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Transition from Overscreening to Underscreening in the Multichannel Kondo Model:
Exact Solution at LargeN

Olivier Parcollet and Antoine Georges
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(Received 31 July 1997)

A novel large-N limit of the multichannel Kondo model is introduced, for representations of the
impurity spin described by Schwinger bosons. Three cases are found, associated withunderscreening,
overscreening,andexact Kondo screeningof the impurity. The saddle-point equations derived in this
limit are reminiscent of the “noncrossing approximation,” but preserve the Fermi-liquid nature of the
model in the exactly screened case. Several physical quantities are computed, both numerically and
analytically in the low-v, T limit, and compared to other approaches. [S0031-9007(97)04661-9]
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Besides their experimental relevance to magnetic im
purities in metals, heavy fermion compounds, and tunne
ing in mesoscopic systems [1], quantum impurity mode
provide useful testing grounds for theoretical method
dealing with correlated electron systems. Among thos
explicit solutions in the limit of large spin degenerac
[e.g., SUsNd spins in the largeN limit] have often proven
to retain many crucial aspects of the low-energy physi
while being simple to implement [2].

In this Letter, we introduce a novel large-N approach to
the multichannel Kondo model [3,4]. The non-Fermi liq
uid properties of this model in the overscreened regim
have attracted considerable attention recently. Our a
proach is related to the earlier work of Cox and Ruck
enstein [5], in that we also consider the SUsNd Kondo
model with K channels of conduction electrons and tak
the limit N , K ! ` with KyN ­ g being fixed. There
are two crucial differences with Ref. [5], however: (i) we
are dealing here withSchwinger bosonrepresentations of
the impurity spin, in contrast with the fermionic repre
sentations considered in [5], and (ii) we keep track of th
quantum number associated with the “size” of the impu
rity spin by imposing a local constraint on the Schwinge
bosons which is also taken to scale asN. Because of these
two new features, our approach captures all three possi
regimes of the multichannel Kondo model (and transition
between them): theunderscreenedregime (in which the
Kondo effect only partially screens the impurity spin), th
overscreenedregime (in which a non-Fermi liquid state
is formed at low energy), and anexactly screenedFermi-
liquid regime in between.

In the large-N limit, our model is solved by a set of two
coupled integral equations. These equations resemble
structure the “noncrossing approximation” (NCA) [5,6]
with some crucial differences, however, associated wi
points (i) and (ii) above. Because of our handling (ii) o
the constraint, these equations result from a true sadd
point principle, with controllable fluctuations in1yN .
Furthermore, in the exactly screened case, the equati
derived in this paperpreserve the local Fermi-liquid
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character of the problemdown to zero temperature and
frequency. For this reason, and because Schwinger bos
mean-field theories yield a quite satisfactory descriptio
of magnetically ordered phases [7], our approach offe
new prospects for a successful treatment of the Kond
lattice model.

We consider a generalized Kondo model withK
channels of conduction electrons and a spin symmet
group extended from SUs2d to SUsNd. An impurity spin
$S is placed at the origin. We choose to represent th
N2 2 1 componentssSabd1#a,b#N of $S in terms of N
Schwinger bosonsba with a constraint, namely,

Sab ­ by
abb 2

P
N

dab,
NX

a­1

by
aba ­ P . (1)

In all the following, the conduction electrons transform
under the fundamental representation of SUsNd. The
Hamiltonian of the model reads

H ­
X

$p

X
1#i#K
1#a#N

e $pc
y
$piac $pia 1 JK

X
$p $p0iab

Sabc
y
$pibc $p0ia .

(2)

In the usualN ­ 2 case (a, b ­", #), this is the mul-
tichannel Kondo model with an impurity spin of size
S ­ Py2. For arbitraryN , Eq. (1) means that we have re-
stricted ourselves to representations of SUsNd correspond-
ing to a Young tableau with a single line ofP boxes.
Quantum fluctuations are stronger at small values ofP,
while largeP (for fixed N) corresponds to a semiclassica
limit.

