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Collective Intersubband Excitations in Quantum Wells:
Coulomb Interaction versus Subband Dispersion
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The dependence of the intersubband absorption line shape on the subband dispersion and the Coulomb
interaction between electrons is studied using the Hartree-Fock semiconductor Bloch equations.
For subbands with the same effective masses, we show that the absorption/emission line shape
is solely determined by the single-electron properties. For very different effective masses, the
Coulomb interaction results in a strong redistribution of the oscillator strength. The line shape in
this limit is determined by a Fermi-edge collective mode induced by a repelling electron-hole pair.
[S0031-9007(97)04616-4]

PACS numbers: 71.10.Pm, 71.35.-y, 78.66.Fd

The recent demonstration of laser oscillation in inter-(2) in the limit of a large difference of effective masses,
subband transitions of unipolar quantum wells (QW) [1],the Coulomb interaction results in a strong redistribu-
observation of Fano interference induced by tunneling irtion of the oscillator strength and thereby makes a wide
such structures [2,3], and related proposals for semicorspectrum associated with the single-particle subband dis-
ductor lasers without inversion [4] make it necessary tgoersion disappear. The absorption or gain spectrum is a
revisit the problem of the influence of electron-electronnarrow peak determined by a homogeneously broadened
interactions on the line shape of intersubband transitiongollective excitation. The latter effect is explained in
The factors determining the shape of the absorption oterms of a Fermi-edge singularity of a repelling electron-
gain spectrum and the nature of line broadening (inhohole pair for two-dimensional systems where exchange
mogeneous, associated with single particles, or homogeerms dominate, and in terms of a negative-mass intersub-
neous, associated with collective modes) are especiallyand exciton when the depolarization terms are dominant.
important for the laser development. Consider one-electron states in each subbanaf the

Electron-electron Coulomb interactions in intersubbandconduction band having a certain momentlmin the
transitions can be subdivided into the direct and exchangglane of the quantum well (Fig. 1). The Hamiltonian for
Coulomb interaction and the depolarization caused by theubbands interacting with electromagnetic field [9] in the
electron plasma in a specific quantum well structure. Irotating frame (see [10]) has the form
has been shown that these factors determine the nature of

intersubband transitions in inelastic light scattering [5]. g = ZﬁAukalkauk

Another important issue is the dispersion which is ex- wk

pressed as the difference in effective masses of the sub- . Z (hQ ka+ka .+ T ka+ka )
MVKH uk ™y purk vk p

bands and is commonly referred to as “nonparabolicity.”

The influence of the subband dispersion and Coulomb in- ok L

teraction on the intersubband absorption spectra has been  + — D> RVETRGl L ad e qavioau
considered in [6—8]. It has been shown that the inclusion nvv'n'kkl.q

of only the depolarization terms results in a narrowing of (b

the absorption linewidth.

In this Letter we analyze the relation between thewhereA .y is the detuning of the stafe, k from the field,
Coulomb interaction and the subband dispersion that prof .,k = ¢,k E/# is the Rabi frequency for an electro-
vides a new understanding of the collective modes thamagnetic field amplitud@Z applied between an upper
shape the absorption/gain spectra. Using the semicoisubbandu and a lower subband, ¢, = ff;’jzfy dz
ductor Bloch equations [9] applied to intersubband tranis the dipole matrix element;,(z) is the envelope wave
sitions, we analytically and numerically demonstrate thafunction in the stateu of the quantum well, and,, are
(1) in the limit of a small difference of effective massesthe electron creation and annihilation operators satisfying
and in the ideal two-dimensional limit, the influence of{aﬂk,a,fk/} = 6,,06kk. The Coulomb interaction terms
exchange terms on the absorption or gain spectrum disafer two subbands are nonzero only fpr= u/, v = v/
pears, which is a generalization of Kohn’s theorem for in-(direct and exchange terms), or far = v/ # v = u/
tersubband transitions in arbitrary confinement potentials({depolarization) [5]; the corresponding form factors are
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Lindhard formula [9]. All direct termdq = 0) cancel
a with the interaction energy of the ions of the crystal
lattice; exchange terms do not contajn= 0 contribu-
Aak[ K tions. The depolarization is much smaller than the ex-
‘ A[ change terms fog # 0, and, for the present discussion,
-------------- we retain it only forq = 0. The ratio of depolarization
b terms to the exchange terms in the equations of motion is
o seen to have a characteristic value proportiona oy,
wherekr is the Fermi momentum andy is the effective
width of the well given by the integral in (2). The de-
k polarization contribution grows with the electron density
and the width of the well. For a truly two-dimensional
FIG. 1. The scheme of the momentum  states of the twas|ectron gas, i.e., in the limit dfray < 1, the depolar-
subbandsz and b coupled by a laser field with the frequency ;,4i0n pecomes negligible, and the form factors become
w. Here A, and Ay, are detunings of the states from the verre — s s This limit is realized e .
field, andA = —A . a qOpupu' Oy’ i €d, .9, Ina
GaAs quantum well with transition energies of the order
of 0.1 eV for electron densities less th#d'! cm™2.
. / S / / The Hamiltonian of Eq. (1) along with phenomenologi-
Va'tt =V ] dzd?! fu(@)f (e (). cal relaxation terms allows us to obtain the equations of
motion for the reduced density matrix,, . = <a,fkaﬂk>,
(2)  wherek is the in-plane momentum and the brackets de-
The Fourier transform of the Coulomb potential in two Note a quantum statistical average. The relaxation terms,
dimensions is which we treat in the rate-equation approximation (see
[10]), correspond to collisions between electrons with rate
- (3) veoll, dephasing of the polarizations between subbands
2higoepe(q) Iql with rate yq.pn, and transitions with spontaneous emis-

