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Stochastic Resonance in Ensembles of Nondynamical Elements: The Role of Internal Noise
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While many examples of noise-induced signal enhancement have been reported, the role of internal
noise has received little attention. Here we study aperiodic stochastic resonance in parallel arrays
of nondynamical elements with internal noise. Ensembles of both threshold and threshold-free
elements are studied, and the model is applied to two-state ion channels. In finite systems where
the input signal controls the probability of discrete events, we demonstrate that the internal noise is
modulated by both the applied signal and the external noise. We also show that the internal noise
plays a constructive role in information transfer through such systems via an increase in external
noise. [S0031-9007(97)04777-7]

PACS numbers: 87.10.+e, 05.40.4j

Internal noise occurs in some form in all information- in information processing. We study SR in a simple but
processing systems. The presence of this intrinsic noisgeneric model of an ensemble of nonlinear nondynamical
complicates the analysis of such systems, especially whezlements, each of which exhibit internal noise, and we
nonlinear processes such as stochastic resonance (S&ncentrate on the role that these internal fluctuations play.
[1-3] are considered. Not least among the obstacles téd/e consider both threshold elements and threshold-free
understanding the role of internal noise is the fact thatlements, as have been studied recently in Ref. [7]. In the
its sources and properties are often unknown. Howevetatter case, we apply the model to two-state ion channels
it is widely appreciated that the role of internal noiseand show that internal noise can play a constructive role
in information-processing systems is generally negativein the sense that external noise added to the input signal
One method for reducing internal fluctuations is to usecan improve the information transfer through the system,
an array of elements instead of a single element. In sucWhile this effect is absent when the internal noise is not
an ensemble, all elements have a common input and theiaken into account.
outputs are summed. If the number of elements in such SR has been experimentally demonstrated in a variety of
an array is large enough, the internal fluctuations, beindiological systems [8], for which nondynamical theory has
statistically independent in each element, can be decreaseden usefully applied [7,9-11]. We use a nondynamical
due to averaging at the summed center, so that the signapproach here, describing the process as a nonlinear trans-
to-noise ratio (SNR) at the summed output is increased iformation of the applied input signal and external noise.
proportion to the number of elements [4]. An array of To simplify our theoretical analysis, both the input signal
information-processing elements acting in parallel is als@nd the external noise are taken to be statistically indepen-
an appropriate model for some biological systems, sucdent Gaussian processes. We thus staggriodic sto-
as ion channels and sensory neurons. This model applieghastic resonancASR) as introduced by Collinst al. in
to a parallel array of stochastic resonators exhibits th&ef. [12]. Recently in Ref. [13] it was shown that ASR
important effect of SR without tuning [5]: the collective can be viewed as conventional SR by using linear response
response of the array to a small input signal can beheory. Instead of calculating the threshold-crossing rate,
optimized for a range ointernal noiseintensities larger as has been done in previous studies of nondynamical SR
than some small value. An experimental observation of7,9-11], we use the classical theory of nonlinear trans-
SR in an array of ion channels was recently reported byormation of a Gaussian process [14—16] to obtain cross-
Bezrukov and Vodyanoy [6]. correlation measures. To demonstrate this technique, we

In real information-processing systems, the internakonsider first an ensemble &fthreshold elements, each of
noise is generally assumed to be difficult to control, whilewhich is characterized by the Heaviside unit-step transfer
applied information signals are always contaminated byunction, y. (1) = O[x(¢) — b] + &(¢), wherex and y;
external noise that is more accessible for control andire the input and output, respectively it element£, (¢)
measurement. However, here we demonstrate that imimics an internal noise generated by itle element, and
finite arrays of stochastic, two-state elements, the intensity is a constant (see [10] for a single element). All elements
of the internal noise is a function of both the applied inputare subjected to the same inpt), which is the sum of the
signal and external noise. As we show, this externabignals(z) and the external noise(r). We also suppose
modulation of internal noise can play an important rolethat the input signal, the external noise, and the internal
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fluctuations &, are statistically independent zero-mean 0.08 .
Gaussian stationary processes with variangesr?, and
r2, respectively. The outputs of the elements are summed

giving the collective responsé(r): . 0.06 |
Y(t) = NOLx(t) — bl + D> &0),
=i (1)
x(t) = s(r) + n(r), Q 004 |