It is easily checked that a weak antiferromagneti
coupling (JK . 0) grows under renormalization for allK
andN, and all representationsP of the local spin. In order
to determine whether the renormalization group (RG) flow
takesJK all the way to strong coupling (underscreene
or exactly screened cases), or whether an intermedia
non-Fermi liquid fixed point exists (overscreened case
we have generalized the Nozières and Blandin stabili
analysis of the strong-coupling fixed pointJK ­ 1`

[3]. In this limit, a bound state is formed between
© 1997 The American Physical Society 4665
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the impurity spin and the conduction electrons, whic
corresponds to a new spin representation dictated
the minimization of the Kondo energy [second term i
(2)]. One must then study the stability of this strong
coupling state when a small hoppingt of the conduction
electrons is turned on. The technical steps involved
this analysis will be reported elsewhere [8,9], and on
the main conclusions are summarized here. We ha
established that, for arbitrary value ofN, there are three
possible strong-coupling regimes [10] depending on t
number of channelsK as compared toP:

(i) WhenP . K , sN 2 1dK conduction electrons bind
to the impurity spin in such a way that a free local sp
of size Psc ­ P 2 K is left unscreened forJKyt ­ `.
Turning on a hopping tends to increase the total sp
of the system, corresponding to a weakferromagnetic
residual Kondo interaction as one departs from the stron
coupling fixed point. Hence, the latter is stable again
this perturbation, and we have the typical situation of a
underscreened(US) Kondo effect.

(ii) When P ­ K , sN 2 1dK conduction electrons
exactly screen the impurity spin and produce a spin sing
state (Psc ­ 0). The strong-coupling state, having th
lowest possible degeneracy, must again be stable aga
tyJK , and the model displays exact Kondo screening (ES

(iii) When P , K, sN 2 1dP conduction electrons
screen the impurity spin, whilesN 2 1d sK 2 Pd arrange
themselves such that a residual spinPsc ­ K 2 P re-
mains. In contrast to the above case, the residual Kon
4666
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interaction produced when a hopping is turned on is no
antiferromagnetic,and the strong-coupling fixed point is
unstable. One expects, as confirmed below, that an in
mediate fixed point exists with non-Fermi liquid prope
ties: this is theoverscreened(OS) regime.

We now turn to the analysis of this model in th
large-N limit. We shall proceed in a manner similar to
Ref. [5], by settingK ­ gN and JK ­ JyN and taking
the limit N ! ` for fixed values ofg andJ. The crucial
difference (apart from the use of Schwinger bosons)
that we shall deal with the constraint in Eq. (1) by settin
P ­ p0N and keepingp0 fixed (instead of fixingP ­ 1
as in [5]). By doing so, we are preserving the existence
the transition in the large-N limit, the three regimes above
corresponding top0 . g (US), p0 ­ g (ES), andp0 ,

g (OS). This also ensures that the model is controll
by a true saddle pointat largeN, with controllable1yN
corrections.

In order to derive the saddle-point equations, we use
functional integral formulation of model (2), with a La
grange multiplier fieldlstd to implement the constraint.
Conduction electrons can be integrated out in the bu
keeping only degrees of freedom at the impurity site. T
local Kondo interaction is decoupled by introducing a
auxiliary field in each channelFistd, conjugate to the am-
plitude

P
a c

y
iastdbastd. This field will be responsible for

capturing the physics of the Kondo effect. Note that
is a Grassmanian (anticommuting) field,because of our
bosonic treatment of the impurity spin. After these m
nipulations, we are left with the effective action,
S ­
Z b

0
dt

NX
a­1

by
astd≠tbastd 1

1
J

Z b

0
dt

KX
i­21

F
y
i Fi 1

1
N

Z b

0

Z b

0
dt dt0

X
ia

Fistdby
astdG0st 2 t0dFy

i st0dbast0d

1
Z b

0
dt ilstd

√X
a

by
astdbastd 2 p0N

!
. (3)
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In this expression, G0sivnd ;
P

$p 1ysivn 2 e $pd is
the on-site Green’s function associated with the co
duction electron bath. The quartic term in Eq. (3
can be decoupled formally using two bilocal field
Qst, t0d and Qst, t0d conjugate to

P
a by

astdbast0d andP
i F

y
i stdFist0d, respectively. Integrating out all othe

fields, the action can be solved by a saddle-point meth
over Q, Q, and l for N ! `, which leads to coupled
equations for the Schwinger boson and auxiliary fie
Green’s functions Gbstd ; 2kTbstdbys0dl, GFstd ;
2kTFstdFys0dl and for the Lagrange multiplier field (the
latter is static and purely imaginary at the saddle poi
il ; l̄). These coupled equations read

Sbstd ­ gG0stdGFstd, SFstd ­ G0stdGbstd , (4)

where the self-energiesSb andSF are defined by

G21
b sinnd ­ inn 1 l̄ 2 Sbsinnd ,

G21
F sivnd ­

1
J

2 SFsivnd . (5)
n-
)
s

od

ld

t:

In these expressions vn ­ s2n 1 1dpyb and
nn ­ 2npyb denote fermionic and bosonic Matsubar
frequencies. Finally,̄l is determined by the constraint

