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Attractor-Repeller Collision and Eyelet Intermittency at the Transition
to Phase Synchronization
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The chaotically driven circle map is considered as the simplest model of phase synchronization of
a chaotic continuous-time oscillator by external periodic force. The phase dynamics is analyzed via
phase-locking regions of the periodic cycles embedded in the strange attractor. It is shown that full
synchronization, where all the periodic cycles are phase locked, disappears via the attractor-repeller
collision. Beyond the transition an intermittent regime with exponentially rare phase slips, resulting
from the trajectory’s hits on an eyelet, is observed. [S0031-9007(97)03524-2]

PACS numbers: 05.45.+b

Studies of the transitions from regular to chaotic behavPhysically, the system (1) models the dynamics of a
ior have demonstrated might of concepts of scaling, renoreontinuous-time chaotic oscillator under periodic external
malization, and universality in nonlinear dynamics [1]. force. The mapping (1) should be interpreted as a stro-
Transitions within chaos require the incorporation of statisboscopic mapping taken at each period of the force. The
tical methods. Good examples are the crisis [2,3] resultingariablex describes the amplitude of the oscillator, afid
in a sudden change of the attractor size, and the chaoserresponds to its phase (in our normalization this phase
hyperchaos transition [4]. Another nontrivial transition varies betweef to 1). The parametet is related to the
in chaos is the symmetry-breaking bifurcation [5], whichamplitude of the force; in the autonomous case 0 the
describes in particular the onset of complete synchronizadynamics of the phase is according to (1b) purely diffu-
tion in interacting chaotic systems [6,7]. Statistical prop-sive with zero Lyapunov exponent and does not influence
erties of the modulational intermittency appearing at thehe chaotic dynamics of the amplitude, as can be expected
symmetry-breaking transition have been studied in [5,8]. for an autonomous continuous-time chaotic oscillator [15].

Recently, phase synchronization of chaotic oscillatorsThe detuning between the period of oscillations and the
has been investigated theoretically [9—11] and experimerperiod of the external force is described by two terms:
tally [9,12,13]. In a periodically forced chaotic system the g(x(r)) corresponds to nonuniformity of phase rotations in
phase synchronization appears as the frequency entraitire autonomous chaotic oscillator, while the tenis pro-
ment by the external force: The mean frequency of chaotiportional to the frequency of the external force. Albeit the
oscillations (calculated, e.g., as a number of maxima ofmall force influences both the phase and the amplitude, its
the chaotic process per unit time) is locked by the externagffect on the phase is physically more important because of
frequency. This synchronization corresponds to the aptocking phenomena, while the effect on the chaotic ampli-
pearance of the “phase order” while the amplitude remaintude is small because a chaotic attractor is relatively stable
irregular. to perturbations.

In this paper we demonstrate that the onset of phase syn- We emphasize that our consideration of the forced
chronization corresponds to a special transition in chaotichaotic oscillator is fully analogous to the usual descrip-
systems: a collision of an attractor with a repeller. Neattion of synchronization and phase locking in periodic os-
the collision a specific intermittency is observed, appeareillators via the circle map [16,17] [in the latter case the
ing as extremely rare phase slips resulting from leakage®rmg(x(¢)) is a constant]. The main difference to the pe-
through an “eyelet” [14]. riodic case is in the terng(x) which describes a chaotic

As a model for investigating the attractor-repeller colli- modulation of the phase motion. In some approaches this
sion we study the following two-dimensional mapping  term was approximated by Gaussian random noise, which

_ allows one to describe the phase synchronization qualita-
e+ 1) = fGx0), ¢), (12) tively [9]. Here we consider this term dynamically and
d(t+1)=o¢@) + Q + ecod2m ()] + g(x(2)). show that it leads to an attractor-repeller collision and a

(1b)  special eyelet intermittency. For simplicity, in this Letter

. . . . we take the driving term in the simple forg(x) = 6x.
From the mathematical viewpoint this is a system of theAIso, below we consider only the case of small forcing

circle map coupled to the chaotic mAp For concreteness, ¢ < (27)! so that without chaotic forcing no phase chao-

we use here as a representative example the perturbed te0t tion can happen
map '

To characterize the synchronization, in full analogy with
flx, ) =1 — alx| + epsin2mp(r)]. the purely periodic case, we define the phase rotation
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numberw as an average growth rate of the phase of the system (1) this means that for each periodic orbit in
) (1a) we can construct the main phase-locked region with

w = lim —~, rotation numbekw = 0. Some of these regions, which are
N=ee N nothing else but Arnol’d tongues, are shown in Fig. 2. The

