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Attractor-Repeller Collision and Eyelet Intermittency at the Transition
to Phase Synchronization
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The chaotically driven circle map is considered as the simplest model of phase synchronization
a chaotic continuous-time oscillator by external periodic force. The phase dynamics is analyzed
phase-locking regions of the periodic cycles embedded in the strange attractor. It is shown that
synchronization, where all the periodic cycles are phase locked, disappears via the attractor-repe
collision. Beyond the transition an intermittent regime with exponentially rare phase slips, resultin
from the trajectory’s hits on an eyelet, is observed. [S0031-9007(97)03524-2]
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Studies of the transitions from regular to chaotic beha
ior have demonstrated might of concepts of scaling, ren
malization, and universality in nonlinear dynamics [1
Transitions within chaos require the incorporation of stat
tical methods. Good examples are the crisis [2,3] result
in a sudden change of the attractor size, and the ch
hyperchaos transition [4]. Another nontrivial transitio
in chaos is the symmetry-breaking bifurcation [5], whic
describes in particular the onset of complete synchron
tion in interacting chaotic systems [6,7]. Statistical pro
erties of the modulational intermittency appearing at t
symmetry-breaking transition have been studied in [5,8

Recently, phase synchronization of chaotic oscillat
has been investigated theoretically [9–11] and experim
tally [9,12,13]. In a periodically forced chaotic system th
phase synchronization appears as the frequency ent
ment by the external force: The mean frequency of chao
oscillations (calculated, e.g., as a number of maxima
the chaotic process per unit time) is locked by the exter
frequency. This synchronization corresponds to the
pearance of the “phase order” while the amplitude rema
irregular.

In this paper we demonstrate that the onset of phase
chronization corresponds to a special transition in chao
systems: a collision of an attractor with a repeller. Ne
the collision a specific intermittency is observed, appe
ing as extremely rare phase slips resulting from leaka
through an “eyelet” [14].

As a model for investigating the attractor-repeller col
sion we study the following two-dimensional mapping

xst 1 1d ­ fsssxstd, fddd , (1a)

fst 1 1d ­ fstd 1 V 1 ´ cosf2pfstdg 1 gsssxstdddd .
(1b)

From the mathematical viewpoint this is a system of t
circle map coupled to the chaotic mapf. For concreteness
we use here as a representative example the perturbed
map

fsx, fd ­ 1 2 ajxj 1 ´r sinf2pfstdg .
0031-9007y97y79(1)y47(4)$10.00
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Physically, the system (1) models the dynamics of
continuous-time chaotic oscillator under periodic externa
force. The mapping (1) should be interpreted as a str
boscopic mapping taken at each period of the force. Th
variablex describes the amplitude of the oscillator, andf

corresponds to its phase (in our normalization this pha
varies between0 to 1). The parameteŕ is related to the
amplitude of the force; in the autonomous case´ ­ 0 the
dynamics of the phase is according to (1b) purely diffu
sive with zero Lyapunov exponent and does not influenc
the chaotic dynamics of the amplitude, as can be expect
for an autonomous continuous-time chaotic oscillator [15
The detuning between the period of oscillations and th
period of the external force is described by two terms
gsssxstdddd corresponds to nonuniformity of phase rotations i
the autonomous chaotic oscillator, while the termV is pro-
portional to the frequency of the external force. Albeit th
small force influences both the phase and the amplitude,
effect on the phase is physically more important because
locking phenomena, while the effect on the chaotic ampl
tude is small because a chaotic attractor is relatively stab
to perturbations.

We emphasize that our consideration of the force
chaotic oscillator is fully analogous to the usual descrip
tion of synchronization and phase locking in periodic os
cillators via the circle map [16,17] [in the latter case th
termgsssxstdddd is a constant]. The main difference to the pe
riodic case is in the termgsxd which describes a chaotic
modulation of the phase motion. In some approaches th
term was approximated by Gaussian random noise, whi
allows one to describe the phase synchronization qualit
tively [9]. Here we consider this term dynamically and
show that it leads to an attractor-repeller collision and
special eyelet intermittency. For simplicity, in this Letter
we take the driving term in the simple formgsxd ­ dx.
Also, below we consider only the case of small forcing
´ , s2pd21 so that without chaotic forcing no phase chao
tization can happen.

To characterize the synchronization, in full analogy with
the purely periodic case, we define the phase rotatio
© 1997 The American Physical Society 47
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numberv as an average growth rate of the phase

v ­ lim
N!`

kfsNd 2 fs0dl
N

.

