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Stochastic Resonance in Ensembles of Nondynamical Elements: The Role of Internal Nois
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While many examples of noise-induced signal enhancement have been reported, the role of internal
noise has received little attention. Here we study aperiodic stochastic resonance in parallel arrays
of nondynamical elements with internal noise. Ensembles of both threshold and threshold-free
elements are studied, and the model is applied to two-state ion channels. In finite systems where
the input signal controls the probability of discrete events, we demonstrate that the internal noise is
modulated by both the applied signal and the external noise. We also show that the internal noise
plays a constructive role in information transfer through such systems via an increase in external
noise. [S0031-9007(97)04777-7]
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Internal noise occurs in some form in all information
processing systems. The presence of this intrinsic no
complicates the analysis of such systems, especially w
nonlinear processes such as stochastic resonance
[1–3] are considered. Not least among the obstacles
understanding the role of internal noise is the fact th
its sources and properties are often unknown. Howev
it is widely appreciated that the role of internal nois
in information-processing systems is generally negativ
One method for reducing internal fluctuations is to u
an array of elements instead of a single element. In su
an ensemble, all elements have a common input and th
outputs are summed. If the number of elements in su
an array is large enough, the internal fluctuations, be
statistically independent in each element, can be decrea
due to averaging at the summed center, so that the sig
to-noise ratio (SNR) at the summed output is increased
proportion to the number of elements [4]. An array o
information-processing elements acting in parallel is al
an appropriate model for some biological systems, su
as ion channels and sensory neurons. This model app
to a parallel array of stochastic resonators exhibits t
important effect of SR without tuning [5]: the collective
response of the array to a small input signal can
optimized for a range ofinternal noiseintensities larger
than some small value. An experimental observation
SR in an array of ion channels was recently reported
Bezrukov and Vodyanoy [6].

In real information-processing systems, the intern
noise is generally assumed to be difficult to control, whi
applied information signals are always contaminated
external noise that is more accessible for control a
measurement. However, here we demonstrate that
finite arrays of stochastic, two-state elements, the intens
of the internal noise is a function of both the applied inp
signal and external noise. As we show, this extern
modulation of internal noise can play an important ro
0031-9007y97y79(23)y4701(4)$10.00
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in information processing. We study SR in a simple bu
generic model of an ensemble of nonlinear nondynamic
elements, each of which exhibit internal noise, and w
concentrate on the role that these internal fluctuations pla
We consider both threshold elements and threshold-fr
elements, as have been studied recently in Ref. [7]. In t
latter case, we apply the model to two-state ion channe
and show that internal noise can play a constructive ro
in the sense that external noise added to the input sig
can improve the information transfer through the system
while this effect is absent when the internal noise is n
taken into account.

SR has been experimentally demonstrated in a variety
biological systems [8], for which nondynamical theory ha
been usefully applied [7,9–11]. We use a nondynamic
approach here, describing the process as a nonlinear tra
formation of the applied input signal and external noise
To simplify our theoretical analysis, both the input signa
and the external noise are taken to be statistically indepe
dent Gaussian processes. We thus studyaperiodic sto-
chastic resonance(ASR) as introduced by Collinset al. in
Ref. [12]. Recently in Ref. [13] it was shown that ASR
can be viewed as conventional SR by using linear respon
theory. Instead of calculating the threshold-crossing ra
as has been done in previous studies of nondynamical
[7,9–11], we use the classical theory of nonlinear tran
formation of a Gaussian process [14–16] to obtain cros
correlation measures. To demonstrate this technique,
consider first an ensemble ofN threshold elements, each of
which is characterized by the Heaviside unit-step transf
function, ykstd ­ Qfxstd 2 bg 1 jkstd, wherex and yk

are the input and output, respectively, ofkth element,jkstd
mimics an internal noise generated by thekth element, and
b is a constant (see [10] for a single element). All elemen
are subjected to the same inputxstd, which is the sum of the
signalsstd and the external noisenstd. We also suppose
that the input signal, the external noise, and the intern
© 1997 The American Physical Society 4701
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fluctuations jk are statistically independent zero-mea
Gaussian stationary processes with variancesq2, s2, and
r2, respectively. The outputs of the elements are summ
giving the collective responseY std:

