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Transition from Overscreening to Underscreening in the Multichannel Kondo Model:
Exact Solution at Large N
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A novel large limit of the multichannel Kondo model is introduced, for representations of the
impurity spin described by Schwinger bosons. Three cases are found, associataddeitbcreening,
overscreeningand exact Kondo screeningf the impurity. The saddle-point equations derived in this
limit are reminiscent of the “noncrossing approximation,” but preserve the Fermi-liquid nature of the
model in the exactly screened case. Several physical quantities are computed, both numerically and
analytically in the lowe, T limit, and compared to other approaches. [S0031-9007(97)04661-9]
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Besides their experimental relevance to magnetic imeharacter of the problendown to zero temperature and
purities in metals, heavy fermion compounds, and tunnelfrequency. For this reason, and because Schwinger boson
ing in mesoscopic systems [1], quantum impurity modelamean-field theories yield a quite satisfactory description
provide useful testing grounds for theoretical methodf magnetically ordered phases [7], our approach offers
dealing with correlated electron systems. Among thosenew prospects for a successful treatment of the Kondo
explicit solutions in the limit of large spin degeneracy lattice model.

[e.g., SUN) spins in the largeV limit] have often proven We consider a generalized Kondo model with
to retain many crucial aspects of the low-energy physicghannels of conduction electrons and a spin symmetry
while being simple to implement [2]. group extended from S@) to SUN). An impurity spin

In this Letter, we introduce a novel largéapproachto S is placed at the origin. We choose to represent the
the multichannel Kondo model [3,4]. The non-Fermi lig- N> — 1 components(S,g)1=a g=y Of S in terms of N
uid properties of this model in the overscreened regimeschwinger bosons, with a constraint, namely,
have attracted considerable attention recently. Our ap- P N
proach is related to the earlier work of Cox and Ruck-  Sag = blbg — N Oap> Z biby =P. (1)
enstein [5], in that we also consider the @U Kondo
model with K channels of conduction electrons and takeln all the following, the conduction electrons transform
the limit N, K — « with K/N = vy being fixed. There under the fundamental representation of (8U The
are two crucial differences with Ref. [5], however: (i) we Hamiltonian of the model reads
are dealing here witlschwinger bosonepresentations of n N
the impurity spin, in contrast with the fermionic repre- H = D D €ChiaChia T Ik D SapChigCiia-
sentations considered in [5], and (ii) we keep track of the PN ppliap
quantum number associated with the “size” of the impu- (2)
rity spin by imposing a local constraint on the Schwingerin the usualN = 2 case &, 8 =1,), this is the mul-
bosons which is also taken to scaleNdasBecause of these tichannel Kondo model with an impurity spin of size
two new features, our approach captures all three possible = P/2. For arbitraryN, Eq. (1) means that we have re-
regimes of the multichannel Kondo model (and transitionsstricted ourselves to representations of 8Wcorrespond-
between them): thenderscreenedegime (in which the ing to a Young tableau with a single line & boxes.
Kondo effect only partially screens the impurity spin), theQuantum fluctuations are stronger at small values of
overscreenedegime (in which a non-Fermi liquid state while largeP (for fixed N) corresponds to a semiclassical
is formed at low energy), and axactly screene@ermi-  limit.
liquid regime in between. It is easily checked that a weak antiferromagnetic

In the larged limit, our model is solved by a set of two coupling (/x > 0) grows under renormalization for atl
coupled integral equations. These equations resemble andN, and all representations of the local spin. In order
structure the “noncrossing approximation” (NCA) [5,6], to determine whether the renormalization group (RG) flow
with some crucial differences, however, associated withlakes/Jx all the way to strong coupling (underscreened
points (i) and (ii) above. Because of our handling (ii) of or exactly screened cases), or whether an intermediate
the constraint, these equations result from a true saddleon-Fermi liquid fixed point exists (overscreened case),
point principle, with controllable fluctuations in/N. we have generalized the Noziéres and Blandin stability
Furthermore, in the exactly screened case, the equatiommalysis of the strong-coupling fixed poidfy = +o
derived in this papermreserve the local Fermi-liquid [3]. In this limit, a bound state is formed between

