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Information Transmission and Temporal Code in Central Spiking Neurons
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The brain encodes information in the intervals between the spikes which characterize neural firing
events. Therefore it is relevant to study, in a timing code, how many spikes are necessary for reliably
encoding input signals. We analyze the transmission of information, the reliability of signal detection,
and the coding strategy for the case of central spiking neurons. [S0031-9007(97)04697-8]

PACS numbers: 87.10.+e

A major challenge in neurobiology is the question ofinitiated. Somatic synapses cause changes in the mem-
how information is encoded and transmitted in the neurondrane potential which are a large fraction of the threshold
It is generally agreed that the brain encodes information bgepolarization, while signals impinging on the periphery of
the action potentials or “spikes” which characterize neurahn extensive dendritic tree evoke small potential changes
firing events [1,2]. Historically, the first proposal of a at the soma. The changes induced by the inputs in the
code mechanism was made by Adrian [3]. It correspondsdlendritic tree structure are well described by the con-
to the observation that, in response to a static stimuluinuous approach of Stein which is given by the Ornstein-
such as a continuous load on a stretch receptor, the rate bhlenbeck diffusion process used in neural modeling [1].
spiking increases as the stimulus becomes larger. Henc&he model combining diffusion and jump process can be
the rate of spikes encodes the intensity of the stimulusexpressed by the It6-type stochastic differential equation
This is widely known agate coding In other words, V()
the idea is that the mean firing rate alone encodes the dV(¢) = <—— + ,u>dt + odW(t) + wdS(r). (1)
signal, while the variability about the mean is noise [4]. 4
Softky and Koch [5] have shown that the spike trains ofln Eq. (1),dW(¢) is a standard Wiener process. The con-
cortical cells in the visual areas V1 and MT display a highstantr describes the decay of the membrane potential in
degree of variability. This variability is characterized by the absence of input signals. Her®(¢) is a homoge-
the coefficient of variation C\= o151/ u1s1, whereos; neous Poisson process, id1) = %S(t) =>,8(t—1t),
and u1s; are the standard deviation and mean value ofvhere ther; are Poisson distributed random instants with
the interspike intervals (ISI), respectively. Cortical cellsmean ratei (i.e., the mean value of the time interval be-
have CVs in the range 0.5—1.0 as reported by Softky antiveen events isi"!'). The soma-synaptic strength is de-
Koch [5]. Thus, these authors suggested that high 1Shoted byw and the mean value by which is taken equal
variability may be more consistent with Abeles’ [6] idea to zero. A spike is generated when the membrane poten-
of neurons acting asoincidence detectorsither than rate tial V(¢) reaches a prefixed threshold After the gen-
encoders. An alternative philosophy is to consider that ieration of the spike, the model is reset to a given initial
is variability itself that encodes the information containedpotential vV (0) (in this paper, it is taken to be equal to
in the input signal [7]. This concept corresponds to thezero). The output spike train is therefore described by
notion that the precise sequences of time in which théhe spike generation times, ..., 7, ..., and is given by
spikes are emitted encodes the signal, yieldingmang  o(t) = >, 8(t — #;). The interspike intervals (ISIs) of
coding Experimental studies [2,8,9] support this conceptthe output train are independent because the model is reset
Therefore, it is relevant to study in a timing code how many(“leaky integration”) and the input signal is uncorrelated in
spikes are necessary for reliably encoding input signaldime. Let us assume a time precisiosuch thatte < 1.

The appropriate framework to investigate this problemThe entropy per spike of the input spike train corresponds
from a theoretical point of view is provided by information to the entropy of a Poisson process givenlby In(Ag).
theory [2,10,11]. The purpose of this paper is to analyzéVe choose a time precision of 0.1 ms. Considering that
by use of information-theoretic concepts the transmissiothe rate of the input spike train i, the entropy per unit

of information, the reliability of signal detection, and the time is H;, = A [1 — In(Ae)]. Because of the indepen-
coding strategy for the case of central neurons. dence of the output ISIs, the mutual information between