Y std ­ NQfxstd 2 bg 1

NX
k­1

jkstd ,

xstd ­ sstd 1 nstd ,
(1)

ks2l ­ q2, kn2l ­ s2, kj2l ­ r2. (2)
The quantities of interest, which characterize the inform
tion transfer through the array, are the covariance,c, and
the correlation coefficient,r, between input signal and the
summed output:

c ­ kY ? sl, r ­
kY ? slp
kY2l ks2l

, (3)

where the cumulant bracketsk?l denote averaging over the
ensembles of stochastic processess, n, andj. These quan-
tities have been used recently to study ASR in Ref. [12
For the unit-step function, all cumulants can be calculat
analytically [14,16], giving for the covariance and the co
relation coefficient the following expressions:

c
N

­
q2p

2psq2 1 s2d
exp

"
2

b2

2sq2 1 s2d

#
, (4)

r ­
cyN

q
q

1
2 h1 2 erffby

p
2sq2 1 s2dgj 1

r2

N

, (5)

where erfsxd is the error function.
Both the covariance and the correlation coefficient di

play bell-shaped curves reaching maxima at some optim
levels of external noise, thereby demonstrating ASR [s
Fig. 1(a)]. For the covariancec, the optimal magnitude of
external noise can be obtained exactly,sopt ­

p
b2 2 q2.

The correlation coefficient reaches its maximum for low
values ofs. In the limit N ! `, the last term in the
denominator of Eq. (5), representing the internal nois
vanishes. This limit also gives the upper value for th
correlation coefficient. In Fig. 1(b), a larger signa
magnitudeq is considered. For a large enough sign
magnitude [Fig. 1(b),N ! ` case], the dependencerssd
becomes monotonic, i.e., the SR effect vanishes. Ho
ever, in systems with a finite number of elemen
[Fig. 1(b), e.g., N ­ 10 case], an SR effect is again
observed, even when the signal magnitude is large.
N is reduced, the internal noise of the system increas
and the absolute value of the correlation coefficient d
creases, indicating that finite systems with internal noi
do not transmit information as effectively as system
without internal noise. If one is constrained to a finit
system, however, these results [Fig. 1(b)] indicate th
the presence of internal noise permits the optimization
the correlation coefficient as a function of external nois
Internal noise can thus play a constructive role in d
termining the information-processing properties of th
system.

Let us now examine the model when each eleme
in the array is characterized by a nonlinear voltag
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FIG. 1. The correlation coefficient,r, [Eq. (4)] as a function
of external noise variance,s, for different numbers of elements
in an array of threshold elements. The dashed line correspon
to the limit N ! `. The parameters areb ­ 1.0, r ­ 1.0,
q ­ 0.1 (a) andq ­ 0.58 (b).

dependent conductancepsV d. We introduce the inter-
nal fluctuations in thekth element via fluctuations of
its conductance, as̃pksV d ­ psV d 1 gsVdjkstd. A non-
linear functiongsV d is included because in the genera
case the internal fluctuations may be influenced by the i
put voltageV . The current through thekth element is
ik ­ V fpsV d 1 gsV djkstdg. The whole current through
the array is therefore

Istd ­ NVpsV d 1 VgsV d
NX

k­1

jkstd . (6)

It is important to note that Eq. (6) also describes th
current through an array of two-state ion channels whic
can exist in either a ground (closed) state or an excite
(open) state [17]. The expectation value for the fractio
of elements in the excited state (or expectation number
open channels) isNpsV d, wherepsV d represents the open
probability, while the fluctuations around this expectatio
value have intensityNpsV d f1 2 psV dg. The latter term
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describes the fluctuations that will occur in any two
state (binomial) process, and reveals explicitly how th
intensity of these fluctuations is modulated by the appli
input signal and external noise,V , through the open
probability, psV d. The current through this ensembl
is given by Eq. (6) with the specified functiongsVd ­p

psV d f1 2 psV dg. We take the nonlinear functionpsV d
in the generic form of a Boltzmann relation as

psV d ­
1

1 1 expfDsW 2 V dg
, (7)

whereD is the constant determining the width (or slope
of the distribution associated withkT , and W refers to
the energy barrier that must be overcome to open
closed channel. The structure of this model, while sim
ple, is somewhat general in the sense that many natu
processes are governed by Boltzmann relations [Eq. (
(e.g., lasers, semiconductors, and ion channels). In c
trast to the previous case of an ensemble of threshold e
ments, elements of this model are threshold-free. Beca
of the finite width of the functionpsV d, the output cur-
rent can be obtained for arbitrarily small input voltage
We again suppose that the applied voltage contains
input signal and external noise, which are Gaussian, s
tistically independent processesV std ­ sstd 1 nstd [e.g.,
see Eq. (2)]. We also assume that the internal-noise ter
jkstd are statistically independent fromV std. This as-
sumption is valid, in particular, in the adiabatic limit
when the input voltage varies much more slowly than a
time scale of the system. The quantity of interest, the co
relation coefficient, is

r ­
kI ? slp

skI2l 2 kIl2d ks2l
. (8)