This quantity can be interpreted as a difference betweefPngues stick into different points on the= 0 line, be-
the mean frequency of the forced chaotic oscillator andause different periodic orbits of the chaotic oscillator have
that of the external force. The dependence of the rotatiodifférent periods. For each orbit with “symbolic” period
number on the external frequengy (Fig. 1) characterizes N *(1),...,x(N) of the tent map (1a) the dynamics of the
the phase synchronization: the region where= 0 cor- phase var|able/> inside the_phase-locked region is simple:
responds to the entrainment of the chaotic oscillator freJhere exist a corresponding staljg(1),.. ., ¢s(N) and
quency by the external force frequency. an L_lnstgblebu(l), e qbu(_N) orbit (this is stability m_the
Our approach to analyze this kind of synchronization is® dlrgctlon, all these orbits are of course gnstable mxth(_e
based on the representation of a chaotic attractor throudl{"€ction). At the border of synchronization these orbits
unstable periodic trajectories embedded in it (see [17] fofisappear via the saddle-node bifurcation and a state with
general properties of unstable periodic orbits inside chaotifonZero rotation number appears. _ ,
attractors and [5,18] for discussions of metamorphoses of A région where all the phase-locked regions overlap is
these unstable orbits at other types of synchronizationfn€ grey one in Fig. 2. It is bounded by the phase-locked
First, let us characterize the periodic orbits in the aul€9ions of the periodic orbits having the maximal and the
tonomous cases(= 0). Each periodic trajectory can be m_|n|mal average per'lom”/N,_for the set Qf parameters of'
characterized by its real peridd and by its “symbolic” in- F|g: 2 these are fthe f|x_ed point and a_perlod-4 cy_cle. In this
teger periodv which counts, roughly speaking, the number€gion all periodic orbits embedded in the chaotic attractor
of rotations the trajectory performs (or, more precisely, thed'® locked, with corresponding stable and unstable orbits
number of iterations of the corresponding Poincaré map)°f (1) shown in Fig. 3(a). These orbits can be considered
In generall ~ TN whereTy is the average return time; as skeletons of the attractor and the repeller, respectively,
the deviations are, however, very important. In our stroand they are well separated. All trajectories on the attractor
boscopic representation (1) the tegt) in (1b) describes wander in a vicinity of the skeleton, therefore.the value
these deviations, so that while the tent map (1a) has perf§ the phase remains bounded, and the rotation number
odic orbits of all “symbolic” periods, generally there are IS exactly zero. Indeed, it is zero for each periodic orbit
no periodic orbits in the full system (1), because the phasmPedded in the attractor, and therefore zero for each
rotations are generally incommensurate with the period off@ctory on the attractor as the latter can be approximated
external force. with a periodic one. We call this domain the region of full
We now apply the external force and follow the un- Phase synchronization.
stable periodic trajectories. For each such trajectory, in full

analogy to the synchronization of stable periodic oscilla-
tions [17,19], a phase-locked region appears. Inthe terms 0-10~ \
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FIG. 1. Dependence of the rotation numhewon the external FIG. 2. Phase-locking regions for the periodic orbits with
parameterQ) for the model (1) withé = 0.05, p = 0.05, periods 1-5 for the same parameters as in Fig. 1. The region of
a = 1.9, and different values of forcinge = 0.1, ¢ = 0.05, full phase synchronization, where all the phase-locking regions
ande = 0.01. overlap, is delineated with grey.
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FIG. 3. The stable (pluses) and unstable (filled circles) periodic orbits with periods 1—-8 forming the skeletons of the attractor and
repeller, respectively. (a) Inside the full synchronization regios 0.1, 6 = 0.05, Q = 0.05, p = 0.05, a = 1.9, the attractor

and the repeller are distinct. (b) Just after the attractor-repeller collision, at which the stable and unstébdiréiction) fixed

points disappear) = 0.085.

As the parameters of the system are changed in suchthe tent map we can estimate the probability to visit any
way that the boundary of the region of full phase synchrointerval as proportional to its length. Thus, the probability
nization is approached, the attractor and the repeller comfer a phase slip to occur is proportional to the right-hand
close to each other. At the transition point of attractor-side of (3), and the rotation number is proportional to
repeller collision the saddle-node bifurcation of one of thethis probability. As a result, we obtain the following
unstable periodic orbits occurs. The situation just beyon@xpression for the rotation number at the attractor-repeller
the transition is shown in Fig. 3(b). Although most cy- collision transition [14]:
cles remain phase locked, those few, which have lost phase

locking, allow phase slips (at a slip the phase changes by log(w) ~ —(Q — Q)2 4
+1)to occur. We now develop a statistical theory of these
slips (cf. [14]). We check this relation in Fig. 4. It is valid for both

Consider, for definiteness, the transition at which theransitions where the system leaves the phase-locked
fixed point belonging to the attractor collides with the fixedregion. From the consideration above it is clear that the
point belonging to the repeller. At the bifurcation point, time statistics of phase slips corresponds to the statistics of
one multiplicator (approximately in the direction @f,  Poincaré recurrence times for a chaotic system [statistics
we call it weakly unstable direction) is one and the otherof the returns to the eyelet (3)], and this is known to
(approximately in the direction of, we call it strongly have the exponential tail [21]. From the relation (4) it
unstable direction) is larger than one in the absolute valugs also clear what the main difference is of the eyelet
we denote ifw. Then the dynamics on the weakly unstableintermittency to the other types, e.g., to the intermittency
direction is the same as for usual saddle-node bifurcation,
with a characteristic time of phase slip (at which the phase .
changes by+1) growing as an inverse square root of the 10 ' ' ' ' ' '
distance to the bifurcation point, in the same way as at the
type-I intermittency [20]:

Tq = Ci(Q — Q)2 )

For a chaotic trajectory such a phase slip can also occur, 107 F 3
if the trajectory of the map (1) stays for a long time— 7 ]
at leastr,;—in a close vicinity of the weakly unstable s
direction. Because the other direction is strongly unstable,

the distance to the weakly unstable directitv(r) grows
exponentially in timeA(z) ~ A(0) |u|’, so this distance 107 L i
should be initially very small to allow at least one slip to ]
occur:

10 b ]

-8 L 1 ' 1

10 ; ' :
A(0) < Calpl ™. 3) 12.0 14.0 IQ—EZG‘IQW 18.0 20.0
This region IS exponentially smgll, like an “eyelet,” and FIG. 4. The rotation numbep at the borders of the attractor-
the_ phase slips are CO”?Spor_‘d'ngW extrg'mely rare [14}epeller transition in the region of eyelet intermittency. The
Using the nearly uniform invariant probability density for parameters aré = 0.05, ¢ = 0.1, p = 0.05, a = 1.9.
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