wheree,, is the background dielectric constant. The nearSion of phonons or photons with raie,,. In the Hartree-

resonant screening [11] is taken into account approxiFOCk approximation, the semiconductor Bloch equations

mately via the dielectric function(q) given by the static| fscl’;btg‘;ngglirézpa;logﬁdﬁgsveﬂzp:':igif’sr]‘s in the two coupled

62

Va

. . . %k . . abba
Taak = 1Q0pak = 10 Tapk = Wap Taak + Taakleon + i Z Vi " (Tbak Tabk+q — Tabk Tbak+q)

q#0
+ iVSbab Z(O'hak/o'abk — Oubk' Obak) (4)
k/
. _ . _ . _ . aaaa _ yybbbb
Tabk = ~YabTapk + (A = Sk)0apk + iQ(Tppk = Taak) + i apk Z(Vq Taak+q — V4~ Obbk+q)
q#0
+ i(Tprk — Oaak) Z ngbao'ahkm — i(oppk — Taar) VS Z Tabk’ » (5)
q70 k' 7k
where the dephasing rate; includes contributions from|
all relaxation mechanismg&y = —A,q is the detuning of yields (a similar result is obtained fét,,;)
the field from the resonance with the zero-momentum oo Lo _
single-particle states§y = iik%/2m,, and the reduced Paa = i1QPpa = 19" Pap = Wap Paa» (6)
mass isn, ' = m;' — m;, . We designate the massofa ;, _ _ . _.abab _
free electron byn,. The equation folr,,x is similar to Pay (Yap = i8)Pap = iV (Prp = Paa)Pay
that for o,.k. Terms with coefficientd/¢*““ and Vé’””” + iQ(Ppy, — Pua) — iSap, (7)

correspond to the exchangfhself-energfgg”b“. o the \ihere we defined the inhomogeneous part of the polariza-

excitonic enhancement, andf”*” to the depolarization. tion to beS., = ) Skowk. We see that the Coulomb
Gain or absorption is determined by the sum of theierms completely disappear from the equations for the

polarizations at all momentB,,, = > o,k as follows:  populations, and are present only in the equation for the

G = —2eleal Im(%), where o is the frequency of the polarization as the depolarization shift, and, implicitly,

hegen
field, andn is the index of refraction. Therefore we via S The result given by Eq. (7) proves an analog
attempt to write the set of equations containing only totabf the generalized Kohn's theorem [13] for this case. It
polarizations and populations in a subband. The direcstates that under the conditions of truly two-dimensional

