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The brain encodes information in the intervals between the spikes which characterize neural fir
events. Therefore it is relevant to study, in a timing code, how many spikes are necessary for relia
encoding input signals. We analyze the transmission of information, the reliability of signal detectio
and the coding strategy for the case of central spiking neurons. [S0031-9007(97)04697-8]
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A major challenge in neurobiology is the question o
how information is encoded and transmitted in the neuron
It is generally agreed that the brain encodes information
the action potentials or “spikes” which characterize neur
firing events [1,2]. Historically, the first proposal of a
code mechanism was made by Adrian [3]. It correspon
to the observation that, in response to a static stimul
such as a continuous load on a stretch receptor, the rate
spiking increases as the stimulus becomes larger. Hen
the rate of spikes encodes the intensity of the stimulu
This is widely known asrate coding. In other words,
the idea is that the mean firing rate alone encodes t
signal, while the variability about the mean is noise [4
Softky and Koch [5] have shown that the spike trains o
cortical cells in the visual areas V1 and MT display a hig
degree of variability. This variability is characterized b
the coefficient of variation CV­ sISIymISI, wheresISI

and mISI are the standard deviation and mean value
the interspike intervals (ISI), respectively. Cortical cell
have CVs in the range 0.5–1.0 as reported by Softky a
Koch [5]. Thus, these authors suggested that high I
variability may be more consistent with Abeles’ [6] idea
of neurons acting ascoincidence detectorsrather than rate
encoders. An alternative philosophy is to consider that
is variability itself that encodes the information containe
in the input signal [7]. This concept corresponds to th
notion that the precise sequences of time in which th
spikes are emitted encodes the signal, yielding atiming
coding. Experimental studies [2,8,9] support this concep
Therefore, it is relevant to study in a timing code how man
spikes are necessary for reliably encoding input signa
The appropriate framework to investigate this proble
from a theoretical point of view is provided by information
theory [2,10,11]. The purpose of this paper is to analy
by use of information-theoretic concepts the transmissi
of information, the reliability of signal detection, and the
coding strategy for the case of central neurons.

We first consider an integrate-and-fire model of a ce
tral neuron which combines diffusion and jump processe
This is motivated by experimental and theoretical stu
ies which demonstrate that the effect of synaptic input o
neural excitability decreases with the distances betwe
the synapse and the cell body, where spike generation
0031-9007y97y79(23)y4697(4)$10.00
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initiated. Somatic synapses cause changes in the m
brane potential which are a large fraction of the thresho
depolarization, while signals impinging on the periphery
an extensive dendritic tree evoke small potential chang
at the soma. The changes induced by the inputs in
dendritic tree structure are well described by the co
tinuous approach of Stein which is given by the Ornstei
Uhlenbeck diffusion process used in neural modeling [1
The model combining diffusion and jump process can
expressed by the Itô-type stochastic differential equatio

dV std ­

µ
2

V std
t

1 m

∂
dt 1 sdW std 1 wdSstd . (1)

In Eq. (1),dW std is a standard Wiener process. The co
stantt describes the decay of the membrane potential
the absence of input signals. Here,Sstd is a homoge-
neous Poisson process, i.e.,sstd ­

d
dt Sstd ­

P
i dst 2 tid,

where theti are Poisson distributed random instants wi
mean ratel (i.e., the mean value of the time interval be
tween events isl21). The soma-synaptic strength is de
noted byw and the mean value bym which is taken equal
to zero. A spike is generated when the membrane pot
tial V std reaches a prefixed thresholdu. After the gen-
eration of the spike, the model is reset to a given initi
potential V s0d (in this paper, it is taken to be equal to
zero). The output spike train is therefore described
the spike generation timest0

0, . . . , t0
k , . . ., and is given by

ostd ­
P

k dst 2 t0
kd. The interspike intervals (ISIs) of

the output train are independent because the model is re
(“leaky integration”) and the input signal is uncorrelated i
time. Let us assume a time precision´ such thatl´ ø 1.
The entropy per spike of the input spike train correspon
to the entropy of a Poisson process given by1 2 lnsl´d.
We choose a time precision of 0.1 ms. Considering th
the rate of the input spike train isl, the entropy per unit
time is Hin ­ l f1 2 lnsl´dg. Because of the indepen-
dence of the output ISIs, the mutual information betwe
the input and output spike train per unit time is given by

