are posed to it. The challeng
is to find out which item is marked with the minimum
number of questions to the oracle. It is well known tha
classically, the optimal way is to ask questions whic
eliminate half the items under consideration with eac
question—this process is known to computer scientists
a binary search and yields the answer after approximat
log2 N queries [1].

Quantum mechanical computers can be in a superp
sition of states and carry out multiple operations at th
same time. An algorithm that uses this parallelism is [2
which searches anN item database for a single marked
item in Os

p
Nd quantum queries where each query pe

tains to only one of theN items. This was in some ways
a surprising result, in some ways not so surprising. T
those familiar with classical entities, this was surprisin
since there areN items to be searched, so how could th
result be obtained in fewer thanN steps? However, from
a quantum mechanical point of view allN items are be-
ing simultaneously searched, so there is no obvious re
son the results could not be obtained in a single que
By means of subtle reasoning about unitary transform
tions, Refs. [3] and [4] show that quantum mechanical a
gorithms cannot search faster thanVs

p
Nd queries.

This paper shows that in case it is possible to query t
quantum computer about multiple items, then it is possib
to search the entire database in a single query. In contra
a classical computer will be limited to the information
theoretic bound of log2 N queries. However, the query is
complicated and preparing the query and processing
results of the query takeVsN logNd steps. [Osssfsxdddd
means asymptoticallyless than a constant timesfsxd;
Vsssfsxdddd means asymptotically greater than a consta
timesfsxd.]

The algorithm works by considering a quantum syste
composed of multiple subsystems; each subsystem has
N dimensional state space like the one used in theOs

p
Nd

quantum search algorithm [2]; i.e., each basis state o
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subsystem corresponds to an item in the database. I
shown that with asingle quantum query, pertaining to
information regarding allN items, the amplitude (and
thus probability) in the state corresponding to the mark
item(s) of each subsystem can be amplified by a sma
amount. By choosing the number of subsystems to
appropriately large, this small difference in probabilitie
can be estimated by making a measurement to determ
which item of the database each subsystem correspo
to—the item pointed to by the most subsystems is t
marked item.

A similar result has independently been obtained b
Terhal and Smolin [5] by a different approach.

1. Inversion about average.—Assume that there is
a binary functionfsxd that is either 0 or 1. Given a
superposition over statesx, it is possible to design a
quantum circuit that will selectively invert the amplitude
in all states wherefsxd ­ 1. This is achieved by
appending an ancilla bitb and considering the quantum
circuit that transforms a statejx, bl into jx, fsxdXORbl
(such a circuit exists since, as proved in [6], it is possib
to design a quantum mechanical circuit to evaluate a
functionfsxd that can be evaluated classically). If the b
b is initially placed in a superpositions1y

p
2d sj0l 2 j1ld,

this circuit will invert the amplitudes precisely in the
states for whichfsxd ­ 1, while leaving amplitudes in
other states unchanged [4].

By using such a selective inversion followed by a
inversion about averageoperation, [2] showed that the
magnitude of the amplitude in marked state(s) can
increased by a certain amount. The inversion abo
average operation is defined by the following unitar
operationD: Dij ­ 2yN if i fi j; Dii ­ 21 1 2yN.
This can be physically implemented as a product of thr
local unitary matrices [2].

Assume thatD is applied to a superposition with
each element of the superposition, except one, hav
an amplitude equal to1y

p
N ; the one component that

is different has an amplitude of1y
p

N . The one that
was negative now becomes positive and its magnitu
increases to approximately3y

p
N ; the rest stay virtually

unchanged as shown in Fig. 1.
© 1997 The American Physical Society 4709
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FIG. 1. The inversion about average operation is applied to
superposition in which all but one of the components is initial
1y

p
N; one of the components is initially21y

p
N.

2. Algorithm with queries pertaining to multiple
items.—As mentioned in section 1 above, the algorithm
assumes a large number of identical subsystems. E
subsystem has a basis state corresponding to an item
the database and it is placed in a superposition of the
states. The aim is to boost the amplitude, and hen
probability, of the basis state(s) corresponding to t
marked item(s) in each subsystem by a small amount.
the number of subsystems is sufficiently large, then
carrying out an observation it is possible to infer wha
basis state the probability is larger in, hence which ba
state the amplitude has been boosted in, and from this
marked item in the database. It is explained after st
(iv) in this section that the number of subsystems nee
to beVsN logNd.