a=1
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the impurity spin and the conduction electrons, whichinteraction produced when a hopping is turned on is now
corresponds to a new spin representation dictated bgntiferromagneticand the strong-coupling fixed point is
the minimization of the Kondo energy [second term inunstable. One expects, as confirmed below, that an inter-
(2)]. One must then study the stability of this strong-mediate fixed point exists with non-Fermi liquid proper-
coupling state when a small hoppingf the conduction ties: this is theoverscreenedOS) regime.
electrons is turned on. The technical steps involved in We now turn to the analysis of this model in the
this analysis will be reported elsewhere [8,9], and onlylargeN limit. We shall proceed in a manner similar to
the main conclusions are summarized here. We havRef. [5], by settingk = yN andJx = J/N and taking
established that, for arbitrary value df, there are three the limit N — oo for fixed values ofy andJ. The crucial
possible strong-coupling regimes [10] depending on thelifference (apart from the use of Schwinger bosons) is
number of channel& as compared t@: that we shall deal with the constraint in Eq. (1) by setting
(i) WhenP > K, (N — 1)K conduction electrons bind P = poN and keepingp, fixed (instead of fixingP = 1
to the impurity spin in such a way that a free local spinas in [5]). By doing so, we are preserving the existence of
of size P = P — K is left unscreened foig/t = .  the transition in the larg@* limit, the three regimes above
Turning on a hopping tends to increase the total spirtorresponding tgy > y (US), po = v (ES), andpy <
of the system, corresponding to a wefkromagnetic y (OS). This also ensures that the model is controlled
residual Kondo interaction as one departs from the strondsy atrue saddle pointt largeN, with controllable1/N
coupling fixed point. Hence, the latter is stable againstorrections.
this perturbation, and we have the typical situation of an In order to derive the saddle-point equations, we use a
underscreene@JS) Kondo effect. functional integral formulation of model (2), with a La-
(i) When P = K, (N — 1)K conduction electrons grange multiplier fieldA(7) to implement the constraint.
exactly screen the impurity spin and produce a spin single€onduction electrons can be integrated out in the bulk,
state P* = 0). The strong-coupling state, having the keeping only degrees of freedom at the impurity site. The
lowest possible degeneracy, must again be stable agairistal Kondo interaction is decoupled by introducing an
t/Jk, and the model displays exact Kondo screening (ES)auxiliary field in each channdf;(7), conjugate to the am-
(i) When P < K, (N — 1)P conduction electrons plitudey, c;,(7)bo (7). This field will be responsible for
screen the impurity spin, whilev — 1) (K — P) arrange  capturing the physics of the Kondo effect. Note that it
themselves such that a residual spiff = K — P re- s a Grassmanian (anticommuting) fieldecause of our
mains. In contrast to the above case, the residual Kondgosonic treatment of the impurity spin. After these ma-

| nipulations, we are left with the effective action,

B N B K B rB
5 — f dr Y. bl(Maba(r) + f dr Y FIE + f f drdr' S Fim)bL(n)Go(r — ) (+)ba()
0 0 o Jo —

a=1 i=—1

B
+ [0 dri,\(r)<§b;(7)ba(7) — p0N>. (3)
I

In this expression, Go(iw,) = Z;, 1/(iw, — €3) is ' In these expressions w, = (2n + 1)w/B and
the on-site Green’'s function associated with the conv, = 2n7/B denote fermionic and bosonic Matsubara
duction electron bath. The quartic term in Eg. (3)frequencies. Finally) is determined by the constraint
can be decoupled formally using two bilocal fields oo

Q(r,7') and Q(r,7) conjugate to} , bl ()b, (7') and Gy(r =07) = D Gplivg)e™” = —py.  (6)

> F,-Jr(f)Fi(q-’), respectively. Integrating out all other "

fields, the action can be solved by a saddle-point method We have studied these equations both numerically and
over 0, Q, and A for N — =, which leads to coupled analytically in the limit of low temperature and low en-
equations for the Schwinger boson and auxiliary fieldergy. The three Kondo regimes are best illustrated by
Green’s functions G,(r) = —(Th(7)bT(0)), Gr(r) = Fig. 1, which displays the zero-temperature limit of the
—(TF(7)F1(0)) and for the Lagrange multiplier field (the Curie constant = limy_o T ximp(7) and of the impu-
latter is static and purely imaginary at the saddle pointfity entropy Simp = limz—g limy_[S(T) — Spux(7)], as

iA = X). These coupled equations read a function of the “size of the spin’py. « vanishes

in the (OS d (ES i =49), b h
540 = YGonGr). 340 = GuIGHT). @) g fine vallex (o (s oy £ 1) i the (US).

where the self-energies, and3 are defined by regime (po > ), corresponding to the Curie constant of a
1. , - , residual spin of size?,, = P — K = N(py — ) in the
G, (ivy) = iv, + A — 2p(iv,), largesV limit. Accordingly, the correlation function of
1 1 . the impurity spin does not vanish at long times in the
Gr (iwy) = T Sr(iwn). (5) (US) regime: (S(0)S(7)) ~ const, while (S(0)S(7)) ~
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FIG. 1. Residual entropy (thin line) and Curie constant (bold

line) vs the “size” of the spinpy, for y = 0.1 (analytical

expressions given in the text).

