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Collective Intersubband Excitations in Quantum Wells:
Coulomb Interaction versus Subband Dispersion
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The dependence of the intersubband absorption line shape on the subband dispersion and the Coulo
interaction between electrons is studied using the Hartree-Fock semiconductor Bloch equation
For subbands with the same effective masses, we show that the absorption/emission line sha
is solely determined by the single-electron properties. For very different effective masses, th
Coulomb interaction results in a strong redistribution of the oscillator strength. The line shape in
this limit is determined by a Fermi-edge collective mode induced by a repelling electron-hole pair.
[S0031-9007(97)04616-4]
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The recent demonstration of laser oscillation in inte
subband transitions of unipolar quantum wells (QW) [1
observation of Fano interference induced by tunneling
such structures [2,3], and related proposals for semico
ductor lasers without inversion [4] make it necessary
revisit the problem of the influence of electron-electro
interactions on the line shape of intersubband transition
The factors determining the shape of the absorption
gain spectrum and the nature of line broadening (inh
mogeneous, associated with single particles, or homog
neous, associated with collective modes) are especia
important for the laser development.

Electron-electron Coulomb interactions in intersubban
transitions can be subdivided into the direct and exchan
Coulomb interaction and the depolarization caused by t
electron plasma in a specific quantum well structure.
has been shown that these factors determine the natur
intersubband transitions in inelastic light scattering [5
Another important issue is the dispersion which is ex
pressed as the difference in effective masses of the s
bands and is commonly referred to as “nonparabolicity
The influence of the subband dispersion and Coulomb
teraction on the intersubband absorption spectra has b
considered in [6–8]. It has been shown that the inclusio
of only the depolarization terms results in a narrowing o
the absorption linewidth.

In this Letter we analyze the relation between th
Coulomb interaction and the subband dispersion that p
vides a new understanding of the collective modes th
shape the absorption/gain spectra. Using the semic
ductor Bloch equations [9] applied to intersubband tra
sitions, we analytically and numerically demonstrate th
(1) in the limit of a small difference of effective masse
and in the ideal two-dimensional limit, the influence o
exchange terms on the absorption or gain spectrum dis
pears, which is a generalization of Kohn’s theorem for in
tersubband transitions in arbitrary confinement potentia
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(2) in the limit of a large difference of effective masses
the Coulomb interaction results in a strong redistribu
tion of the oscillator strength and thereby makes a wid
spectrum associated with the single-particle subband d
persion disappear. The absorption or gain spectrum is
narrow peak determined by a homogeneously broaden
collective excitation. The latter effect is explained in
terms of a Fermi-edge singularity of a repelling electron
hole pair for two-dimensional systems where exchang
terms dominate, and in terms of a negative-mass intersu
band exciton when the depolarization terms are domina

Consider one-electron states in each subbandm of the
conduction band having a certain momentumk in the
plane of the quantum well (Fig. 1). The Hamiltonian fo
subbands interacting with electromagnetic field [9] in th
rotating frame (see [10]) has the form

H ­
X
m,k

h̄Dmka1
mkamk

2
X

hm,njk
sh̄Vmnka1

mkank 1 h̄Vp
mnka1

nkamkd

1
1
2

X
mnn 0m0kk0,q

h̄V mnn0m0

q a1
m,k1qa1

n,k02qan0,k0am0,k ,

(1)

whereDmk is the detuning of the statem, k from the field,
Vmnk ­ `mnkE yh̄ is the Rabi frequency for an electro-
magnetic field amplitude2E applied between an upper
subbandm and a lower subbandn, `mn ­

R
fp

mzfn dz
is the dipole matrix element,fmszd is the envelope wave
function in the statem of the quantum well, andamk are
the electron creation and annihilation operators satisfyin
hamk, a1

nk0j ­ dmndkk0. The Coulomb interaction terms
for two subbands are nonzero only form ­ m0, n ­ n0

(direct and exchange terms), or form ­ n0 fi n ­ m0

(depolarization) [5]; the corresponding form factors are
© 1997 The American Physical Society 4633
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FIG. 1. The scheme of the momentum states of the tw
subbandsa and b coupled by a laser field with the frequency
v. Here Dak and Dbk are detunings of the states from the
field, andD ­ 2Da0.