Gbst ­ 02d ;
X
n

Gbsinndeinn01

­ 2p0 . (6)

We have studied these equations both numerically a
analytically in the limit of low temperature and low en-
ergy. The three Kondo regimes are best illustrated b
Fig. 1, which displays the zero-temperature limit of th
Curie constantk ­ limT!0 TximpsTd and of the impu-
rity entropySimp ­ limT!0 limV!`fSsTd 2 SbulksTdg, as
a function of the “size of the spin”p0. k vanishes
in the (OS) and (ES) regimes (p0 # g), but reaches
a finite valuek ­ sp0 2 gd sp0 2 g 1 1d in the (US)
regime (p0 . g), corresponding to the Curie constant of a
residual spin of sizePsc ­ P 2 K ­ Nsp0 2 gd in the
large-N limit. Accordingly, the correlation function of
the impurity spin does not vanish at long times in th
(US) regime: kSs0dSstdl , const , while kSs0dSstdl ,
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FIG. 1. Residual entropy (thin line) and Curie constant (bo
line) vs the “size” of the spinp0, for g ­ 0.1 (analytical
expressions given in the text).

1yt2ys11gd in the (OS) regime. The latter is the be
havior expected from the conformal field theory (CF
[11] and Bethe ansatz analysis [12] of the non-Fer
liquid (OS) fixed point. The residual entropy atT ­ 0
also takes the value expected from the degeneracy
sociated with a free spin of sizeNsp0 2 gd in the
(US) regime, namely,SimpyN ­ sp0 2 g 1 1d lnsp0 2

g 1 1d 2 sp0 2 gd lnsp0 2 gd, and vanishes at the (ES
point. In the (OS) regime, its value is a universal functi
of p0 and g associated with the non-Fermi liquid fixe
point, which will be calculated explicitly below [Eq. (9)].

The crossover between the high-temperature and l
temperature regimes, associated with the Kondo eff
is illustrated in Fig. 2 which displays the “local Curi
constant”TxlocsT d vs lnT in the (US) and (ES) regimes
(with xloc ­

Rb

0 kSs0dSstdl dt).
We now turn to a more detailed analysis of the low

energy, low-temperature behavior of the above equati

FIG. 2. Numerically calculatedlocal Curie constantTxlocsT d
vs lnT with g ­ 0.1, for p0 ­ 0.1 (ES case) andp0 ­ 0.2
(US case).
ld

-
T)
mi

as-

)
on
d

ow-
ect,
e

-
ons

in the three regimes. In the (OS) caseg . p0, we first
consider the zero-temperature limit, and perform a long
time asymptotic analysis similar to that made in Ref. [13]
The crucial point in this regime is that the constan
terms in the right-hand side of Eq. (5) vanish asT ! 0,
namely, l̄ 2 Sbsi01d ! 0, 1yJ 2 SFsi01d ! 0. As a
result, a power-law decayGbstd , Abyt2Db , GFstd ,
AFyt2DF is found for the Green’s functions in the
limit T21

k ø t ø b ! ` (whereTk is the Kondo tem-
perature). The exponents are given by2Db ­ 1ys1 1

gd, 2DF ­ gys1 1 gd, so that the local spin-spin correla-
tion decays askSs0dSstdl ~ GbstdGbs2td , 1yt2ys11gd.
The spectral density of the Schwinger boson has the fo
lowing low-frequency behavior at zero temperature (with
C a positive constant):

rbsv ! 06d , C
sinu6

s6vd122Db
. (7)

It is important to observe that the same power-law
behavior is found forv . 0 and v , 0, but with
asymmetric prefactorsparametrized by the phasesu6.
The values of these phases can be found using a Lutting
Ward argument [8,9], leading to sinu1 ­ sin p

11g sg 2

p0d, sinu2 ­ 2 sin p

11g p0. From these expressions, we
see that Eq. (7) obeys the positivity property appropriat
for a bosonic spectral density: sgnsvdrbsvd . 0 only as
long asp0 , g (P , K). The violation of this property
signals the transition to the (US) regime, in which the
solutions just described are no longer valid.

Contact can be made, at least qualitatively, with th
usual NCA equations (enforcingP ­ 1 strictly), and with
Ref. [5], by taking the limitp0 ! 0, i.e., dealing with
an impurity such thatP ø N. In that case, we observe
that u2 ! 0, and theT ­ 0 spectral density vanishes
for negative frequencies. There is no such threshold fo
nonzero values ofp0, however, but the spectral density
does become increasingly asymmetric asp0 gets smaller.