in the three regimes. In the (OS) cage> pg, we first
consider the zero-temperature limit, and perform a long-
time asymptotic analysis similar to that made in Ref. [13].
The crucial point in this regime is that the constant
terms in the right-hand side of Eq. (5) vanish#as- 0,
namely, A — 2,(i0") — 0,1/J — 2£(i07) = 0. As a
result, a power-law decay,(r) ~ A,/72*, Gp(r) ~
Ap/7?Ar is found for the Green's functions in the
limit 7, ' < 7 < B — o (whereT is the Kondo tem-
perature). The exponents are given b, = 1/(1 +
v),2Ar = y/(1 + v), so that the local spin-spin correla-
tion decays a$S(0)S(7)) « G,(7)Gy(—7) ~ 1/7%/1+7),
The spectral density of the Schwinger boson has the fol-
lowing low-frequency behavior at zero temperature (with
C a positive constant):

sSing+

prlw = 0%) ~ C 2S5

()

It is important to observe that the same power-law
behavior is found forw > 0 and @ < 0, but with

1/72/0%7) in the (OS) regime. The latter is the be- asymmetric prefactorparametrized by the phases .
havior expected from the conformal field theory (CFT)The values of these phases can be found using a Luttinger-
[11] and Bethe ansatz analysis [12] of the non-Fermiward argument [8,9], leading to sih = Sin%(y —

liquid (OS) fixed point. The residual entropy &t= 0

po),Sinf— = —sin=po. From these expressions, we

also takes the value expected from the degeneracy agpe that Eq. (7) obeys the positivity property appropriate

sociated with a free spin of siz&/(py — v) in the
(US) regime, namelySin, /N = (po — v + 1)In(py —

for a bosonic spectral density: dgnp,(w) > 0 only as
long aspy < y (P < K). The violation of this property

y + 1) = (po = y)In(po — ¥), and vanishes at the (ES) sjgnals the transition to the (US) regime, in which the
point. In the (OS) regime, its value is a universal functiongg|ytions just described are no longer valid.

of po and y associated with the non-Fermi liquid fixed
point, which will be calculated explicitly below [Eq. (9)].

Contact can be made, at least qualitatively, with the
usual NCA equations (enforcing = 1 strictly), and with

The crossover between the high-temperature and lowget. [5], by taking the limitp, — 0, i.e., dealing with
temperature regimes, associated with the Kondo effechp, impurity such thaP < N. In that case, we observe
is illustrated in Fig. 2 which displays the “local Curie that 9 — 0, and theT = 0 spectral density vanishes
constant’7 xioc(T) vs InT" in the (US) and (ES) regimes for negative frequencies. There is no such threshold for

(With x10c = [5(S(0)S(7)) d7).

nonzero values opy, however, but the spectral density

We now turn to a more detailed analysis of the low-does become increasingly asymmetrigiggyets smaller.
energy, low-temperature behavior of the above equations |n order to calculate the low-temperature behavior
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FIG. 2. Numerically calculatetbcal Curie constant yi,.(T)
vs InT with y = 0.1, for po = 0.1 (ES case) ang, = 0.2

(US case).

of thermodynamic quantities, the abo¥e= 0 form of
the spectral densities is insufficient, however. The limit
w,T — 0 must be taken while keeping = w/T finite
[14]. We have succeeded [8,9] in calculating analytically
the spectral functions in this limit, which takessaal-
ing form: py, r(w) = Ay pT?*»* "¢, r(®). The scaling
function ¢, (found from either a direct solution of the
integral equations above, or from conformal field theory
arguments) reads

_ (277.)2A,,

$1(@: po) = & [Ty +i%52)P
’ 272

S|nh7 T(2A,) ,

8
in which @y = In|sind,/sinf_|. ¢r has a similar ex-
pression, withAr replacing Az and cosh /2 replac-
ing sinh@/2. Using Eq. (8) and the expression of
the free energyFimp/N = —poA — T >, InGy(iv,) +
yT>,InGrliw,) — T, >, (iv,)Gy(iv,) we have ob-
tained [8,9] the zero-temperature limit of the entropy,
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which is a universal number associated with the nona large limit exists for that case also is an interesting

Fermi liquid fixed point [15]. We find open problem, with potentially useful applications, e.g., to
1 1+ the Kondo lattice model.
v Simp = ——[fy (1 + po) = f,(1) = fy(po)], During the course of this study, we learned of simul-

) taneous work by N. Andrei, A. Jerez, and G. Zarand on
the same model using the Bethe ansatz method [12]. Our

with £,(x) = [7/"*7 Insin(u) du. We have also calcu- results and conclusions agree when a comparison is pos-
lated [8,9] Simp for arbitrary finite values ofV, K, and  sible. We are most grateful to N. Andrei for numerous
P by applying the CFT methods of Refs. [11,15]. We discussions. We also thank T. Giamarchi, P. Coleman, G.
find (for K > P) Simp = In [T5_, sinZ&*2-0 /jn 7% Kotliar, A. Sengupta, A. Ruckenstein, and P. Zinn-Justin
which can also be established using Bethe ansatz metfor very helpful suggestions.
ods [12]. The largeV limit of this expression coin-
cides with (9), with corrections of ordet/N [16].
We have also computed the low-temperature behavior
pf the specific heat rat_io and impurity susceptibility *Unité propre du CNRS (UP 701) associée a I'ENS et a
in the overscreened regime, and fou@d7 ~ Yimp ~ IUniversité Paris-Sud.

