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Quantum Computers Can Search Arbitrarily Large Databases by a Single Query
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This paper shows that a quantum mechanical algorithm that can query information relating to multiple
items of the database can search a database for a unique item satisfying a given condition, in a single
query [a query is defined as any question to the database to which the database has to YE&#NG (
answer]. A classical algorithm will be limited to the information theoretic bound of at leastMog
queries, which it would achieve by using a binary search. [S0031-9007(97)04644-9]

PACS numbers: 89.70.+c, 03.65.—w

Imagine the following situation: There a® items  subsystem corresponds to an item in the database. It is
in a database (say\;,A,,...,Ay). One of the items shown that with asingle quantum query, pertaining to
is marked. An oracle knows which item is marked;information regarding allN items, the amplitude (and
however, the oracle gives only one bieg/No) answers thus probability) in the state corresponding to the marked
to any questions that are posed to it. The challengdatem(s) of each subsystem can be amplified by a small
is to find out which item is marked with the minimum amount. By choosing the number of subsystems to be
number of questions to the oracle. It is well known that,appropriately large, this small difference in probabilities
classically, the optimal way is to ask questions whichcan be estimated by making a measurement to determine
eliminate half the items under consideration with eachwhich item of the database each subsystem corresponds
question—this process is known to computer scientists a—the item pointed to by the most subsystems is the
a binary search and yields the answer after approximatelgnarked item.
log, N queries [1]. A similar result has independently been obtained by

Quantum mechanical computers can be in a superpdrerhal and Smolin [5] by a different approach.
sition of states and carry out multiple operations at the 1. Inversion about average-Assume that there is
same time. An algorithm that uses this parallelism is [2]a binary functionf(x) that is either 0 or 1. Given a
which searches aw item database for a single marked superposition over states, it is possible to design a
item in O(v/N) quantum queries where each query per-quantum circuit that will selectively invert the amplitudes
tains to only one of thev items. This was in some ways in all states wheref(x) = 1. This is achieved by
a surprising result, in some ways not so surprising. Tappending an ancilla bib and considering the quantum
those familiar with classical entities, this was surprisingcircuit that transforms a stati, ») into |x, f(X)XORb)
since there ar&/ items to be searched, so how could the(such a circuit exists since, as proved in [6], it is possible
result be obtained in fewer thatw steps? However, from to design a quantum mechanical circuit to evaluate any
a quantum mechanical point of view &l items are be- function f(x) that can be evaluated classically). If the bit
ing simultaneously searched, so there is no obvious red is initially placed in a superpositiofi /+/2) (|0} — |1)),
son the results could not be obtained in a single quenthis circuit will invert the amplitudes precisely in the
By means of subtle reasoning about unitary transformastates for whichy(x) = 1, while leaving amplitudes in
tions, Refs. [3] and [4] show that quantum mechanical al-other states unchanged [4].
gorithms cannot search faster th@riv/N) queries. By using such a selective inversion followed by an

This paper shows that in case it is possible to query thenversion about averageperation, [2] showed that the
guantum computer about multiple items, then it is possiblenagnitude of the amplitude in marked state(s) can be
to search the entire database in a single query. In contrashcreased by a certain amount. The inversion about
a classical computer will be limited to the information average operation is defined by the following unitary
theoretic bound of logV queries. However, the query is operationD: D;; =2/N if i # j; D;; = —1 + 2/N.
complicated and preparing the query and processing thEhis can be physically implemented as a product of three
results of the query také)(NlogN) steps. P(f(x)) local unitary matrices [2].

means asymptoticallyess than a constant timeg(x); Assume thatD is applied to a superposition with
Q(f(x)) means asymptotically greater than a constaneach element of the superposition, except one, having
times f(x).] an amplitude equal td/+/N; the one component that

The algorithm works by considering a quantum systenis different has an amplitude of/~/N. The one that
composed of multiple subsystems; each subsystem has aas negative now becomes positive and its magnitude
N dimensional state space like the one used inQh¢N)  increases to approximateBy/+/N; the rest stay virtually
guantum search algorithm [2]; i.e., each basis state of anchanged as shown in Fig. 1.
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- _—— - Average Let S, be the state corresponding to the marked
- I_ T —| I_ _| I—T_| - item. The state vector after this operation becomes
(before) (=18181---81) £ [S1S1---82) = --- N7 such terms); the

sign of each term is determined by whether the state
corresponding to the marked iterf;§ is present an odd
or even number of times in the respective term. This
_ _ _ _ Average state vector can be factored and written (as|S;) +
[ T] [T 171 [S,) + -+ + |Sy)7. The system is now in a tensor
- (after) > product of  identical quantum mechanical subsystems,