(=¢q> =0 (E=r" (2
The quantities of interest, which characterize the informa-
tion transfer through the array, are the covariangeand
the correlation coefficienp, between input signal and the
summed output:

0.02

c=(Y-s) _ Ty (3) *%o.
NI DTN
where the cumulant brackets denote averaging over the
ensembles of stochastic processes andé. These quan-
tities have been used recently to study ASR in Ref. [12]. ()
For the unit-step function, all cumulants can be calculated

analytically [14,16], giving for the covariance and the cor-

relation coefficient the following expressions: 040 |
N V27 (g% + o?) 2(¢> + o?) |’ <
c/N

(5) 0.30 |

p = = >
q\/%{l — erf[b/J2(g2 + oD} + &
where erfx) is the error function.

Both the covariance and the correlation coefficient dis-
play bell-shaped curves reaching maxima at some optimal

levels of external noise, thereby demonstrating ASR [see Y 05 1.0 15

Fig. 1(a)]. For the covariancg the optimal magnitude of ©
external noise can be obtained exacity,, = /b> — ¢>.  FIG. 1. The correlation coefficienp, [Eq. (4)] as a function

The correlation coefficient reaches its maximum for lowerof external noise variances, for different numbers of elements
values ofo. In the limit N — . the last term in the in an array of threshold elements. The dashed line corresponds

i : : " _to the limit N — . Th ters are = 1.0, r = 1.0,
denominator of Eq. (5), representing the internal n0|seqo= 8_1'8') andg 058 ?b?.arame ers ar r

vanishes. This limit also gives the upper value for the

correlation coefficient. In Fig. 1(b), a larger signal

magnitudeq is considered. For a large enough signaldependent conductange(V). We introduce the inter-

magnitude [Fig. 1(b)N — « case], the dependenpg¢o)  nal fluctuations in thekth element via fluctuations of

becomes monotonic, i.e., the SR effect vanishes. Howits conductance, agi(V) = p(V) + g(V)&(r). A non-

ever, in systems with a finite number of elementslinear functiong(V) is included because in the general

[Fig. 1(b), e.g.,N = 10 case], an SR effect is again case the internal fluctuations may be influenced by the in-

observed, even when the signal magnitude is large. Aput voltageV. The current through théth element is

N is reduced, the internal noise of the system increases = V[p(V) + g(V)&i(¢)]. The whole current through

and the absolute value of the correlation coefficient dethe array is therefore

creases, indicating that finite systems with internal noise N

do not transmit information as effectively as systems I() = NVp(V) + Vg(V) D &(0). (6)

without internal noise. If one is constrained to a finite k=1

system, however, these results [Fig. 1(b)] indicate thalt is important to note that Eq. (6) also describes the

the presence of internal noise permits the optimization o€urrent through an array of two-state ion channels which

the correlation coefficient as a function of external noisecan exist in either a ground (closed) state or an excited

Internal noise can thus play a constructive role in de{open) state [17]. The expectation value for the fraction

termining the information-processing properties of theof elements in the excited state (or expectation number of

system. open channels) i¥p(V), wherep(V) represents the open
Let us now examine the model when each elemenprobability, while the fluctuations around this expectation

in the array is characterized by a nonlinear voltagevalue have intensittvp(V)[1 — p(V)]. The latter term
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describes the fluctuations that will occur in any two-is similar to the monotonic increase of the output signal
state (binomial) process, and reveals explicitly how theobserved in ion channels [6] and calculated for threshold-
intensity of these fluctuations is modulated by the appliedree systems [7]. The dependence of the correlation coef-
input signal and external noisd/, through the open ficient on the external noise variance is shown in Fig. 2(a).
probability, p(V). The current through this ensemble The limit N — o, which also refers to the case of no

is given by Eqg. (6) with the specified function(V) =
Vp(V)[1 — p(V)]. We take the nonlinear functiop(V)
in the generic form of a Boltzmann relation as

internal noise, is shown by the dashed line. These re-
sults differ markedly from the results presented earlier
for threshold devices: for small external noise, the cor-
relation coefficient decreases, reaches its minimum, and