V mnn0m0

q ­ Vq

Z
dz dz0 fmszdfm0 szde2qjz2z0jfnsz0dfn0 sz0d .

(2)

The Fourier transform of the Coulomb potential in tw
dimensions is

Vq ­
e2

2h̄´0´b´sqd jqj
, (3)

where´b is the background dielectric constant. The nea
resonant screening [11] is taken into account appro
mately via the dielectric functiońsqd given by the static
4634
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Lindhard formula [9]. All direct termssq ­ 0d cancel
with the interaction energy of the ions of the crysta
lattice; exchange terms do not containq ­ 0 contribu-
tions. The depolarization is much smaller than the ex
change terms forq fi 0, and, for the present discussion,
we retain it only forq ­ 0. The ratio of depolarization
terms to the exchange terms in the equations of motion
seen to have a characteristic value proportional tokFaW ,
wherekF is the Fermi momentum andaW is the effective
width of the well given by the integral in (2). The de-
polarization contribution grows with the electron density
and the width of the well. For a truly two-dimensional
electron gas, i.e., in the limit ofkFaW ø 1, the depolar-
ization becomes negligible, and the form factors becom
V mnn0m0

q ­ Vqdmm0dnn0. This limit is realized, e.g., in a
GaAs quantum well with transition energies of the orde
of 0.1 eV for electron densities less than1011 cm22.

The Hamiltonian of Eq. (1) along with phenomenologi-
cal relaxation terms allows us to obtain the equations o
motion for the reduced density matrixsmnk ­ ka1

nkamkl,
wherek is the in-plane momentum and the brackets de
note a quantum statistical average. The relaxation term
which we treat in the rate-equation approximation (se
[10]), correspond to collisions between electrons with rat
gcoll, dephasing of the polarizations between subband
with rate gdeph, and transitions with spontaneous emis
sion of phonons or photons with ratewab. In the Hartree-
Fock approximation, the semiconductor Bloch equation
for the polarizations and populations in the two couple
subbands, uppera and lowerb, are [5]
Ùsaak ­ iVsbak 2 iVpsabk 2 wabsaak 1 Ùsaakjcoll 1 i
X
qfi0

V abba
q ssbaksabk1q 2 sabksbak1qd

1 iV abab
0

X
k0

ssbak0sabk 2 sabk0 sbakd (4)

Ùsabk ­ 2gabsabk 1 isD 2 dkdsabk 1 iVssbbk 2 saakd 1 isabk

X
qfi0

sV aaaa
q saak1q 2 V bbbb

q sbbk1qd

1 issbbk 2 saakd
X
qfi0

V abba
q sabk1q 2 issbbk 2 saakdV abab

0

X
k0fik

sabk0 , (5)
a

t

za-

he
he
,
g
It
al
nd
where the dephasing rategab includes contributions from
all relaxation mechanisms,D ­ 2Da0 is the detuning of
the field from the resonance with the zero-momentu
single-particle states,dk ­ h̄k2y2mr , and the reduced
mass ism21

r ­ m21
a 2 m21

b . We designate the mass of
free electron bym0. The equation forÙsbbk is similar to
that for Ùsaak. Terms with coefficientsV aaaa

q and V bbbb
q

correspond to the exchange self-energy,V abba
q to the

excitonic enhancement, andV abab
0 to the depolarization.

