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Phase Diagram of Fully Developed Drainage in Porous Media
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Using concepts of invasion percolation in a gradient, we develop a phase diagram of fully developed
drainage in porous media. The transition between stabilized displacement (where the conventional
continuum applies) and fingering is controlled by the change of the sign of the gradient of the
percolation probability (from stabilizing to destabilizing). The transition boundary is described by
scaling laws. [S0031-9007(97)04702-9]

PACS numbers: 47.55.Mh, 05.40.+j, 47.55.Kf

The displacement (drainage) of a wetting (w) fluid drostatic or permeability fielddp/dx ~ —B, expressed
in a porous medium by a nonwetting (nw) fluid hasthrough the Bond numbeB. If B > 0, thenp decreases
been analyzed in detail in the past. For drainage in am the direction of displacement, and the latter involves an
L X L pore network at constant velocity, Lenormand |P frontal region of finite extent scaling ass ~ B~ 1,
[1] identified three limiting patterns, invasion percolation wherew is the correlation length exponent of percolation,
(IP) [2], pistonlike or compact and viscous fingering (VF) followed by a compact region [5,10]. This is an IPSG
[3], and delineated their validity. As the displacementprocess. In the opposite casB € 0, p increasing in
proceeds, however, spatial profiles will develop, and thehe direction of displacement), the process is destabilizing
overall displacement will be characterized by one of(IPDG) and proceeds in the form of capillary fingers, the
two possible global regimes, where there is a continuouaverage thickness of which also satisfies this scaling, but
transition between these limiting patterns (Fig. 1). with |B| in place ofB [11]. Evidently, an IPG description

The first regime involves a frontal region with the struc-would also be relevant to immiscible displacement, with
ture of an IP cluster of extent, followed by an upstream the gradient now due to viscous forces. We propose that
region of increasing length with the characteristics of avarious properties of SD and CVF, the delineation of their
compact pattern [Fig. 1(a)]. This stabilized displacementalidity, the stability of SD, and the validity of the contin-
(SD) regime is where the conventional continuum descripuum approach can be inferred by the two versions of IPG,
tion applies [4] and has been the object of many studieasamely, by determining the spatial variation pfand the
[5,6]. The second regime [Fig. 1(b)] has not been fullysign of its gradient.
analyzed. Typically, it is described as a VF-type pattern Consider drainage at constant volume flow rdde
(for example, of the diffusion-limited aggregation type)in a random porous medium represented as a network
similar to miscible displacements [7]. This, however,of pores (e.g.,L X N in 2D or L X L X N in 3D,
overlooks capillarity, which at sufficiently small scales where N is variable). Assume constant lattice spacing
should be comparable to viscous and should affect thé, and a pore throat size distributian(r), with meanr,,
properties of the fingers (as, for example, in linear stabiland standard deviatioRr,,. In the absence of viscous
ity studies [8,9]). For the sake of generality, we will refer forces, the displacement pattern is IP, where the front
to this regime as capillary-viscous fingering (CVF). advances by penetrating the largest size throat available,

At present, the delineation of the validity of theseand the capillary pressurg. = P,,, — Py, is spatially
regimes (as well as their clear characterization) is notiniform [2]. In the presence of viscous forces, a gradient
available. In this Letter, we provide an answer by(negative or positive) will develop i®.. In view of the
postulating a description in terms of invasion percolatiorrelationsP, = 2y /r andp = ff a(r) dr, wherey is the
in a gradient (IPG) [10]. We particularly recognize the interfacial tension, this, in turn, will impart a gradient in
existence of two different global patterns, depending orp. Then, the process becomes one of the two versions
whether invasion is in atabilizing gradient (IPSG) or of IPG described above. The application of IPG to infer
a destabilizinggradient (IPDG), respectively. The latter properties of SD and CVF is detailed in [12]. Here, we
distinction is fundamental to this Letter and it is for the briefly summarize the salient features and focus on the
first time made in this context (e.g., compare to [5]). conditions that delineate their validity.