The algorithm is given below for a single marked item
A similar algorithm (and similar proof) works if multiple
items are marked.

(i) Consider a tensor product ofh identical quantum
mechanical subsystems—all subsystems have anN di-
mensional state space. Each of theN basis states cor-
responds to an item in the database. Allh subsystems
are placed in a superposition with equal amplitude in a
N states.

AssumingN to be a power of 2, the state of each sub
system is initialized by taking a set of log2 N qubits which
givesN states; the system consists ofh such subsystems.
Each qubit is placed in the superpositions1y

p
2d sj0l 1

j1ld, thus obtaining equal amplitudes in allN states. De-
noting theN states byS1, S2, . . . , SN , the state vector is
proportional tosjS1l 1 jS2l 1 · · · 1 jSN ldh which may
be written assjS1S1 · · · S1l 1 jS1S1 · · · S2l 1 · · · 1 Nh

such terms).
(ii) Query the database as to whether the numb

of subsystems (out of theh subsystems) in the state
corresponding to the marked item is odd or even. In ca
it is odd, invert the phase; if it is even, do nothing. Th
is achieved by using the technique described in sectio
with the functionfsxd equal to 1 if the query indicates
that the marked item’s basis state was present an o
number of times, 0 otherwise.
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Let S1 be the state corresponding to the marke
item. The state vector after this operation become
s6jS1S1 · · · S1l 6 jS1S1 · · · S2l 6 · · · Nh such terms); the
sign of each term is determined by whether the sta
corresponding to the marked item (S1) is present an odd
or even number of times in the respective term. Thi
state vector can be factored and written ass2jS1l 1

jS2l 1 · · · 1 jSN ldh. The system is now in a tensor
product of h identical quantum mechanical subsystems
each of which has anN dimensional state space; in
each of theh subsystems, the phase of the amplitud
in the basis state corresponding to the marked item
inverted.

Note that by a single operation on the multisystem wav
function, the wave function of each subsystem has bee
altered in a suitable way. Using a single query, the phas
of the amplitude in the state corresponding to the marke
item in each of theseh subsystems is inverted—the
reason it needs only a single query is that the new pha
can have only two possible valuess61d; therefore the only
statistic needed from the oracle is: “Is the number o
subsystems in the state corresponding to the marked ite
odd or even?”

(iii) Do a single inversion about average operation on
each of theh subsystems separately.

Since the system is in a tensor product ofh identical
quantum mechanical subsystems, each subsystem can
independently operated on. As mentioned at the end
section 1, if the magnitude of the amplitude in all state
be equal, but the sign of the amplitude in one state b
opposite, then the magnitude of the amplitude in th
state with the negative amplitude can be increased b
a factor of 3 by an inversion about average operation
The state vector after carrying out this operation become
approximatelys3jS1l 1 jS2l 1 · · · 1 jSN ldh.

(iv) Make a measurement that projects each subsyste
onto one of its basis states that points to an item in th
database. The item that the most subsystems point to
the marked item.

Since the probability of obtaining the basis state cor
responding to the marked itemsS1d in each of theh

subsystems is approximately9yN and the probability of
obtaining a different basis state is approximately1yN,
it follows by the law of large numbers [7], that out of
h subsystems,9hyN 6 Os

p
hyNd lie in stateS1 while

hyN 6 Os
p

hyNd lie ineach of the other basis states. If
h ­ KN, then 9K 6 Os

p
Kd subsystems lie inS1 and

K 6 Os
p

Kd in each of the other basis states. IfK ¿ 1,
then the uncertainty due to the6Os

p
Kd term can be ne-

glected when compared to the dominant term that is pro
portional toK.

In fact, it follows by the central limit theorem [7]
that the probability of a particular variable deviating by
more than6g

p
K from its expected value is less than

expf2Vsg2dg. Therefore ifK ­ VslogNd [equivalently
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if h ­ VsN logNd], then with a probability approaching
unity, S1 occurs with a frequency greater than any of th
sN 2 1d other basis states.