Iio ­ Issssstd; ostdddd ­ Isht0, . . . , ti , . . .j; ht0
0, . . . , t0

k , . . .jd

­ R ? Isht0, . . . , ti , . . .j; T 0d . (2)

In the second line of the last equation the spik
times are restricted to those in the intervalft0, t0 1 T 0g,
© 1997 The American Physical Society 4697
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where t0 is the last output spike and the timing o
the input spikes should be measured with respect
t0. In the last equation,R ­ kT 0l21 is the rate of
the output spikes andIsht0, . . . , ti , . . .j; T 0d ­ HsT 0d 2

HsT 0jt0,...,ti ,...d is the mutual information per output spike
T 0 being the ISI of the output train. The entropie
are HsT 0d ­ 2

R`

0 pst0d ln pst0d dt0, and HsT 0jt0,...,ti ,...d ­
2k

R`

0 pst0jt0,...,ti ,...d ln pst0jt0,...,ti ,...d dt0lht0,...,ti ,...j. An upper
bound of the output entropy is given by assuming
Poisson distribution of the output ISIs with the sam
rate R, i.e., psT 0d ­ Re2RT 0

. This upper bound for the
entropy per unit of time is thereforeHmaxsT 0d ­ Rf1 2

lnsR´dg. A measure of the loss of information during the
transmission is given byL ­ sHin 2 IiodyHin.

Let us now concentrate on the capacity of the neuron
detect two different signals. We assume (i) that there a
two input spike trains,s1 ands2, corresponding to different
Poisson processes with ratesl1 and l2, respectively,
and (ii) that the two signals are presented with uniform
probabilityp ­ 0.5. We denote bys the random variable
which corresponds to the class of the signal, i.e., th
outcomes ofs ares1 ands2 with equal probabilityp ­ 0.5.
The task consists of discovering which signal is present
based on the analysis of the output spikes and knowing
a priori probability of presentationp. When one signal
is presented the neuron is considered in the same ini
condition corresponding to the rest potential zero. We d
not consider the switching of the signal. The analysis
the output spikes is therefore performed under stationa
conditions. We can measure the “discriminability” by th
mutual information betweens and the output spike train,
i.e., by

Idissnd ­ Iss; hT 0
1, . . . , T 0

njd

­ HsT 0
1, . . . , T 0

nd 2 kHsT 0
1, . . . , T 0

njsdls . (3)

The entropiesHsT 0
1, . . . , T 0

nd andkHsT 0
1, . . . , T 0

njsdls can be
calculated by using the fact that, for a given input sign
si , the output ISIs are independent. In Eq. (3) it is explic
that the discrimination task is based on the output spike
The information about the class of the signal is of cours
also explicit in the statistics of the timing of the input train
However, we are more interested in studying the codin
strategy of a neuron. Therefore, the explicit timing of th
input spike trains is for this problem irrelevant; only its
statistics, as extracted by means of the particular spiki
device (neuron), is used for discovering the underlyin
input class. The implicit analysis performed by the neuro
is reflected in the output spike statistics. In our case, f
example, we classify signals which are in fact describe
only by the rate (Poisson signals), but we attempt
discover this rate (i.e., the name of the signal) by analyzi
its influence on the output spike statistics. The maximu
value ofIdis is given by the entropy of the random variable
s, i.e.,Hssd ­ ln 2. We can study the required code, i.e
the required number of output spikes, just by analyzing t
convergence ofIdis to the maximum value as a function of
4698
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n. The maximum value means that all of the informatio
required for the classification is transmitted. In the cas
of fast convergence a small number of spikes suffice f
encoding the two different signals and for discriminatio
of the input signals. A slower convergence means th
a large amount of output spikes is required for a reliab
classification of the input signals; perhaps this could als
be associated with rate coding.

We integrate the diffusion and jumping processe
given by Eq. (1) numerically by discretizing it in the fol-
lowing fashion:V st 1 Dtd ­ V std 1 s2 V std

t 1 mdDt 1

s
p

Dt y 1 wDSstd, where y is the standard Gaussian
noise andDSstd ­

Rst1Dtd
t f

P
i dst 2 tidg dt is the number

of input spikesti betweent andt 1 Dt. This Monte Carlo
simulation involves the statistics of the Poisson input tra
and the noise. We compute the probability distributio
psT 0d for a given resolutioń via the construction of a
histogram forT 0 by generating new realizations of both
the input train and the noise.psT 0jt0,...,ti ,...d is computed
for a fixed realization of the input and different realization
of the noise, i.e., of the integration process. Afterward
we change the fixed realizationht0, . . . , ti , . . .j of the input
spike train in order to compute the mean valuek lht0,...,ti ,...j.
In the calculation of the discriminability, the probabilities
psT 0jsid have been calculated via the construction of
histogram forT 0 by generating new realizations of both
the input spike train for a fixed processsi and the noise.
We chooset ­ 20 ms andu ­ 20. We considered an
absolute refractory time of 3 ms.