Recall that IPG is IP in a field where the percolation Consider an SD [Fig. 1(a)] and focus on the frontal
probability p has a spatial gradient, typically due to a hy-region, where the pattern is IP, of widd and lateral
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which states that sincer delineates the] extent of the
IP cluster, we must also havkp ~ o », where Ap

(= —(rfl—;’) is the variation ofp in that region, namely,
{+v(D-1)

Ap ~ Car/23(boc v — Mo). The latter, in turn,
is obtained by using the relation betweéh and p,
referred to above, and the expression for the change in

capillary pressureAP, ~ v,unw/rmzr(bamf - M),
obtained by estimating the pressure drops in this region
[12]. Essentially, the term between the bracket\&t,,
and Ap, and of (1) expresses the difference between the
pressure drops in the nw and w phases. The power law
reflects the progressively increasing resistance to flow

Compact

- gt

X of the nw phase, which occupies part of a percolation
(a) cluster, as its size increases.
It is easily shown that (1) admits a unique positive
CVF solution for all values of ¥ and Ca. At small Cg,

this solution approaches the power-law asympiote-

|
= e (Carp/2%) o1, which has an exponent identical
to Wilkinson’s [5]. However, his result was obtained
differently, by extrapolating in the frontdtactal region
:_"'— a continuum solution, valid behind the front. It is
E interesting to note from (1) that an increase in the disorder
% of the pore structure (increasir®) has an effect which is
- equivalent to an increase in capillarity.
W The fact that a solution of (1) exists for al and
!-:—-——.._ Car also means that fully developed SD exists (but is
BT not necessarily stable) for alf and Ca (because of the
existence of a solution, the left-hand side (LHS) of (1)
(b) is positive, hencep decreases in the direction of dis-
lacement). To establish whether this regime will actually
FIG. 1. Schematics of fully developed drainage: (a) ,Stab“,izefﬁevelop, however, we must address its stability. Equiva-
dlsplacgment& denotes the volumetric fraction of the invading lently, this can be done by examining the development of
phase); (b) capillary-viscous fingering. A . .
the initial phase of the displacement, before a traveling-

d—1 . ) . , . wave solution develops. An analysis of the properties of
extentL?"", whered is the embedding dimension. This ihe cVE regime is given in Ref. [12].

region is centered around the mean front positioir), Consider, now, the delineation of the validity of these
traveling at velocityv, and defined, in analogy.wnh IPG, regimes, in which case one needs to addressirtitial

as the place where the transverse averagp & equal  phase of the displacement. During this interval, the dis-
to the percolation threshol(jz(XC_) = p.. It |s.shown IN" placement has an extepts) X L4~!, wherey is increas-
[12] that use of IPSG results in the following equationjg with time. The pattern is of the IP type as long as

for o x(1) = x<(Ca M), wherey.(Ca M) is to be determined.
At ¥ = xe, the pattern departs from percolation and a
(ba%”’” _ Ma’) 23 P (1) lIransition towards a fully developed displacement starts.
Car The latter will either become a SD (with a compact re-

gion following an IP front) or a CVF regime, depending

where M = uy/unw IS the viscosity ratio, on whether, aiy., p decreases or increases in the direc-
Car = vu,w/7 is the capillary number at the front, and tion of displacement, respectively. To trace this transition,
b is a dimensionless constant. ExponefisndD corre-  we need, first, to identify. and, second, to determine the
spond to the conductance and the mass fractal dimensiaign of the gradient op at that point.
of the percolation cluster, respectively [13]. Upstream The analysis is similar to the SD case. The pressure
of the front, there is a compact region [Fig. 1(a)], thedrops are expressed similarly, but now wjthin place of
transition to which can be described by a crossoverr and Q,., = Q (there are no traveling fronts). Note
function [12]. also that a slight modification is needed because here

Equation (1) is obtained by applying the self-the entire cluster is fractal. As previously, the most
consistency argument of gradient percolation [5,10]jmportant quantities ard P. and Ap across a region of
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extent y, which in absolute value is read 3AP.| ~ plateau, which reflects finite-size effects. For sufficiently
+v(d—1)

293/ rmlAp| ~ quaw/rmlcx —+ — Mx|, wherec is ~ small x, the curve approaches a realization-dependent

another constant. To defing., we follow Lenormand value M*. For the purposes of this Letter, we will as-

[1] and request that afy., we must have| N"| — sume in the remaining thdt and y. are sufficiently large
€ . - .