In order to calculate the low-temperature behavio
of thermodynamic quantities, the aboveT ­ 0 form of
the spectral densities is insufficient, however. The limi
v, T ! 0 must be taken while keeping̃v ; vyT finite
[14]. We have succeeded [8,9] in calculating analytically
the spectral functions in this limit, which takes ascal-
ing form: rb,Fsvd ­ Ab,FT 2Db,F 21fb,Fsṽd. The scaling
function fb (found from either a direct solution of the
integral equations above, or from conformal field theor
arguments) reads

fbsṽ; p0d ­
s2pd2Db

2p2 sinh
ṽ

2

jGsDb 1 i
ṽ2ṽ0

2p dj2

Gs2Dbd
,

(8)

in which ṽ0 ; lnjsinu1y sinu2j. fF has a similar ex-
pression, withDF replacing DB and cosh̃vy2 replac-
ing sinhṽy2. Using Eq. (8) and the expression of
the free energyFimpyN ­ 2p0l̄ 2 T

P
n ln Gbsinnd 1

gT
P

n ln GFsivnd 2 T
P

n

P
bsinndGbsinnd we have ob-

tained [8,9] the zero-temperature limit of the entropy
4667
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which is a universal number associated with the no
Fermi liquid fixed point [15]. We find

1
N

Simp ­
1 1 g

p
ffgs1 1 p0d 2 fgs1d 2 fgsp0dg ,

(9)

with fgsxd ;
Rpxy11g

0 ln sinsud du. We have also calcu-
lated [8,9] Simp for arbitrary finite values ofN, K, and
P by applying the CFT methods of Refs. [11,15]. We
find (for K . P) Simp ­ ln

QP
n­1 sin psN1n21d

N1K y sin pn
N1K ,

which can also be established using Bethe ansatz me
ods [12]. The large-N limit of this expression coin-
cides with (9), with corrections of order1yN [16].
We have also computed the low-temperature behav
of the specific heat ratio and impurity susceptibility
in the overscreened regime, and foundCyT , ximp ,
1yT sg21dysg11d for g . 1, CyT , ximp , ln 1yT for
g ­ 1, CyT , ximp , const for g , 1, also in agree-
ment with the CFT and Bethe ansatz results. Note th
the last behavior holds even though the fixed point isnot
a Fermi liquid (as evidenced by the fact thatSimp fi 0).

In the (US) regime, the crucial difference with the
above analysis is that1yJ 2 SFsi01d no longer van-
ishes at zero temperature, but insteaddiverges logarith-
mically: 1yJ 2 SFsi01d , 1yJe ln T 1 J2 [while l̄ 2

Sbsi01d , l1T ]. This behavior is well obeyed by the
numerical solution of the above equations, and has
simple physical interpretation: in the (US) case, the re
sidual spin is asymptotically free at low temperature
but is weakly coupled to the conduction electron ga
at any finite temperature by aferromagnetic Kondo
coupling which vanishes logarithmically as temperatur
is reduced. Based on this observation, we can fin
the low-temperature scaling form of the spectral func
tions as rbsvd ­ dsvyZ 1 l1T d 1 . . . and rFsvd ­
1y ln2 TfFsvyT d 1 . . . . The form of rb is character-
istic of an (asymptotically) free local spin. The detailed
expression offF will be given elsewhere [9].

Finally, we briefly comment on the (ES) case. Th
large-N limit preserves the local impurity properties
expected from the full Kondo screening, namely,Simp !

0 andxloc ! const asT ! 0. The conduction electrons
form a local Fermi liquid which is, however, only weakly
affected by the screening of the impurity in the large-N
limit. Indeed, the scattering phase shift obtained from
Friedel’s sum rule isdyp ­ 1yN . Accordingly, the
scattering T matrix, obtained in our approach as the
Fourier transform ofGbstdGFs2td, is found to have
vanishing imaginary part in the limit ofv, T ! 0. This
is a peculiarity of the specific spin representation that w
have considered: considering rectangular Young tablea
with P ­ K ­ gN columns andNy2 lines would restore
maximal unitary scatteringd ­ py2 for all N. Whether
4668
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a large-N limit exists for that case also is an interestin
open problem, with potentially useful applications, e.g.,
the Kondo lattice model.

During the course of this study, we learned of simu
taneous work by N. Andrei, A. Jerez, and G. Zaránd o
the same model using the Bethe ansatz method [12]. O
results and conclusions agree when a comparison is p
sible. We are most grateful to N. Andrei for numerou
discussions. We also thank T. Giamarchi, P. Coleman,
Kotliar, A. Sengupta, A. Ruckenstein, and P. Zinn-Just
for very helpful suggestions.
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l’Université Paris-Sud.
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