This quantity can be interpreted as a difference betwe
the mean frequency of the forced chaotic oscillator a
that of the external force. The dependence of the rotat
number on the external frequencyV (Fig. 1) characterizes
the phase synchronization: the region wherev ­ 0 cor-
responds to the entrainment of the chaotic oscillator fr
quency by the external force frequency.

Our approach to analyze this kind of synchronization
based on the representation of a chaotic attractor throu
unstable periodic trajectories embedded in it (see [17] f
general properties of unstable periodic orbits inside chao
attractors and [5,18] for discussions of metamorphoses
these unstable orbits at other types of synchronizatio
First, let us characterize the periodic orbits in the a
tonomous case (´ ­ 0). Each periodic trajectory can be
characterized by its real periodT , and by its “symbolic” in-
teger periodN which counts, roughly speaking, the numbe
of rotations the trajectory performs (or, more precisely, th
number of iterations of the corresponding Poincaré ma
In generalT ø T0N whereT0 is the average return time;
the deviations are, however, very important. In our str
boscopic representation (1) the termgsxd in (1b) describes
these deviations, so that while the tent map (1a) has p
odic orbits of all “symbolic” periods, generally there ar
no periodic orbits in the full system (1), because the pha
rotations are generally incommensurate with the period
external force.

We now apply the external force and follow the un
stable periodic trajectories. For each such trajectory, in f
analogy to the synchronization of stable periodic oscill
tions [17,19], a phase-locked region appears. In the ter

FIG. 1. Dependence of the rotation numberv on the external
parameterV for the model (1) with d ­ 0.05, r ­ 0.05,
a ­ 1.9, and different values of forcing:́ ­ 0.1, ´ ­ 0.05,
and´ ­ 0.01.
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of the system (1) this means that for each periodic orbit
(1a) we can construct the main phase-locked region wi
rotation numberv ­ 0. Some of these regions, which are
nothing else but Arnol’d tongues, are shown in Fig. 2. Th
tongues stick into different points on thé­ 0 line, be-
cause different periodic orbits of the chaotic oscillator hav
different periods. For each orbit with “symbolic” period
N xs1d, . . . , xsNd of the tent map (1a) the dynamics of the
phase variablef inside the phase-locked region is simple
There exist a corresponding stablefss1d, . . . , fssNd and
an unstablefus1d, . . . , fusNd orbit (this is stability in the
f direction, all these orbits are of course unstable in thex
direction). At the border of synchronization these orbit
disappear via the saddle-node bifurcation and a state w
nonzero rotation number appears.

A region where all the phase-locked regions overlap
the grey one in Fig. 2. It is bounded by the phase-locke
regions of the periodic orbits having the maximal and th
minimal average periodTyN, for the set of parameters of
Fig. 2 these are the fixed point and a period-4 cycle. In th
region all periodic orbits embedded in the chaotic attracto
are locked, with corresponding stable and unstable orb
of (1) shown in Fig. 3(a). These orbits can be considere
as skeletons of the attractor and the repeller, respective
and they are well separated. All trajectories on the attract
wander in a vicinity of the skeleton, therefore the valu
of the phase remains bounded, and the rotation numb
is exactly zero. Indeed, it is zero for each periodic orb
embedded in the attractor, and therefore zero for ea
trajectory on the attractor as the latter can be approximat
with a periodic one. We call this domain the region of ful
phase synchronization.

FIG. 2. Phase-locking regions for the periodic orbits with
periods 1–5 for the same parameters as in Fig. 1. The region
full phase synchronization, where all the phase-locking region
overlap, is delineated with grey.
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or and
FIG. 3. The stable (pluses) and unstable (filled circles) periodic orbits with periods 1–8 forming the skeletons of the attract
repeller, respectively. (a) Inside the full synchronization region´ ­ 0.1, d ­ 0.05, V ­ 0.05, r ­ 0.05, a ­ 1.9, the attractor
and the repeller are distinct. (b) Just after the attractor-repeller collision, at which the stable and unstable (inf direction) fixed
points disappear,V ­ 0.085.
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As the parameters of the system are changed in suc
way that the boundary of the region of full phase synchr
nization is approached, the attractor and the repeller co
close to each other. At the transition point of attracto
repeller collision the saddle-node bifurcation of one of th
unstable periodic orbits occurs. The situation just beyo
the transition is shown in Fig. 3(b). Although most cy
cles remain phase locked, those few, which have lost ph
locking, allow phase slips (at a slip the phase changes
61) to occur. We now develop a statistical theory of the
slips (cf. [14]).