FIG. 1. The inversion about average operation is applied to aeach of which has amv dimensional state space; in

superposition in which all but one of the components is initially €&Ch Of then subsystems, the phase of the amplitude

1/+/N; one of the components is initially-1/+/N. in the ;Jasis state corresponding to the marked item is
inverted.
Note that by a single operation on the multisystem wave

2. Algorithm with queries pertaining to multiple function, the wave function of each subsystem has been
items—As mentioned in section 1 above, the algorithmaltered in a suitable way. Using a single query, the phase
assumes a large number of identical subsystems. Eact the amplitude in the state corresponding to the marked
subsystem has a basis state corresponding to an item &m in each of thesen subsystems is inverted—the
the database and it is placed in a superposition of theg€ason it needs only a single query is that the new phase
states. The aim is to boost the amplitude, and hencean have only two possible valugs1); therefore the only
probability, of the basis state(s) corresponding to thestatistic needed from the oracle is: *“Is the number of
marked item(s) in each subsystem by a small amount. I$ubsystems in the state corresponding to the marked item
the number of subsystems is sufficiently large, then bydd or even?”
carrying out an observation it is possible to infer what (iii) Do a single inversion about average operation on
basis state the probability is larger in, hence which basigeach of then subsystems separately.
state the amplitude has been boosted in, and from this the Since the system is in a tensor productipfidentical
marked item in the database. It is explained after steguantum mechanical subsystems, each subsystem can be
(iv) in this section that the number of subsystems needi#dependently operated on. As mentioned at the end of
to be Q) (N logN). section 1, if the magnitude of the amplitude in all states

The algorithm is given below for a single marked item.be equal, but the sign of the amplitude in one state be
A similar algorithm (and similar proof) works if multiple opposite, then the magnitude of the amplitude in the
items are marked. state with the negative amplitude can be increased by

(i) Consider a tensor product of identical quantum a factor of 3 by an inversion about average operation.
mechanical subsystems—all subsystems havey ati-  The state vector after carrying out this operation becomes
mensional state space. Each of tNebasis states cor- approximately(3|S;) + [S2) + --- + [Sy)7.
responds to an item in the database. Allsubsystems  (iv) Make a measurement that projects each subsystem
are placed in a superposition with equal amplitude in all onto one of its basis states that points to an item in the

N states. database. The item that the most subsystems point to is
AssumingN to be a power of 2, the state of each sub-the marked item.
system is initialized by taking a set of logy qubits which Since the probability of obtaining the basis state cor-

givesN states; the system consistspfsuch subsystems. responding to the marked iterf§;) in each of then
Each qubit is placed in the superpositioly+/2) (|0) +  subsystems is approximatedy N and the probability of
[1)), thus obtaining equal amplitudes in all states. De- obtaining a different basis state is approximatejn,
noting theN states bysS;, S,, ..., Sy, the state vector is it follows by the law of large numbers [7], that out of
proportional to(|S;) + [S2) + --- + [Sy))” which may 7 subsystems9n/N = O(y/n/N) lie in stateS; while
be written as(|$1S1---S1) + 15181---82) + --- + N7 n/N = O(y/n/N) lie ineach of the other basis states. |If
such terms). n = KN, then9K = O(+/K) subsystems lie ir5; and
(i) Query the database as to whether the numbek + O(v/K) in each of the other basis states. KIf> 1,
of subsystems (out of thg subsystems) in the state then the uncertainty due to theO(~/K) term can be ne-
corresponding to the marked item is odd or even. In casglected when compared to the dominant term that is pro-
it is odd, invert the phase; if it is even, do nothing. Thisportional toK.
is achieved by using the technique described in section 1 In fact, it follows by the central limit theorem [7]
with the functionf(x) equal to 1 if the query indicates that the probability of a particular variable deviating by
that the marked item’s basis state was present an odchore than+y+/K from its expected value is less than
number of times, 0 otherwise. exd—Q(y?)]. Therefore ifKk = Q(logN) [equivalently
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if n = Q(NlogN)], then with a probability approaching marked item wag\, would return the first bit of the query
unity, S; occurs with a frequency greater than any of the(0); i.e., the marked item’s basis state is present an even
(N — 1) other basis states. number of times.