Figure 1 displays the transmitted information from inpu
spike trains to output spike trains as a function of th

FIG. 1. Hmax, Iio, L, CV, and R for a single neuron as a
function of the input mean value for three different synapse
strengths.
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intensity of the input signal given by its mean value. Fo
large values ofl21 the transmitted information reache
the upper bound given by the Poisson assumption.
this Poisson regime, the maximum value achievable
reached, but the efficiency of the transmission is ve
bad. This fact can be studied by observing the plots
the loss of informationL. The minimum of information
loss and therefore the maximum of efficiency is achiev
beforethe Poisson regime is reached. When the synap
strength is such that the transmission is more efficie
(see the deep minimum in the case ofw ­ 9), the CV
of the output ISIs exceeds the value 0.5 according to t
experimental results of Softky and Koch [5]. This offer
a possible explanation of the phenomena according to
principle of optimal information transmission. Neuron
which efficiently transmit information operate in a range o
parameters such that they are not in the Poisson regime
in a regime of CV of the output ISIs between 0.5 and 1.

Let us analyze the capabilities of a single neuron a
its coding strategies in the task of distinguishing two di
ferent input signals. We study two cases. Case 1 is d
fined by the task of discrimination between two differen
input signalss1 ands2 presented with uniform probability
and corresponding to two different Poisson processes w
mean valuesl21

1 ­ 2 andl
21
2 ­ 0.11, respectively. Case

2 considers input signals withl21
1 ­ 1.7 andl

21
2 ­ 1.5.

First we obtain the optimal synapse strength by maxim
ing numerically the efficiency estimated by the mutual in
formation per unit time betweens and 3 output spikes, i.e.,
3RIdiss3d. A maximum of efficiency is obtained inw ­ 9
for case 1 and inw ­ 6 for case 2. At this optimal value
of synapse strength, the output spike code should be o
mal. This result is confirmed by Fig. 2. In case 1, whe
the separation is relatively easy, a small amount of outp
spikes suffices for the task of classification of the input si

FIG. 2. Discriminability as a function of the number of outpu
spikes considered for cases 1 and 2 and for synapses stren
nonoptimal sw ­ 1.5d and optimal (w ­ 9 for case 1 and
w ­ 6 for case 2).
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nals. For this case, the mean output ISI is 6.20 ms wh
s1 is presented and 3.33 ms fors2. Three output spikes are
required in the optimal case for convergence to the max
mum value lns2d, yielding an averaged decision time of
14.29 ms. We need three input spikes for the emission
one output spike, i.e., perfect discriminability is achieve
after the analysis of about nine input spikes by the neuro
In the nonoptimal case, one spike is required but with
larger averaged decision time of 39.89 ms. In this case, t
mean output ISIs are 76.75 ms by presentation ofs1 and
3.03 ms fors2 (the big differences in the output statistics is
the reason why, after one spike, we can discover which s
nal is presented). This result therefore theoretically co
firms the possibility of classification with a timing code
In case 2 the task of discrimination is very hard. In fac
even in the optimal case, a very slow convergence of t
discriminability to the maximum value is suspected. W
could calculate only values ofIdis until n ­ 3 due to the
numerical explosion in the calculation of the multidimen
sional integral involved in the calculation ofHst0

1, . . . , t0
nd.

But these first three values suffice to see qualitatively th
a large amount of output spikes, due to the slow conve
gence to the maximum, will be required for discrimination
between the two input signals and that this result is prob
bly also consistent with a rate code. The optimalw in both
cases corresponds to the values where the transmission
information from input to output, i.e.,Iio, is most efficient
(see Fig. 1).