3. Discussion. The architecture of a system tha
does the above calculation would be something like th
in the schematic shown in Fig. 2. The intent of thi
system is to invert the phase of the amplitude of th
desired state in allh subsystems; i.e., start from the
superpositionsjS1l 1 jS2l 1 · · · 1 jSN ldh and if S1 be
the basis state corresponding to the marked eleme
then produce the superpositions2jS1l 1 jS2l 1 · · · 1

jSN ldh. This is accomplished by inverting the phase o
all elements of the superposition for which the desire
element is present an odd number of times [section 2(ii
An N bit query to the oracle that accomplishes this
the following: There is one bit of the query for each o
the N basis states; this bit is a 1 if the state occurs a
odd number of times in the various subsystems and 0
it occurs an even number of times. The oracle simp
outputs the bit corresponding to the basis state of t
marked item. As described in section 1, the phase
all states for which the oracle output is 1 is inverted b
passing this bit to anXOR gate whose other input is a bitb
in the superpositions1y

p
2d sj0l 2 j1ld.

For example, let there be four items denoted b
A, B, C, andD, i.e., N ­ 4; let the corresponding states
be SA, SB, SC, andSD. h is larger thanN by a factor
of VslogNd; assumeh ­ 20. Let A be the marked
item. As in section 2(i), the initial state vector is pro
portional to sjSAl 1 jSBl 1 jSCl 1 jSDldh, which may
be written as the sum of4h product terms. Each of the
4h product terms corresponds to a sequence ofh states
which determines the query to the oracle [section 2(ii)
For example, one of the product terms might hav
2 SA’s, 5 SB’s, 8 SC ’s, and5 SD ’s (the ordering is not
important for the purpose of constructing the query
The query to the oracle would be the 4 bit query: 010
the second and fourth bits of the query are 1’s denoti
that the second and fourth items (B and D) have an odd
number of subsystems. The oracle, knowing that th

FIG. 2. h identical subsystems—each subsystem is placed
a superposition ofN states with equal amplitudes. Bitb is
placed in the superpositionsj0l 2 j1ld; as mentioned in section
2, this configuration inverts the phase of all states for which th
1 bit output from the oracle is 1.
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marked item wasA, would return the first bit of the query
(0); i.e., the marked item’s basis state is present an e
number of times.

The inversion about average operation increases
amplitude in the basis state corresponding to the mark
item (A) in all of the 20 subsystems. Finally a measur
ment is made which projects each subsystem into one
its basis states;SA has a higher probability of occurring in
each of the subsystems. Since the number of subsyst
is chosen to be sufficiently largesh ­ 20d, this small dif-
ference in probabilities can be detected by counting t
number of times each state occurs.

As mentioned previously, the same algorithm appli
when more than one item is marked, with the caveat th
the number of marked items be less thanNy4. There are
two reasons for this limitation.

First, there is no way of distinguishing the case
whenk items were marked or whensN 2 kd items were
marked. This is because ifk items are marked, then af-
ter step (ii), the state vector is of the forms2jS1l 2

jS2l 2 · · · 2 jSkl 1 jR1l 1 jR2l 1 · · · jRN2kldh, where
the k items corresponding to theS states are marked and
those corresponding to theR states are not. This is indis-
tinguishable from the state vectorsjS1l 1 jS2l 1 · · · 1

jSkl 2 jR1l 2 jR2l 2 · · · jRN2kldh, which is obtained if
the sN 2 kd items corresponding to theR states were
marked.

The second reason is that, when the number of mark
items approachesNy2, the difference of probabilities that
needs to be resolved is very small and it needs more t
VsN logNd subsystems to do this. In the terminology o
the previous paragraph, this happens becausek becomes
very close tosN 2 kd.

The result in this paper is a subtle consequence of
fact that quantum mechanical amplitudes can be negat
whereas the associated classical quantities are proba
ties which are required to be positive. This enables
single quantum mechanical operation on the multisyst
wave function to alter each individual subsystem wa
function in a suitable way. The importance of the resu
is that it shows yet another way in which quantu
computers can outperform their classical counterparts.

An argument, sometimes quoted, is that since a qu
tum mechanical system needs at leastVs

p
Nd steps in

order to identify a marked item out ofN possible items
[3,4], it could not possibly solve an NP-complete prob
lem in polynomial time (since an NP-complete prob
lem has an exponential number of items). This pap
demonstrates that it is possible to overcome this par
ular Vs

p
Nd bottleneck by having more elaborate querie

However, even though there is just a single query, t
preprocessing and postprocessing steps required are
VsN logNd.
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