To calculater, we use known rules for the opening o
cumulant brackets. In particular, for two arbitrary zero
mean Gaussian processesxstd and ystd and a nonlinear
function fsxd, the following formula is valid [16]:
kxfsydl ­ kf 0sydl kxyl. Using this rule, we obtain

kIl ­ Nkp0lD, kI ? sl ­ Nq2fkpl 1 Dkp00lg ,

kI2l ­ NDhNfkp2l 1 Dksp2d00lg

1 r2fkg2l 1 Dksg2d00lgj , (9)

whereD ­ kV 2l ­ s2 1 q2, and the averaged nonlinea
functions are given by integrals over the Gaussian dist
bution of the input voltage, for example,

kpl ­
Z `

2`
psV dGsV d dV ,

kp0l ­
Z `

2`

dp
dV

GsV d dV , (10)

GsV d ­
1

p
2pD

exp

µ
2V 2

2D

∂
.

Unfortunately, some of these integrals cannot be taken
alytically and must be calculated numerically. The co
variance monotonically increases withs. This behavior
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is similar to the monotonic increase of the output signa
observed in ion channels [6] and calculated for threshol
free systems [7]. The dependence of the correlation coe
ficient on the external noise variance is shown in Fig. 2(a
The limit N ! `, which also refers to the case of no
internal noise, is shown by the dashed line. These r
sults differ markedly from the results presented earlie
for threshold devices: for small external noise, the co
relation coefficient decreases, reaches its minimum, a
then passes through a maximum. This behavior is sim
lar to that of the output SNR for conventional SR in an
overdamped bistable system [18] and has the same orig
The presence of internal noise removes this part of the S
curve as is shown in Fig. 2(a).

Let us now consider the practical and important case
very small values of open probabilitypsV d ø 1 as stud-
ied experimentally by Bezrukov and Vodyanoy [6]. This
situation occurs forV ø W . In this case, the presence
of internal noise can also lead to qualitative changes. A

FIG. 2. The correlation coefficient,r, as a function of
external noise variance,s, for an array of two-state ion
channels. The dashed line corresponds to the limitN ! `.
The parameters areD ­ 200, r ­ 1.0, q ­ 0.01, W ­ 0.05
(a) andW ­ 0.15 (b).
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ur
shown in Fig. 2(b), for a certain number of elements in th
ensemble (i.e., for a certain level of internal noise), the S
curves possess two maxima. The new maximum appe
for smaller values ofs as the result of competition be-
tween growing covariance and variance of the output cu
rent. The first peak in the correlation coefficient (and th
SNR) occurs at an external noise value similar to the e
4704
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perimentally observed value [6]. We note that in experi-
mental studies, it is possible that only the first maximum
can be observed because the second maximum may occ
for such large noise voltages that it is outside the work-
ing limits of the system. Note that forV ø W , the open
probability can be approximated aspsV d ø expfDsV 2

W dg andgsV d ø fpsV dg1y2, so that the correlation coeffi-
cient can be calculated in closed form:
r ­
qPs1 1 D2Ddp

DfQ 2 D2DP2 1 4D2DQ 1 sr2yNdPs1 1 D2Ddg
,

P ­ expfDsDD 2 2W dy2g, Q ­ expf2DsDD 2 W dg, D ­ s2 1 q2. (11)
e
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The correlation coefficient given by Eq. (11) reveals th
same behavior as in Fig. 2(b), except that the seco
maximum cannot be observed for large values ofs.

In conclusion, we have studied ASR in ensembles
nondynamical elements acting in parallel. We consider
both threshold and threshold-free elements. The latter c
was applied to an array model of two-state ion channe
For such a model, we showed that the internal noise
modulated by the applied input signal and external nois
and that it can play a crucial role in changing the qualita
tive behavior of the system’s input-output correlation coe
ficient as a function of the externally applied noise. For th
case of a small probability of open channels, the intern
noise results in the appearance of a new maximum in t
plot of the correlation coefficient versus the external nois
level. We note that qualitatively similar results can be ob
tained for conventional SR, when the applied input sign
is periodic in nature. Indeed, our results agree with expe
mental findings for ion channels where both the monoton
increase in covariance and maximum in SNR predicted
our model were observed [6].
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