Gain or absorption is determined by the sum of th
polarizations at all momentaPmn ­

P
k smnk as follows:

G ­ 2
2vj`ab j2

h̄´0cn Ims Pab

V d, wherev is the frequency of the
field, and n is the index of refraction. Therefore we
attempt to write the set of equations containing only to
polarizations and populations in a subband. The dire
summation of Eqs. (4) and (5) in a manner similar to [1
m

e

al
ct

2]

yields (a similar result is obtained forPbb)

ÙPaa ­ iVPba 2 iVpPab 2 wabPaa , (6)

ÙPab ­ 2sgab 2 iDdPab 2 iV abab
0 sPbb 2 PaadPab

1 iVsPbb 2 Paad 2 iSab , (7)

where we defined the inhomogeneous part of the polari
tion to beSab ­

P
k dksabk. We see that the Coulomb

terms completely disappear from the equations for t
populations, and are present only in the equation for t
polarization as the depolarization shift, and, implicitly
via Sab. The result given by Eq. (7) proves an analo
of the generalized Kohn’s theorem [13] for this case.
states that under the conditions of truly two-dimension
electrons (where the depolarization shift vanishes) a
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of parallel subbandssdk ­ 0d, the spectrum of gain or
absorption does not depend on the Hartree-Fock p
of the Coulomb interaction between electrons. Equi
alently, the line shape is determined by noninteracti
single-particle excitations.

We numerically solve Eqs. (4) and (5) for a sma
laser field (linear absorption). The case of a small d
ference of masses in the two subbands corresponds
e.g., a GaAsyAlGaAs quantum well and a100 meV
transition. Masses of the bands estimated from Kan
model are ma ­ 0.078m0, mb ­ 0.069m0; ´b ­ 10.9,
gdeph ­ 1 meV, gcoll ­ 1 meV. The environment tem-
perature is taken to be12 K, and the electron density
N ­ 1.25 3 1012 cm22. The specific well structure is
not essential for the results. In agreement with the abo
analytical result, the absorption (see Fig. 2) looks like
Lorentzian and is only slightly different due to subban
dispersion when calculated with (dashed line) or witho
(solid line) the exchange terms (which are of the order
several meV in this case). The depolarization terms cau
just a shift of the absorption line to higher frequencie
(dotted line in Fig. 2) in agreement with (7).

The case of a large difference of masses in the tw
subbands is realized in a InAsyAlSb quantum well and
a 100 meV transition. The parameters different from th
previous case arema ­ 0.039m0, mb ­ 0.027m0, ´b ­
15.7, N ­ 1012 cm22. In this case (see Fig. 3) the ab
sorption spectrum without the account of the Coulomb i
teraction essentially replicates the population distributio
in the filled lower subband, since the energy density
states is constant. Unlike the previous case, the absorp
with the account of the Coulomb interactions is very muc
different and is sharply peaked with the linewidth dete
mined essentially by relaxation rates. The interpretati
of the line shape can be provided via a pair of electro
excited to the upper subband and a hole created ther
in the lower subband. In typical intersubband transitio
the mass of the upper subband is greater than that
the lower subband, and therefore the reduced mass of
electron-hole pair is negative. This makes the interacti

FIG. 2. Gain spectrum for the lower filled subband with
small subband dispersion (corresponding to, e.g., GaAs QW
mr ­ 20.63m0, as a function of detuningD without Coulomb
interaction (solid line), with only exchange terms (dashed line
and with all terms (dotted line) atkFaW ­ 0.4.
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between the electron and the hole repulsive. The electr
and the hole, appearing in the final state of absorptio
try to decrease the overlap of their wave functions, whic
decreases the dipole moment (oscillator strength) of th
transition. To form an eigenstate under the interaction
the electron and the hole have to spread over some ran
of neighboring momentum states. This would be impos
sible when the neighboring states are occupied and e
ercise Pauli exclusion. Thus holes around the electro
Fermi momentum of the lower subband prevent the de
crease of the oscillator strength, while it is decreased
all other momenta.

In case of a small laser field (linear absorption) the
equations (5) become a linear set of equations for pola
izations at different momenta. The solution for the sum
of polarizations can be decomposed into a sum of simp
fractions corresponding to collective modes and contain
ing D 1 igab 2 lj in the denominator, wherelj is a
complex eigenvalue of the matrix. The sum of their nu
merators is equal to

P
kssbbk 2 saakd. The integral of

such a Lorentzian is independent of its width and its reso
nant frequency, and proportional to the numerator. Ther
fore the integral of the linear absorption coefficient ove
detuning obeys a specific sum ruleZ

Im

µ
PabsDd

iV

∂
dD ­ psPbb 2 Paad . (8)

The integral in (8) is independent of the interactions
between particles [14], and gives a special case of
more general “oscillator strength sum rule,” Eq. (5.7.5
in Ref. [15], for frequencies close to the resonance.

