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Method for Calculating Valence Stability in Lanthanide Systems
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We demonstrate that from a state-of-the-art total energy method combined with information on
atomic excitation energies, it is possible to calculate the energy difference between the divalent and
trivalent states in lanthanide systems with an error less than 0.15 eV. This is shown by comparing
theory with well documented experimental data for the lanthanide metals. In addition, we reproduce
the intricate valence stability of selected Sm and Tm chalcogenides. Theory is thus shown to be
able to address, without experimental input from the solid, important questions concerning intermediate
valence. [S0031-9007(97)04680-2]

PACS numbers: 71.20.Eh, 71.15.Nc, 71.28.+d, 71.30.+h
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During the last three decades much attention has be
focused onf-electron materials with unusual physical an
chemical properties, signaling so-called strongly corre
lated electron behavior. Examples are the intermedia
valence compounds and alloys [1–3], which have pro
erties nontypical of an integer occupation of thef shell,
and the heavy fermion systems [3,4], with an extreme
large electronic contribution to the specific heat and the
sometimes unconventional superconducting behavior [5
Experimental observations of these systems suggest t
key ingredients in many cases are two energy configur
tions, fn and fn11, close to being energy degenerate, i
between which the system fluctuates [3,6]. These syste
are addressed by means of many-body Hamiltonians, su
as the Anderson [7], Hubbard [8], and Kondo [9] mode
Hamiltonians. A key question in any theoretical modelin
of these systems is to determine first the different conten
ing states the system fluctuates between, and second h
close these states are in energy. Experimentally such d
may be hard to extract. One may, for instance, get some
formation from the magnetic susceptibility, resistivity, lat
tice constants, and so on, but the conclusions drawn fro
such an investigation may not be unique. A theoretic
tool, with which these questions could be answered, wou
therefore be most useful. The purpose of the present L
ter is to demonstrate, using the lanthanide metals as test
ground, that such a tool, in fact, exists, is simple and fa
to use, and gives accurate results. In principle, our meth
is also applicable to actinide systems. Here, however, w
have chosen to concentrate on the di- trivalent stability
lanthanide systems and will explain our method explicitl
in terms of the configurations relevant for that problem
Thus, we demonstrate that first principles theory togeth
with information on atomic excitation and ionization en
ergies can determine the relative stability of the pertine
energy configurations of any lanthanide system, e.g., t
intermediate valence Sm chalcogenide compounds.

Straightforward use of the local spin density approxima
tion to the exact density functional (or the more advance
generalized gradient corrected functionals), with or with
0031-9007y97y79(23)y4637(4)$10.00
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out the constraint of treating the4f electrons as atomiclike,
fails in reproducing the correct valence of all the system
studied here [10]. This demonstrates that the energy fun
tional used is not sufficiently accurate for such a calcu
lation and that other avenues need to be explored. Th
Letter represents such an effort and is an alternative to fin
ing the exact density functional total energy expression.

Our method is based on the idea that the couplin
energy within the4f shell is essentially the same in the
atom and in the solid, and that the difference betwee
4f-5d –intershell couplings for the two configurations
in the solid is negligible above the magnetic orderin
temperature. We then calculate the paramagnetic grou
state for the divalent and trivalent atoms, and for th
divalent and trivalent solids. By expressing the tota
energy difference between the divalent and trivalent soli
in terms of energy differences between the solid and t
isovalent atom plus atomic correction energies relate
to the 4f shell, the total energy difference between th
different valence configurations in the solid is calculated