1
p(V) = , (7)  then passes through a maximum. This behavior is simi-
I+ exda(W — V)] lar to that of the output SNR for conventional SR in an
whereA is the constant determining the width (or slope)gyerdamped bistable system [18] and has the same origin.
of the distribution associated witk?’, and W refers to  The presence of internal noise removes this part of the SR
the energy barrier that must be overcome to open @yrve as is shown in Fig. 2(a).
closed channel. The structure of this model, while sim- | et ys now consider the practical and important case of
ple, is somewhat general in the sense that many natur@bry small values of open probability(V) < 1 as stud-
processes are governed by Boltzmann relations [Eq. (7)kd experimentally by Bezrukov and Vodyanoy [6]. This
(e.g., lasers, semiconductors, and ion channels). In coRjtuation occurs folV < W. In this case, the presence

trast to the previous case of an ensemble of threshold el internal noise can also lead to qualitative changes. As
ments, elements of this model are threshold-free. Because

of the finite width of the functiorp(V), the output cur-
rent can be obtained for arbitrarily small input voltages.
We again suppose that the applied voltage contains the
input signal and external noise, which are Gaussian, sta- 0.0
tistically independent process&sr) = s(¢) + n(r) [e.g.,

see Eq. (2)]. We also assume that the internal-noise terms
&, (r) are statistically independent frovi(z). This as-
sumption is valid, in particular, in the adiabatic limit,
when the input voltage varies much more slowly than any
time scale of the system. The quantity of interest, the cor-
relation coefficient, is

0.15

0.10
(I -s)
P= "7 —. 8
V{I2) = (12 (s?)
To calculatep, we use known rules for the opening of 0.05 . . . ‘
cumulant brackets. In particular, for two arbitrary zero- 0.00 0.01 0.02 0.03 0.04 0.05

mean Gaussian processeg) and y(r) and a nonlinear
function f(x), the following formula is valid [16]:
xf(y)) = (f'(y)){(xy). Using this rule, we obtain

107

(Iy = N(p"»\D, (I - sy = N¢*[{p) + D{p")],
(I*) = ND{N[(p*) + D{(p*)")]
+ r2[(g®) + DD, ()] 10° |

whereD = (V?) = 0% + 42, and the averaged nonlinear o
functions are given by integrals over the Gaussian distri-
bution of the input voltage, for example,

= [ _pwGwav,

10° |

(ph=| —ZGV)av, (10) 2 \ .
—00 dV 10 10—2 10—1
1 -V °c
G(WV) = ex . , - ,
27D 2D FIG. 2. The correlation coefficientp, as a function of

. external noise varianceg, for an array of two-state ion
Unfortunately, some of these integrals cannot be taken any nnels. The dashed line corresponds to the. liits o

alytically and must be calculated numerically. The co-The parameters ard = 200, r = 1.0, g = 0.01, W = 0.05
variance monotonically increases with This behavior (a) andw = 0.15 (b).
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shown in Fig. 2(b), for a certain number of elements in theperimentally observed value [6]. We note that in experi-
ensemble (i.e., for a certain level of internal noise), the SRnental studies, it is possible that only the first maximum
curves possess two maxima. The new maximum appeacsn be observed because the second maximum may occur
for smaller values ofr as the result of competition be- for such large noise voltages that it is outside the work-
tween growing covariance and variance of the output curing limits of the system. Note that fdf < W, the open

rent. The first peak in the correlation coefficient (and theprobability can be approximated ggV) = exgdA(V —

SNR) occurs at an external noise value similar to the exW)] andg(V) = [ p(V)]'/2, so that the correlation coeffi-
cient can be calculated in closed form:

_ gP(1 + A’D)
P JD[Q — A2DP? + 4A2DQ + (r2/N)P(1 + A2D)]’
P = exdA(AD — 2W)/2], 0 = exd2A(AD — W)], D = o>+ ¢% (11)
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