We first consider an integrate-and-fire model of a centhe input and output spike train per unit time is given by
tral neuron which combines diffusion and jump processes. 1, = 1(s(1);0(1)) = I({to,....t1,.. 3 {the ... th,..})

This is motivated by experimental and theoretical stud-

ies which demonstrate that the effect of synaptic input on =R - 1({to,....t5,.. 1 T'). 2
neural excitability decreases with the distances between In the second line of the last equation the spike
the synapse and the cell body, where spike generation témes are restricted to those in the interydl s’ + T'],
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where ¢’ is the last output spike and the timing of n. The maximum value means that all of the information
the input spikes should be measured with respect toequired for the classification is transmitted. In the case
t. In the last equationR = (T’)"! is the rate of of fast convergence a small number of spikes suffice for
the output spikes and({r,...,1,...;T') = H(T') —  encoding the two different signals and for discrimination

,,,,,,,

are H(T') = — ff)op(z’)ln p(t)dt', and H(T'|,,..;..) = classification of the input signals; perhaps this could also
o p@ iyt )Ny ) dt)s,.i3. An upper  be associated with rate coding.

bound of the output entropy is given by assuming a We integrate the diffusion and jumping processes
Poisson distribution of the output ISIs with the samegiven by Eq. (1) numerically by discretizing it in the fol-

rate R, i.e., p(T') = Re ®T'. This upper bound for the lowing fashion:V(t + At) = V(¢) + (—@ + w)Ar +

entropy per unit of time is thereforBma(7') = R[1 =  o/Arv + wAS(r), wherev is the standard Gaussian
In(Re)]. A measure of the loss of information during the gise andAS(r) = f(t+Ar)[Z 5(t — #;,)]dr is the number

. . . . t 2 1
transmission is given by = (Hiy — fio)/Hin- of input spikes; betweernr andr + Ar. This Monte Carlo

Let us now concentrate on the capacity of the neuron tQjmy|ation involves the statistics of the Poisson input train
detect two different signals. We assume (i) that there argnq the noise. We compute the probability distribution
two input spike trainss; _andsg, corresponding to d|fferent p(T") for a given resolutiore via the construction of a
Poisson processes with ratés and A,, respectively, hisiogram for7’ by generating new realizations of both
and (||)_ _that the two signals are presented with gnlformthe input train and the noisep(T”|,,..,...) is computed
probability p = 0.5. We denote by the random variable {q; 5 fixed realization of the input and different realizations
which corresponds to the class of the signal, i.e., theg the noise, i.e., of the integration process. Afterwards,
outcomes of ares; ands, with equal probabilityy = 0.5. \ve change the fixed realizatidn, . .., #;, . . .} of the input
The task consists of discovering which signal is presentegpike train in order to compute the mean va{yg, . )

. . . Voeeesliseeaf ™
based on the analysis of the output spikes and knowing th the calculation of the discriminability, the probabilities
a priori probability of presentatiop. When one signal ,(7/;,) have been calculated via the construction of a
is pre;sented the neuron is considered m_the same '”'t'fﬂistogram forT' by generating new realizations of both
cond|t|on correspondmg to the rest_potentlal Zero. W'e d@ne input spike train for a fixed processand the noise.
not consider the switching of the signal. The analysis ofy/e chooser = 20 ms andd = 20. We considered an
the output spikes is therefore performed under stationarypso|ute refractory time of 3 ms.
conditions. We can measure the “discriminability” by the Figure 1 displays the transmitted information from input

mutual information betweer and the output spike train, spike trains to output spike trains as a function of the
i.e., by

Idis(n) = I(S; {T{, cees Ty/,}) x103 ' x10° %103
= H(T|,....T)) — (H(T},....T!|s));. (3) IR TR