Consider, for definiteness, the transition at which th
fixed point belonging to the attractor collides with the fixe
point belonging to the repeller. At the bifurcation poin
one multiplicator (approximately in the direction off,
we call it weakly unstable direction) is one and the oth
(approximately in the direction ofx, we call it strongly
unstable direction) is larger than one in the absolute val
we denote itm. Then the dynamics on the weakly unstab
direction is the same as for usual saddle-node bifurcati
with a characteristic time of phase slip (at which the pha
changes by61) growing as an inverse square root of th
distance to the bifurcation point, in the same way as at t
type-I intermittency [20]:

tsl ø C1sV 2 Vcd21y2. (2)

For a chaotic trajectory such a phase slip can also occ
if the trajectory of the map (1) stays for a long time—
at leasttsl —in a close vicinity of the weakly unstable
direction. Because the other direction is strongly unstab
the distance to the weakly unstable directionDstd grows
exponentially in timeDstd , Ds0d jmjt , so this distance
should be initially very small to allow at least one slip t
occur:

Ds0d , C2jmj2tsl . (3)

This region is exponentially small, like an “eyelet,” an
the phase slips are correspondingly extremely rare [1
Using the nearly uniform invariant probability density fo
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the tent map we can estimate the probability to visit an
interval as proportional to its length. Thus, the probabili
for a phase slip to occur is proportional to the right-han
side of (3), and the rotation number is proportional
this probability. As a result, we obtain the following
expression for the rotation number at the attractor-repel
collision transition [14]:

logsvd , 2sV 2 Vcd21y2. (4)

We check this relation in Fig. 4. It is valid for both
transitions where the system leaves the phase-lock
region. From the consideration above it is clear that t
time statistics of phase slips corresponds to the statistics
Poincaré recurrence times for a chaotic system [statist
of the returns to the eyelet (3)], and this is known t
have the exponential tail [21]. From the relation (4)
is also clear what the main difference is of the eyel
intermittency to the other types, e.g., to the intermitten

FIG. 4. The rotation numberv at the borders of the attractor-
repeller transition in the region of eyelet intermittency. Th
parameters ared ­ 0.05, ´ ­ 0.1, r ­ 0.05, a ­ 1.9.
49
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at the crisis: Here the intermittent bursts are exponentia
rare near the transition point, while for other types the
probability grows as a power law [2,20].

The exponentially slow eyelet intermittency is the re
son why the phase-locked region for the chaotically driv
circle map (Fig. 1) appears to be larger than the region
full phase synchronization, and why nearly perfect pha
synchronization can be observed also for small amplitud
´, for which there is no full phase synchronization at a
Only when a sufficiently large number of periodic orbit
undergoes a saddle-node bifurcation and the probability
phase slip becomes large, does one observe a deviatio
the mean observed frequency from the frequency of
external force.

We have considered the simplest possible case w
the borders of the region of full phase synchronizatio
are given by the phase-locking regions of the fixed
periodic points. A more complex situation can occur
an extremum is reached on a chaotic everywhere de
trajectory. Then the attractor and the repeller can collide
a dense set of points; a similar situation happens in a qu
periodically forced circle map [22]. This latter case nee
special investigation.

In conclusion, we have considered phase synchroni
tion transition using as a model the chaotically force
circle map. The region of full phase synchronization
defined as the overlap of phase-locking tongues for
periodic cycles embedded in chaos; in this region an
tractor and a repeller exist corresponding to stable and
stable values of the phase. At the boundary of this reg
the attractor in the circle map collides with the repelle
and phase slips become possible. For a slip to occu
trajectory has to pass through an extremely tiny eyelet
pearing at the collision points, thus the slips are expone
tially rare. In this Letter we restricted our consideration
the simplest discrete-time model (1). We have also calc
lated the phase locking of unstable periodic orbits embe
ded in the continuous-time Rössler attractor; these res
qualitatively agree with the consideration above and a
reported elsewhere [23].

The transition described can be put in a general fram
work of bifurcations of strange attractors. Here the u
stable direction is not affected, but in the transvers
stable direction the attractor undergoes a “saddle-no
bifurcation. Similar to other bifurcations of strange attra
tors (e.g., the symmetry-breaking bifurcation discussed
[5,24] can be described as a “pitchfork” one) this trans
tion is not abrupt but smeared. The best way to see t
is to follow different unstable periodic orbits embedde
in a strange attractor: Each of these orbits undergoes
standard saddle-node bifurcation, but at different valu
of parameters. The transition starts when the first or
bifurcates and ends when this happens with the last
bit; the whole infinite set of particular simple bifurcation
composes the nontrivial transition of the strange attract
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