The difficulty in calculating the mutual information
arises because of the presence of the term lnfpsxdg in the
entropies which causesIdissnd for largen to be numerically
intractable. Pompe [12] introduced a generalized measu
of statistical dependences that he phrased as generali
mutual information of order 2 and is given by

I
s2d
dissnd ­ I s2dss; hT 0

1, . . . , T 0
njd

­ Hs2dsT 0
1, . . . , T 0

nd 1 Hs2dssd
2 Hs2dsT 0

1, . . . , T 0
n, sd . (4)

In Eq. (4), the Rényi entropy of order 2 is given by
Hs2dsxd ­ 2 ln

R
dx p2sxd. When one of the variables

with N outcomes is uniformly distributed, i.e., each out
come has a probability1yN, as in our case the variable
s, the generalized mutual informationI

s2d
dissnd fulfills 0 #

I
s2d
dissnd # ln N . Even more, the lower bound is attained i

and only if the variableshT 0
1, . . . , T 0

nj and s are indepen-
dent, and the maximum is attained if and only if there i
a functionf such thats ­ fsT 0

1, . . . , T 0
nd, i.e., meaning an

absolutely reliable classification of the input signals base
in the output ISIs. For our task of classification we can us
the second order generalized mutual information which a
lows analytical calculation and, therefore, the study of di
criminability between two signals even in cases where th
number of output ISIs required is large. The maximum
value ofIdis is given again by the entropy of the random
variables, i.e.,Hs2dssd ­ ln 2. In order to obtain analytical
4699
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results we use a neural model which captures the prin
pal effects of real neurons and which is simple enough
permit analytical calculations. The model we use is th
spike response model [13]. In contrast to integrate-an
fire models which are given essentially by a differentia
equation, the spike response model is based on respo
kernels which describe the integrated effect of spike r
ception or emission on the membrane potential. In th
model, spikes are generated by a threshold process,
the firing timet0 is given by the condition that the mem-
brane potentialhst0d reaches the firing thresholdu, i.e.,
hst0d ­ u. The membrane potential is given byhst0d ­
J

P
i Qst0 2 tidQsti 2 t0

lastdCst0 2 tid, whereQs d is the
heavyside function. We ignore the refractory time an
consider a neuron with only one input spike train, which
Poisson. The response kernel used corresponds to a ne
with infinite memory, i.e.,Cst0 2 tid ­ Qst0 2 tid. The
calculation ofpsT 0jsid is then reduced to the solution of
the first passage time for the spike response model with
input given by a Poisson spike train. After some cumbe
some algebra, we obtainpsT 0jsid ­ slm11

i T 0me2lT 0 dym!,
m ­ buyJc being the greatest integer contained inuyJ.
We calculate the Rényi entropies involved in the gene
alized mutual information [Eq. (4)] analytically. Figure 3
shows the dependences of the generalized mutual inform
tion between the random variables and the output spikes
as a function of the number of spikes for different classifi
cation cases corresponding to input signals withl

21
1 ­ 4

andl
21
2 : (a) 40, (b) 10, (c) 7, (d) 6, and (e) 5. The maxi-

mum value of the generalized mutual information mean

FIG. 3. Discriminability measure based on the second ord
Rényi mutual information as a function of the number of outpu
spikes considered for the spike response model; see text.
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that the input signal can be classified with certainty, i.e., th
output spikes contain the required information for a pe
fect and reliable distinction of the signals. In cases whe
the two signals to be separated are very similar, i.e., sm
Dl ­ l2 2 l1, the convergence of the generalized mu
tual information to the maximal value lns2d is very slow,
meaning that a large number of output spikes is required f
a reliable classification of the signals. In contrast, in cas
where the signals are very different, i.e.,Dl is big, the task
of classification is more simple and can be achieved wi
a small number of spikes.

In conclusion, the information-theoretic analysis o
single central neurons which process input spike train
teaches us that (i) The maximum efficiency in the trans
mission of information is not reached in the Poisso
regime but just before it, and in regions of high outpu
CV. (ii) The timing code can be rigorously studied
in the framework of the Rényi information concept.
A small amount of output spikes suffices for efficien
discrimination of input signals if the separation is eas
(signals are very different); a large amount of outpu
spikes (and probably a rate code) is required in the ha
cases of separation of very similar input signals, which
consistent with the weak signal cases studied in Ref. [14
This result is what we expect heuristically. Based o
this result, we expect that an information-theoretic firs
principle (namely, Infomax) could be useful for defining
a learning algorithm for fixing the optimalw for the task
of discrimination of input signals or just for the efficient
transmission of information.
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