The entropies! (T}, ..., T!) and(H(T}, ..., T!|s))s can be
calculated by using the fact that, for a given input signal
si, the output ISIs are independent. In Eq. (3) it is explicit
that the discrimination task is based on the output spikes.
The information about the class of the signal is of course
also explicit in the statistics of the timing of the input train.
However, we are more interested in studying the coding
strategy of a neuron. Therefore, the explicit timing of the
input spike trains is for this problem irrelevant; only its —
statistics, as extracted by means of the particular spiking (P
device (neuron), is used for discovering the underlying
input class. The implicit analysis performed by the neuron
is reflected in the output spike statistics. In our case, for
example, we classify signals which are in fact described
only by the rate (Poisson signals), but we attempt to
discover this rate (i.e., the name of the signal) by analyzing ; — 1. ]
its influence on the output spike statistics. The maximum 0 1 2 01 345 o1 23 43

value ofly;, is given by the entropy of the random variable ! At 2!
s,i.e.,H(s) = In2. We can study the required code, i.e., ;g 1 Hmax Tio, L, CV, and R for a single neuron as a

the required number of output spikes, just by analyzing theunction of the input mean value for three different synapses
convergence ofy;s to the maximum value as a function of strengths.
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intensity of the input signal given by its mean value. Fornals. For this case, the mean output ISl is 6.20 ms when
large values ofA~! the transmitted information reaches s, is presented and 3.33 ms for Three output spikes are
the upper bound given by the Poisson assumption. Inequired in the optimal case for convergence to the maxi-
this Poisson regime, the maximum value achievable isnum value Iif2), yielding an averaged decision time of
reached, but the efficiency of the transmission is veryl4.29 ms. We need three input spikes for the emission of
bad. This fact can be studied by observing the plots obne output spike, i.e., perfect discriminability is achieved
the loss of information.. The minimum of information after the analysis of about nine input spikes by the neuron.
loss and therefore the maximum of efficiency is achievedn the nonoptimal case, one spike is required but with a
beforethe Poisson regime is reached. When the synapdarger averaged decision time of 39.89 ms. Inthis case, the
strength is such that the transmission is more efficienmean output ISIs are 76.75 ms by presentation;cdnd
(see the deep minimum in the caseywf=9), the CV  3.03 ms fors, (the big differences in the output statistics is
of the output ISIs exceeds the value 0.5 according to théhe reason why, after one spike, we can discover which sig-
experimental results of Softky and Koch [5]. This offers nal is presented). This result therefore theoretically con-
a possible explanation of the phenomena according to thi@ms the possibility of classification with a timing code.
principle of optimal information transmission. Neurons In case 2 the task of discrimination is very hard. In fact,
which efficiently transmit information operate in a range ofeven in the optimal case, a very slow convergence of the
parameters such that they are not in the Poisson regime bdiscriminability to the maximum value is suspected. We
in a regime of CV of the output ISIs between 0.5 and 1.0could calculate only values df;;; until » = 3 due to the

Let us analyze the capabilities of a single neuron anchumerical explosion in the calculation of the multidimen-
its coding strategies in the task of distinguishing two dif-sional integral involved in the calculation &f(z{,...,)).
ferent input signals. We study two cases. Case 1 is deBut these first three values suffice to see qualitatively that
fined by the task of discrimination between two differenta large amount of output spikes, due to the slow conver-
input signalss; ands, presented with uniform probability gence to the maximum, will be required for discrimination
and corresponding to two different Poisson processes withetween the two input signals and that this result is proba-
meanvaluea; ' = 2andA; ' = 0.11, respectively. Case bly also consistent with a rate code. The optimah both
2 considers input signals with; ' = 1.7 andA;' = 1.5.  cases corresponds to the values where the transmission of
First we obtain the optimal synapse strength by maximizinformation from input to output, i.el;,, is most efficient
ing numerically the efficiency estimated by the mutual in-(see Fig. 1).
formation per unit time betweenand 3 output spikes, i.e.,  The difficulty in calculating the mutual information
3RI4s(3). A maximum of efficiency is obtained im = 9  arises because of the presence of the tefm(lr)] in the
for case 1 and inv = 6 for case 2. At this optimal value entropies which causdg(n) for largen to be numerically
of synapse strength, the output spike code should be optirtractable. Pompe [12] introduced a generalized measure
mal. This result is confirmed by Fig. 2. In case 1, whereof statistical dependences that he phrased as generalized
the separation is relatively easy, a small amount of outputnutual information of order 2 and is given by
spikes suffices for the task of classification of the input sig- ®