Because of this sum rule, the oscillator strength is redi
tributed by the excitonic enhancementV abba in favor of
the collective mode close to the Fermi momentum, and i
resonance is shifted to a higher frequency by the exchan
self-energyV bbbb (dashed line in Fig. 3). A surprising re-
sult is that the electron-hole interaction, despite being re
pulsive, causes the peak absorption to be greater than
free-electron absorption (see Fig. 3). Such a resonanc

FIG. 3. Gain spectrum for the lower filled subband with a
large subband dispersion (corresponding to, e.g., InAs QW
mr ­ 20.093m0, as a function of detuningD without Coulomb
interaction (solid line), with only exchange terms (dashed line
with only the depolarization (diamond line), and with all terms
(dotted line)kFaW ­ 0.4.
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FIG. 4. Gain spectrum for the upper filled subband with
large subband dispersion (corresponding to, e.g., InAs QW
mr ­ 10.093m0, as a function of detuningD without Coulomb
interaction (solid line), with only exchange terms (dashed line
and with all terms (dotted line) atkFaW ­ 0.4.

which we term “repellon,” is reminiscent of the Maha
exciton [16]. They both broaden and disappear at high
temperatures. However, our calculations show that t
line shape only slightly changes from 0 to12 K (shown
in Fig. 3), i.e., up to the temperatures which are easily a
cessible experimentally. We emphasize that, contrary
the Mahan exciton, the repellon appears due to repuls
electron-hole interaction.

At large subband dispersion, the depolarization is n
reduced to a simple shift. Consider the effect of th
depolarization alone, as was done in [6,8]. We fin
from (5) that this term causes an effectively attractiv
interaction between an electron and a hole, resulting
a bound state with a positive (above the band edg
energy. Thus depolarization forms an absorption pe
associated with the bound state near the higher-freque
sk ø 0d edge of the spectrum (see the diamond line
Fig. 3). It counteracts the excitonic enhancement term
which are repulsive and tend to form a peak near t
lower-frequency sk ø kFd edge of the spectrum. At
densities considered, combined action of the exchan
and depolarization terms causes the peak to be at so
intermediate frequency and to be wider (dotted line
Fig. 3). The depolarization bound state would in fa
determine the spectrum at much higher densities,
alternatively, for much wider wells.

To compare the repellon to usual collective excitation
consider gain in case of a filled upper band and
empty lower band. Then an attractive pair of an electr
in the lower band and a hole in the upper band [17
called “antiexciton” with a positive reduced mass wi
determine the emission line shape. It causes the gain w
the account of the Coulomb interactions to have a usu
excitonic spectrum (see Fig. 4). In spite of the similarit
of the line shapes of the antiexciton and the repellon, t
minimum of gain between the antiexciton peak and th
tail shows the presence of a bound state separated fr
the continuum [18].

In conclusion, we show that absorption or gain i
intersubband transitions is determined by the interplay b
4636
a
),

),

n
er
he

c-
to

ive

ot
e
d
e
in
e)
ak
ncy
in

s
he

ge
me

in
ct
or,

s,
an
on
],

ll
ith
al

y
he
e
om

n
e-

tween the Coulomb interaction and the subband dispe
sion. For a small dispersion, the exchange effects do n
modify the spectrum while the depolarization terms lea
to its blueshift. For a large dispersion, the spectrum i
dominated by collective excitations. The excitonic en
hancement terms lead to a formation of the resonan
(repellon) due to a repelling electron-hole pair near th
Fermi edge. The exchange self-energy blueshifts the r
pellon resonance, and the attractive depolarization term
counteract the formation of the repellon.
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