The relevant energies and energy differences involv
are defined with the help of Fig. 1. In this figure, the di
valent and trivalent configurations for a typical lanthanid
are illustrated, both for the atomic state as well as fo
the condensed state. The full-drawn horizontal lines r
fer to the true ground state total energy of each configur
tion including the coupling energy within the4f shell and
between this shell and the5d shell. The quantity to be de-
termined isEsII , III d, the total energy difference between
the divalent and trivalent bulk states. The dashed horizo
tal lines refer to the total energies when the coupling e
ergies,EcsIII datom, EcsIII dbulk, EcsII datom, andEcsII dbulk,
are not taken into account. This “decoupled” state
also called the grand barycenter of the configuration [11
EpsII d and EpsIII d, which are the energy differences be
tween the grand barycenter of the solid and the gra
barycenter of the isovalent atom, are called the divale
and trivalent generalized cohesive energies, respective
They can be accurately calculated usingab initio density
functional theory band structure methods. In order to fin
© 1997 The American Physical Society 4637
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FIG. 1. Definition of the promotion energyEfd, the coupling
energiesEc, the generalized cohesive energiesEp, and the di-
trivalent energy differenceEsII , III d. On the left (right), we
have the energy levels for the trivalent (divalent) atom an
bulk. The full-drawn horizontal lines refer to the total energie
including coupling energies within the4f shell and between
this shell and the5d shell. The horizontal dashed lines refer to
the total energies when the coupling energiesEc are not taken
into account.

EsII , III d, we now need to consider the coupling energies
the different cases, and how to connect the divalent ato
with the trivalent atom. The4f-shell intracoupling ener-
gies are virtually the same in the atom and the isovale
solid, and therefore cancel out in the energy differenc
This is not the case for the intershell couplings, i.e., th
couplings between the4f shell and other open electron
shells. Such couplings exist in all cases except for the
valent atom, where there is no open electron shell exce
the 4f shell. In the solids, above the magnetic orderin
temperatureTc, there will be a slight coupling to the (al-
most) paramagneticsspdd band due to the open4f shell
in the core. The main difference between the divalent a
trivalent solids in this respect is that one more4f electron
is active coupling to the valence band. The difference
energy between this coupling in the trivalent and divale
solids is minute, and is therefore neglected in the prese
calculation. Much larger is the4f-5d intershell coupling
in the trivalent atom. The total residual of the intershe
coupling energies is calledDEc and consists thus to a very
good approximation of only the4f-5d intershell coupling
in the trivalent atom. In order to energetically connect th
trivalent configuration with the divalent configuration, we
need to know the energy difference between the divale
and trivalent atoms. They differ only in that one4f elec-
tron has been promoted into the5d shell. This energy is
therefore called the4f ! 5d promotion energyEfd. The
values of the atomic correction energiesDEc andEfd used
here are taken from Ref. [11]. For clarity, we display thes
numbers in Table I. Now, we have all energies necessa
to determineEsII , III d.

The bulk calculations were performed using the ful
potential linear muffin-tin orbital method developed b
Wills [12]. In this ab initio band structure method, the
4638
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TABLE I. The atomic correction energiesEfd and DEc
relevant for the divalent/trivalent energy balance.

Efd DEc

Element (eV) (eV)

Ce 20.59 0.23
Pr 0.55 0.29
Nd 0.84 0.35
Sm 1.92 0.52
Eu 3.11 0.49
Gd 21.32 0.37
Tb 0.04 0.45
Dy 0.94 0.51
Ho 1.04 0.26
Er 0.89 0.27
Tm 1.63 0.43
Yb 2.88 0.48

Kohn-Sham equations [13] are solved without shape a
proximation of the potential, wave functions, or charg
density. Space is divided into nonoverlapping muffin
tin spheres surrounding each atomic site, and an int
stitial region. A basis function in the interstitial is ex
pressed as a Bloch sum of Hankel and/or Neumann fu
tions which in turn is represented as a Fourier series.
side the muffin-tin spheres [14] the basis functions a
Bloch sums of radial functions times spherical harmo
ics. All calculations were done in the fcc structure. Th
approximation of the structure was seen to give a neg
gible change in the calculated generalized cohesive en
gies. We used the pseudocore5p wave, and the valence
6s, 6p, 5d, and5f waves, and sampled the reciprocal spa
with 84 k points in the irreducible1y48 of the Brillouin
zone [15].