Igis(n) = 19(s:{T}.....T}})

= HYT],...,T)) + H?(s)

Lyis (m)
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FIG. 2. Discriminability as a function of the number of output
spikes considered for cases 1 and 2 and for synapses streng
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In Eqg. (4), the Rényi entropy of order 2 is given by
H®(x) = —In [dx p*(x). When one of the variables
with N outcomes is uniformly distributed, i.e., each out-
come has a probability/N, as in our case the variable

s, the generalized mutual informatidéizz(n) fulfills 0 =

I(gizg(n) = InN. Even more, the lower bound is attained if
and only if the variabledT{,..., T’} ands are indepen-
dent, and the maximum is attained if and only if there is
a functionf such thats = f(T{,...,T,’z), i.e., meaning an
absolutely reliable classification of the input signals based
in the output ISIs. For our task of classification we can use
the second order generalized mutual information which al-
lows analytical calculation and, therefore, the study of dis-
criminability between two signals even in cases where the

{fdmber of output ISIs required is large. The maximum

nonoptimal (w = 1.5) and optimal ¢ = 9 for case 1 and value oflys is given again by the entropy of the random
w = 6 for case 2).

variables, i.e.,H?(s) = In2. Inorder to obtain analytical
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results we use a neural model which captures the princithat the input signal can be classified with certainty, i.e., the
pal effects of real neurons and which is simple enough t@utput spikes contain the required information for a per-
permit analytical calculations. The model we use is thefect and reliable distinction of the signals. In cases where
spike response model [13]. In contrast to integrate-andthe two signals to be separated are very similar, i.e., small
fire models which are given essentially by a differentialAA = A, — Ay, the convergence of the generalized mu-
equation, the spike response model is based on respongml information to the maximal value () is very slow,
kernels which describe the integrated effect of spike remeaning that a large number of output spikes is required for
ception or emission on the membrane potential. In this reliable classification of the signals. In contrast, in cases
model, spikes are generated by a threshold process, i.avhere the signals are very different, i.&.) is big, the task
the firing timet' is given by the condition that the mem- of classification is more simple and can be achieved with
brane potentiak(z’) reaches the firing threshold, i.e., a small number of spikes.

h(t') = 6. The membrane potential is given lay:') = In conclusion, the information-theoretic analysis of
I 001 — )0t — th)¥(' — t;), where®() isthe  single central neurons which process input spike trains
heavyside function. We ignore the refractory time andteaches us that (i) The maximum efficiency in the trans-
consider a neuron with only one input spike train, which ismission of information is not reached in the Poisson
Poisson. Theresponse kernel used corresponds to a neunagime but just before it, and in regions of high output
with infinite memory, i.e.¥ (¢ — ;) = ®(' — t;). The CV. (iij) The timing code can be rigorously studied
calculation of p(T'|s;) is then reduced to the solution of in the framework of the Rényi information concept.
the first passage time for the spike response model with aA small amount of output spikes suffices for efficient
input given by a Poisson spike train. After some cumberdiscrimination of input signals if the separation is easy
some algebra, we obtaj(T’|s;) = (A" T/me=AT)/m),  (signals are very different); a large amount of output
m = |0/J] being the greatest integer containeddifi/.  spikes (and probably a rate code) is required in the hard
We calculate the Rényi entropies involved in the genercases of separation of very similar input signals, which is
alized mutual information [Eq. (4)] analytically. Figure 3 consistent with the weak signal cases studied in Ref. [14].
shows the dependences of the generalized mutual informahis result is what we expect heuristically. Based on
tion between the random variabieand the output spikes this result, we expect that an information-theoretic first
as a function of the number of spikes for different classifi-principle (namely, Infomax) could be useful for defining
cation cases corresponding to input signals wifi = 4  a learning algorithm for fixing the optimaé for the task
anda; ' () 40, ) 10, ©) 7, (d) 6, and €) 5. The maxi- of discrimination of input signals or just for the efficient
mum value of the generalized mutual information meangransmission of information.

(Z)dis (n)
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