¢ < 1, where N, is the fraction of sites of the nw for the power-law scaling of percolation in (2) to be ap-

phase occupying an IP cluster. The scaling of the latteP!ic@ble (as shgwr&in Fig. ?:I)b \1\/6 will also take” = 1
can be obtained from percolation theory, namey, ~  1OF réasons to be discussed below. Vo2
(cons) (p — p.)? [13]. Proceeding as in [1], substituting _ 1he solution of (2) depends on the S|gnoqf .
|Ap| = |p — p.| from the above, and taking = y« . It is apparent from Fig. 2 that we must dlstlngwsh

gives the following equation: two different cases: o
(@) If M < M~ (region A in Fig. 2), the term between

Ca L, g0 the brackets in (2) is positive, and the resulting equation is
3 AXe” lexe ™ — Ml ~e, (2) very similar to (1) describing the extent of the stabilized
zone in SD. As in that case, it admits a solution &b
the solution of which will be discussed below. This equa-values of Ca, with the same dependence on parameters
tion represents a generalization of the two equations of [14s . Moreover, and for the same reasons as in SD,
describing the IP-to-compact and IP-to-VF boundaries, rep is decreasing with distance for aj(r) = y., and
spectively (which were determined in [1] in what amountsthe problem is IPSG. This means that whgq is
to a ye X xe lattice under the assumption that pressurgeached, the regime that will set in will be an SD. Thus,
drops occur only in one phase). when M < M*, the displacement is annconditionally
We note that in (z)p)(:"(fp) actually represents the stabilized displacement. This conclusion is similar to that
largesy asymptote of the ratid/AP,,/AP,. When the of conventional stability analyses [8] (whefle™ = 1),
lattice is finite or wheny, is small, a more general ex- butitis reached here using IPG.
pression, to be obtained numerically, must be used. Us- (b) If M > M*, the solution y. can lie either in
ing 3D pore network simulations, we computed this ratio,region B, or in regionB; (Fig. 2). If in B,, the term
as shown in the inset of Fig. 2 (actually, we computedn the brackets of (2) is negative, which means tpat
its equivalent ratio of the two flow conductandg@gs /G, |ncrea§esmth distance (note thaA p has the same sign
atM = 1). Atrelatively largey, the curve has the ex- aScX; "~ — M). In this case, therefore, the pattern at
pected power-law scaling, although it eventually reaches g, will tend toward the CVF regime. Now. solves the
different equation

OP, 100 x 100 x 200 . _ E

I1+v

—XE»<C)(:V(+2) _M)Na';lf' 3)

250

However, and contrary to case (a), a solution of d8gs
not exist for allM or Ca. Indeed, its LHS goes through
a maximum as a function gf, which, when substituted
back in (3) gives the following condition for a solution to
0 X 100 exist:

QW/Q""U

v Ca {Hl+v(D-1)
Gy EM (+v(D-2) = 0(6) (4)

> > [where we grouped all constants into éxil) parameter].
logM B Equivalently, (4) expresses the condition for the existence

s of the CVF regime. It shows that fa¥ aboveM™, the

log;&) displacement will become CVF provided that Ca Mr

. / logx are sufficiently large. Otherwise, the pattern will remain

ogM*|_____~ _ ___°~___._ . .

at percolation as the displacement proceeds throughout
regionB, [since a solution to (3) wilhotexist], as well as
after B, is exited (atyo, Fig. 2) and regiorB; is entered.

Aa In the latter region, the term within the brackets in (2) is
positive, the resulting equation having a solution &ir
values ofM or Ca. Reasoning as in case (a), we conclude

FIG. 2. The ratioMAP,, /AP, [first term between brackets that if (4) is violated, the transition will be toward a SD.

in (2)] vs the extenty.. In the inset are results from  We summarize the above as follows: A stabilized dis-

simulations in al00 X 100 X 200 pore network. placement is possible either #f < M* for all Ca, or if
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quantity in brackets is positive (case of SD) or negative
(case of CVF), respectively, is shown in Fig. 4. [A
simple qualitative analog would be to replace (2) by
the quadraticlcy? — M x| = a.] On the SD (stable)
side, the solution increases monotonically with On
the CVF side, however, there exist two branches, one
increasing and the other decreasing with an increase in
M. lItis the lower branch which will be selected, as in a
transient displacement it is the smallgr which will be
encountered first. Thus, when the critical curve is reached
(at M.), there is a discontinuity, which here indicates a
first-order phase transition. This interesting behavior is
also the result of the application of IPG to the problem.
The research of Y.C.Y. was partly supported by
DOE Contract No. DE-FG22-96BC1994/SUB and by an
Invited Professor appointment at UPMC and UPS.

_C+1+v(D-1)
Slope = —§+V(D—2)

FIG. 3. Phase diagram of fully developed displacement in
drainage.
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