The electron core was treated fully relativistically, bu
the valence states were described scalar relativistica
i.e., the spin-orbit interaction was neglected. The justi
cation for omitting the valence spin-orbit term is that th
valence band in the present case is much broader than
spin-orbit splitting, making the error introduced by omi
ting this term negligible.

We used the Hedin-Lundqvist parametrization of th
local density functional [16], and for the generalize
gradient corrected functional we used the form recen
developed by Perdew and Wang [17].

Figure 2 shows the valence stability for the lanthanid
with atomic number 58 to 71, Pm excepted. The expe
mental points are taken from Ref. [11]. From this figu
we see that the valence state is correctly predicted for
elements both with the local density approximation (LDA
and the generalized gradient approximation (GGA), but t
GGA results are, as expected, much closer to the exp
mental points. Thus, all studied elements are calculated
be trivalent except Eu and Yb, which are divalent. Th
GGA calculations reproduce the experimental data w
an error less than 0.15 eV, and our present calculatio
are far more accurate than all previous calculations of
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FIG. 2. Di- trivalent energy differenceEsII , III d at zero
pressure for the elements 58 to 70, Pm excepted. Calcula
results are shown for two different approximations to th
density functional, LDA and GGA. The experimental point
are taken from Ref. [11].

valence stability of the lanthanides made; see, for examp
Refs. [18] and [19].

Our accurate determination of the di- trivalent energ
difference for the elemental lanthanides suggests tha
meaningful energy balance investigation of the highly i
teresting intermediate valence systems is within rea
As an example, we have calculated the di- trivalent e
ergy difference for selected Sm and Tm chalcogenides
a function of pressure. These systems have receive
truly vast amount of experimental and theoretical atte
tion due to their interesting intermediate valence behav
[1–3,20–25].

Experimentally, the Sm chalcogenides SmS, SmSe, a
SmTe are semiconductors at ambient pressure. Jayara
[21] demonstrated that these systems undergo a press
induced semiconductor to metal transition (SMT
accompanied by a valence change of the Sm ions. S
exhibits a SMT together with a volume collapse
0.65 GPa. SmSe and SmTe show no volume collap
Here, the SMT is smooth, and the metallic regime
reached at 4.5 and 5.5 GPa, respectively. For the c
A
he-
ted
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TABLE II. Energy balanceEsII , III d for the Sm and Tm chalcogenides at zero pressure.
negative value forEsII , III d means that the divalent phase is stable. The numbers in parent
ses afterEsII , III d give the energy difference between the experimental value and our calcula
value for the pure metal (Sm and Tm).PII-III is the calculated transition pressure from the
divalent to the trivalent state with error estimation calculated by increasing the atomic cor
tion energies until the experimental and calculatedEsII , III d for the element coincide.PSMT is
the experimental semiconductor to metal transition pressure.

System E(II, III) (eV) PII-III (GPa) PSMT (GPa)

SmS 20.015 s20.01d 0.28 s10.21d 0.65a

SmSe 20.18 s20.01d 4.0 (10.2) 4.5a

SmTe 20.42 s20.01d 6.9 (10.2) 5.5a

TmS 0.54 (20.08) 28.4 (11.1) metal atP ­ 0b

TmSe 0.23 (20.08) 23.5 (10.9) metal atP ­ 0c

TmTe 0.0097 (20.08) 20.14 (11.1) 2a,d

aRef. [21]; bRef. [22]; cRef. [23]; dRef. [24].
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responding Tm chalcogenides, the situation is somewh
different. Both TmS and TmSe are metallic at ambien
pressure and have lattice parameters close to a trivale
value, whereas TmTe is a semiconductor, with a SMT a
2 GPa [21,24].

Our calculated energy balances for SmS, SmSe, SmT
and the corresponding Tm compounds are listed i
Table II. Since these systems are semiconductors in th
divalent state, the discussion regarding the4f-5d inter-
shell coupling energies in the solid changes somewha
In a paramagnetic semiconductor, this coupling will be
zero, so the cancellation between the trivalent and diva
lent solid does not occur. Nevertheless, the contributio
from the intershell coupling in the solid, which actually
is possible to calculate and therefore poses no princip
problem, should still be negligible.