/=00 for y > 1, C/T ~ Ximp ~ IN1/T for [1] See, e.g..Correlated Fermions and Transport in Meso-

y =1, C/T ~ ximp ~ const fory < 1, also in agree- scopic Systemsedited by T. Martin, G. Montambaux,
ment with the CFT and Bethe ansatz results. Note that and J. Tran Tanh Van (Editions Frontieres, Gif-sur-Yvette,
the last behavior holds even though the fixed poimads France, 1996).
a Fermi liquid (as evidenced by the fact tisat, # 0). [2] For reviews, see, e.g., D.M. Newns and N. Read,
In the (US) regime, the crucial difference with the Adv. Phys.36, 799 (1987) and G. Kotliar, irStrongly
above analysis is that/J — 3#(i0*) no longer van- Interacting Fermions and High7. Superconductivity,
ishes at zero temperature, but instetiderges logarith- edited by B. Doucot and J. Zinn-Justin (Elsevier Science
mically: 1/J — 3z(i0") ~ 1/J,InT + J, [while A — Pub., New York, 1994).

3,(i0%) ~ A;T]. This behavior is well obeyed by the =] '(Dl'gg](%%iéres and A. Blandin, J. Phys. (Pari}, 193

n_umerlcal 59'““9” of the,abOYe equations, and has a[4] For a recent review on non-Fermi liquid fixed points in
simple physical interpretation: in the (US) case, the re-" " kondo models, see D. L. Cox and A. Zawadowski, e-print
sidual spin is asymptotically free at low temperature, cond-mat/9704103 [Adv. Phys. (to be published)].

but is weakly coupled to the conduction electron gas [5] D.L. Cox and A. E. Ruckenstein, Phys. Rev. L&t, 1613
at any finite temperature by #&erromagnetic Kondo (1993).

coupling which vanishes logarithmically as temperature [6] For a review, see N.E. Bickers, Rev. Mod. PhgS, 845

is reduced. Based on this observation, we can find (1987).

the low-temperature scaling form of the spectral func- [7] A. Auerbach and D.P. Arovas, Phys. Rev. Lél, 617
tions asp,(w) = 8(w/Z + 1 T) + ... and pr(w) = (1988). )

1/ Thp(w/T) + .... The form of p, is character- [8] O. Parc_ollet, A. Georges, G. Kotliar, and A. Sengupta (to
istic of an (asymptotically) free local spin. The detailed be published).

. il be ai | h [9] O. Parcollet and A. Georges (to be published).
expression ofp» will be given elsewhere [9]. [10] In all three regimes, the strong-coupling fixed point

Finally, we briefly comment on the (ES) case. The involves (N — 1)K conduction electrons, which combine
largeV limit preserves the local impurity properties into an SUN) representation corresponding to a Young
expected from the full Kondo screening, namely,, — tableau withV — 1 lines andk columns.

0 and y1,c — const asT — 0. The conduction electrons [11] I. Affleck and A.W.W. Ludwig, Nucl. PhysB352, 849
form a local Fermi liquid which is, however, only weakly (1991); Nucl. PhysB360, 641 (1991).

affected by the screening of the impurity in the large- [12] N. Andrei (private communication); A. Jerez, N. Andrei,
limit. Indeed, the scattering phase shift obtained from _ and G. Zarand (to be published). _
Friedel's sum rule iss/m = 1/N. Accordingly, the [13] E. Muller-Hartmann, Z. Phys. B57, 281 (1984);

: . : : Y. Kuramoto and H. Kojima, Z. Phys. B7, 95 (1984).
E%it:%r:n?rgns%?mxbf%btf |)n gd(l_n )ouirs ?gsrr]%aig ﬁ;véhe [14] See also the recent work by S. Sachdev, e-print cond-mat/
bAT)UF{TT), 9705206; e-print cond-mat/9705266.

vanishing imaginary part in the limit ab,7 — 0. This 1151 | "Affleck and A. W. W. Ludwig, Phys. Rev. Let67, 161
is a peculiarity of the specific spin representation that we ~ (19971,

have considered: considering rectangular Young tableayse] For a numerical calculation of the entropy within the
with P = K = yN columns andV/2 lines would restore NCA, see T.S. Kim and D.L. Cox, Phys. Rev. 55,

maximal unitary scattering = 7 /2 for all N. Whether 12594 (1997).
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