3. Discussion. The architecture of a system that The inversion about average operation increases the
does the above calculation would be something like thaamplitude in the basis state corresponding to the marked
in the schematic shown in Fig. 2. The intent of thisitem (A) in all of the 20 subsystems. Finally a measure-
system is to invert the phase of the amplitude of thement is made which projects each subsystem into one of
desired state in allp subsystems; i.e., start from the its basis states§, has a higher probability of occurring in
superposition(|S;) + [S,) + -+ + |[Sy)” and if S; be  each of the subsystems. Since the number of subsystems
the basis state corresponding to the marked elemernis chosen to be sufficiently lardey = 20), this small dif-
then produce the superpositiqn-|S;) + |S,) + --- +  ference in probabilities can be detected by counting the
|Sy)7. This is accomplished by inverting the phase ofnumber of times each state occurs.
all elements of the superposition for which the desired As mentioned previously, the same algorithm applies
element is present an odd number of times [section 2(ii)Jwhen more than one item is marked, with the caveat that
An N bit query to the oracle that accomplishes this isthe number of marked items be less thé. There are
the following: There is one bit of the query for each of two reasons for this limitation.
the N basis states; this bit is a 1 if the state occurs an First, there is no way of distinguishing the cases
odd number of times in the various subsystems and 0 ivhenk items were marked or wheiN — k) items were
it occurs an even number of times. The oracle simplymarked. This is because kfitems are marked, then af-
outputs the bit corresponding to the basis state of théer step (ii), the state vector is of the forfa-|S;) —
marked item. As described in section 1, the phase ofS;) — -+ — |Sx) + |R1) + |Ry) + ---|Ry—))", where
all states for which the oracle output is 1 is inverted bythe k items corresponding to th® states are marked and
passing this bit to aror gate whose other inputis a it  those corresponding to thestates are not. This is indis-
in the superpositiofil /+/2) (|0) — [1)). tinguishable from the state vecté}S;) + |S,) + --- +

For example, let there be fouritems denoted bylS;) — |[R;) — |R2) — ---|Rn—¢))", Which is obtained if
A,B,C, andD, i.e., N = 4, let the corresponding states the (N — k) items corresponding to thR states were
be S4,S85,Sc, andSp. 7 is larger thanN by a factor marked.
of Q(logN); assumen = 20. Let A be the marked The second reason is that, when the number of marked
item. As in section 2(i), the initial state vector is pro- items approached /2, the difference of probabilities that
portional to (|S4) + |Sg) + |Sc) + |Sp))”, which may needs to be resolved is very small and it needs more than
be written as the sum of” product terms. Each of the Q (N logN) subsystems to do this. In the terminology of
4" product terms corresponds to a sequence; cftates the previous paragraph, this happens bec&usecomes
which determines the query to the oracle [section 2(ii)].very close toN — k).

For example, one of the product terms might have The result in this paper is a subtle consequence of the
2 Sa’s, 5 Sp's, 8 S¢'s, and5 Sp’s (the ordering is not fact that quantum mechanical amplitudes can be negative,
important for the purpose of constructing the query).whereas the associated classical quantities are probabili-
The query to the oracle would be the 4 bit query: 0101ties which are required to be positive. This enables a
the second and fourth bits of the query are 1's denotingingle quantum mechanical operation on the multisystem
that the second and fourth itemB &nd D) have an odd wave function to alter each individual subsystem wave
number of subsystems. The oracle, knowing that thdunction in a suitable way. The importance of the result
is that it shows yet another way in which quantum
computers can outperform their classical counterparts.

L ;;ab;e:ra;et_hm_m;;s T An argument, sometimes quoted, is that since a quan-
| a single question about any oF | 1bitoutput tum mechanical system needs at lefst/N) steps in
! all of the N states with a ! order to identify a marked item out & possible items
| single bit, i.e. 0/1 answer. | . .
e J [3,4], it could not possibly solve an NP-complete prob-
lem in polynomial time (since an NP-complete prob-
N"i'q“efy+ Bith lem has an exponential humber of items). This paper
@ demonstrates that it is possible to overcome this partic-
A A A A ular Q(+/N) bottleneck by having more elaborate queries.

! 2 3l oo M| Ne0NeeN However, even though there is just a single query, the
o _ _preprocessing and postprocessing steps required are still
FIG. 2. 7 identical subsystems—each subsystem is placed i) (v logN).

a superposition ofV states with equal amplitudes. Bit is .
placed in the superpositiof0) — |1)); as mentioned in section _ | thank Asher Peres, Peter Hgyer, Dan Gordon, Anirvan
2, this configuration inverts the phase of all states for which theSengupta, and, most of all, Norm Margolus for their

1 bit output from the oracle is 1. timely feedback.
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