Starting with the Sm chalcogenides, we see that th
correct valence is predicted for all three systems sinc
EsII , III d in the second column of the table is negative
for all three compounds. The number in parenthese
(20.01 eV) is the difference between the GGA calcula-
tion and the experimental result in Fig. 2. We will use
this number when estimating the sensitivity and system
atic error in the calculated divalent to trivalent transition
pressure. SinceEsII , III d decreases with increasing atomic
number of the ligand (S, Se, Te), we note that the divalen
configuration becomes more stable the heavier the ligan
is. It now becomes of interest to determine when the en
thalpy difference between the two configurations is zero
i.e., to derive the theoretical pressurePII-III at which the
divalent f6 configuration will transform to the trivalent
f5 configuration, neglecting the possibility of a mixture
of the two phases. In the third column of Table II the
calculated divalent to trivalent transition pressure is listed
while the fourth column shows the experimental semicon
ductor to metal transition pressure. We note first of al
that the observed transition pressures are very small a
pose a great challenge to reproduce. The two pressures
Table II cannot be compared directly since the experimen
tal high pressure phase involves an intermediate valen
4639
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state rather than the pure configurations assumed in
theoretical calculation. However, it is obvious that ou
prediction regarding the increased divalent stability fo
heavier ligand is confirmed, sincePSMT increases with the
ligand atomic number. Also, the absolute numbers of o
calculatedPII-III compare well withPSMT, suggesting
that most of the physics determiningPSMT is, in fact,
accounted for in our idealizedPII-III. The number
in parentheses afterPII-III is the calculated change in
transition pressure whenEsII , III d is adjusted to coincide
with the experimental value. The change inPII-III is seen
to be around 0.2 GPa for all three Sm chalcogenides.

Finally, turning to the last three systems in Table I
we see that the correct valence is predicted for TmS a
TmSe; i.e., both are calculated to be trivalent and th
metallic at ambient pressure. This is still true after takin
the systematic error of 0.08 eV in the valence stabili
of the pure metal into account. Since these two syste
are trivalent at ambient pressure,PII-III is negative; see
column three. TmTe is also calculated to be just abo
metallic at ambient pressure, with a very small energ
difference, less than 0.01 eV between the divalent a
trivalent configurations. If the systematic error for th
pure metal is taken into account, however, TmTe
calculated to be divalent. Experimentally, TmTe is foun
to be a semiconductor at ambient pressure.

In conclusion, we have described a general method
calculating valence stability of lanthanide systems, an
demonstrated its validity for the lanthanide elements a
on several intermediate valent compounds. By recogn
ing that presently, density functional calculations cann
reproduce all coupling energies of atomiclike open ele
tron shells, we have instead utilized the fact that man
of these coupling energies cancel between the atom a
the solid, and that the remaining ones can be taken fro
atomic data. This data may be either experimental, o
when highly accurateab initio results from atomic calcu-
lations become available, e.g., configuration interaction r
sults, they may be determined on a purely theoretical lev
The error in our calculated valence stability is in most cas
less than 0.1 eV, and in all cases less than 0.15 eV. Ho
ever, the relative error of our calculations is smaller, an
the trends in Fig. 2 are valid beyond 0.1 eV. Also, in situ
ations where a mixed valence state develops, many-bo
effects will influence the total energy by 50–100 meV
which is on the same level as the uncertainty of our calc
lations. Combined with many-body model Hamiltonians
our method is therefore able to provide important informa
tion about mixed valence and heavy fermion systems.
is also a method that is suitable as a means to identify n
materials exhibiting valence mixing. Recently, it has bee
pointed out that such a search might be most useful in t
present attempts to derive new materials showing exce
tional thermoelectric power [26].
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