summation of Egs. (4) and (5) in a manner similar to [12]electrons (where the depolarization shift vanishes) and
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of parallel subband$sx = 0), the spectrum of gain or between the electron and the hole repulsive. The electron
absorption does not depend on the Hartree-Fock padnd the hole, appearing in the final state of absorption,
of the Coulomb interaction between electrons. Equiv-ry to decrease the overlap of their wave functions, which
alently, the line shape is determined by noninteractinglecreases the dipole moment (oscillator strength) of the
single-particle excitations. transition. To form an eigenstate under the interaction,
We numerically solve Egs. (4) and (5) for a small the electron and the hole have to spread over some range
laser field (linear absorption). The case of a small dif-of neighboring momentum states. This would be impos-
ference of masses in the two subbands corresponds tsible when the neighboring states are occupied and ex-
e.g., a GaAgAlGaAs quantum well and al00 meV  ercise Pauli exclusion. Thus holes around the electron
transition. Masses of the bands estimated from Kane'&ermi momentum of the lower subband prevent the de-
model arem, = 0.078my, m;, = 0.069mg; &, = 10.9, crease of the oscillator strength, while it is decreased at
Ydeph = 1 MeV, y,on = 1 meV. The environment tem- all other momenta.
perature is taken to bé2 K, and the electron density In case of a small laser field (linear absorption) the
N = 1.25 X 102 cm 2. The specific well structure is equations (5) become a linear set of equations for polar-
not essential for the results. In agreement with the abovizations at different momenta. The solution for the sum
analytical result, the absorption (see Fig. 2) looks like eof polarizations can be decomposed into a sum of simple
Lorentzian and is only slightly different due to subbandfractions corresponding to collective modes and contain-
dispersion when calculated with (dashed line) or withoutng A + iy,, — A; in the denominator, wherg; is a
(solid line) the exchange terms (which are of the order otomplex eigenvalue of the matrix. The sum of their nu-
several meV in this case). The depolarization terms caus@erators is equal tQ y (o, — Taak). The integral of
just a shift of the absorption line to higher frequenciessuch a Lorentzian is independent of its width and its reso-
(dotted line in Fig. 2) in agreement with (7). nant frequency, and proportional to the numerator. There-
The case of a large difference of masses in the twdore the integral of the linear absorption coefficient over
subbands is realized in a InA&ISb quantum well and detuning obeys a specific sum rule
a 100 meV transition. The parameters different from the Poy(A)
previous case arei, = 0.039mg, m, = 0.027my, &, = [ | (L)dA = 7(Ppp, — Paa). (8)
157, N = 10> cm™2. In this case (see Fig. 3) the ab-
sorption spectrum without the account of the Coulomb in-The integral in (8) is independent of the interactions
teraction essentially replicates the population distributiorbetween particles [14], and gives a special case of a
in the filled lower subband, since the energy density oimore general “oscillator strength sum rule,” Eq. (5.7.5)
states is constant. Unlike the previous case, the absorption Ref. [15], for frequencies close to the resonance.
with the account of the Coulomb interactions is very much Because of this sum rule, the oscillator strength is redis-
different and is sharply peaked with the linewidth deter-tributed by the excitonic enhancemewt’?® in favor of
mined essentially by relaxation rates. The interpretationthe collective mode close to the Fermi momentum, and its
of the line shape can be provided via a pair of electronsesonance is shifted to a higher frequency by the exchange
excited to the upper subband and a hole created therelsglf-energyV?**> (dashed line in Fig. 3). A surprising re-
in the lower subband. In typical intersubband transitionssult is that the electron-hole interaction, despite being re-
the mass of the upper subband is greater than that gulsive, causes the peak absorption to be greater than the
the lower subband, and therefore the reduced mass of thiee-electron absorption (see Fig. 3). Such a resonance,
electron-hole pair is negative. This makes the interaction
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FIG. 3. Gain spectrum for the lower filled subband with a

FIG. 2. Gain spectrum for the lower filled subband with alarge subband dispersion (corresponding to, e.g., InAs QW),
small subband dispersion (corresponding to, e.g., GaAs QW)n, = —0.093my, as a function of detuning without Coulomb

m, = —0.63my, as a function of detunind without Coulomb interaction (solid line), with only exchange terms (dashed line),
interaction (solid line), with only exchange terms (dashed line)with only the depolarization (diamond line), and with all terms
and with all terms (dotted line) dtray = 0.4. (dotted line)kray = 0.4.
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0.8 - - - - tween the Coulomb interaction and the subband disper-
0.7 | T sion. For a small dispersion, the exchange effects do not
0.6 | modify the spectrum while the depolarization terms lead
05 | to its blueshift. For a large dispersion, the spectrum is
j . . . . . .
T 0.4 dominated by collective excitations. The excitonic en-
© 0.3 hancement terms lead to a formation of the resonance
0.2 (repellon) due to a repelling electron-hole pair near the
0.1 Fermi edge. The exchange self-energy blueshifts the re-
e P pellon resonance, and the attractive depolarization terms
40 -30 20 -10 0 10 counteract the formation of the repellon.
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