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Model for Subharmonic Waves in Granular Materials
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Parametric waves arise spontaneously when a thin layer of granular material is oscillated vertically.
A dynamical model of these waves accounting for the observed instability threshold and appearance of
square patterns is presented. The proposed instability mechanism is due to two competing processes:
a focusing effect that concentrates particles in space, and a diffusion effect that relaxes large thickness
gradients in the layer. When the layer is in a liquid-type state, close to a solid-liquid transition, the
model correctly predicts the presence of oscillons recently reported by P. Umbanhowaret al. [Nature
(London)382, 793 (1996)]. [S0031-9007(97)04636-X]

PACS numbers: 46.10.+z, 47.53.+n, 47.54.+r, 83.70.Fn
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Recent experiments examining thin layers of vertical
vibrated granular material have revealed that paramet
surface waves occur when the dimensionless accelera
G  As2pfd2yg exceeds a critical value [1,2] (hereg
is the acceleration of gravity,A is the amplitude of the
vibrating surface, andf is the frequency of the driving
force). The primary instability gives rise to square
or stripes depending on the frequencyf and particle
diameterd. It was found that the frequency at the cente
of the range in which the square to stripe transition occu
is proportional tod21y2. This scaling is understood in
terms of the ratio of kinetic energy injected into the
layer to the potential energy required to raise a partic
a fraction of its diameter, that is,y2

0ygd (where y0 is
the vertical velocity relative to the neighboring particle)
Considering thatG is constant andy0 is proportional to
the container velocity (so thaty0 , f21), then at low
f, y

2
0ygd ¿ 1, the horizontal mobility is high since the

layer dilationd is large and the dissipation is small; while
at largef, y

2
0ygd ø 1, the layer dilation is small and the

dissipation is large. Only stripes are observed at highf
when the energy injection is low. In this regime,d is too
small to compare to the particle diameter to allow relativ
motion of the grains. The pattern wavelength decreas
with frequency and saturates at a constant value at a v
high frequency [1,3,4].

Another important fact is that, in the same domain o
frequencies where the squares to stripes transition occu
solitary waves or “oscillons” are observed forG smaller
than the instability threshold of waves [5]. For oscillon
to exist, the primary bifurcation must be hysteretic s
that the waves and the flat layer can coexist at the sa
parameter values. In the experiment, hysteresis is lar
for low f and small for highf. Oscillons, however,
appear only in a range off where the hysteresis decrease
with increasing frequency. It was suggested that th
strong increase in dissipation occurring whend becomes
smaller than a fraction of particle diameter is responsib
for keeping structures localized [5].
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Here, we present a model explaining the instabilit
onset of granular surface waves. Our model is bas
on the fact that lateral motion of grains at large sca
takes place when the layer is in free flight, wherea
thickness relaxation occurs only during the layer-pla
collision. A master equation is introduced to take int
account the mass motion while simple arguments allow
to write down a diffusion equation for the layer thickness
Numerical simulation shows that square patterns a
selected by the nonlinearities introduced in this model an
localized structures are observed when the local dilatio
in the layer becomes small with respect to the partic
diameter.

Figure 1 is a side view of the experimental cell showin
the time evolution of the waves close to the layer-contain
collison. During the collision, thickness modulations rela
until the layer takes off. Each layer modulation splits int
two sand packets which move laterally. They subsequen
collide and form new modulations shifted in space by ha
the pattern wavelength. The pattern is then subharmon
oscillating at one half the drive frequency. Lateral motio
of grains takes place during every cycle of the extern
excitation. This motion is similar to that of a fluid
particle in a standing surface wave. However, there is o
important difference: In the fluid case, the lateral transfe
of mass is induced by the gradient of hydrostatic pressu
which exists at all times [6]. In the granular case, th
pressure gradient exists only during the collision and
a result of the transfer of momentum from the plate to th
grain network. In our analysis, we, therefore, consider th
effective drive to be composed of a series of impulsiv
accelerations that only occur when the layer collides wi
the plate.

The dynamics of the layer described in the continuu
limit using two variables:hs $x, td, the local layer thickness,
and $y's $x, td, the horizontal component of the grain
velocity [$x represents the horizontal coordinatessx, yd and
t is the time]. We consider$y's $x, td to be independent
of the vertical coordinate. With these variables, th
© 1997 The American Physical Society
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FIG. 1. Side view of a parametric wave obtained in a narro
cell. The horizontal white line indicates the moving plate. (a
and (b) show the wavy pattern immediately before the collisio
(c) After the collision, lateral transfer of grains occurs.

continuity equation that accounts for mass conservati
reads

hs $x, tfd  hs $x, 0d 1
Z

d $rfW s$r ! $xdhs$r , 0d

2 W s $x ! $rdhs $x, 0dg , (1)

whereW s$r ! $xd is the probability density for the motion
of a single column of sand from an initial position$r to a
final position$x. For simplicity, we consider deterministic
trajectories by takingW s$r ! $xd as the Dirac-d function,
that is

W s$r ! $xd  Cdh$x 2 f$r 1 tf $y's$r , 0dgj , (2)

which reflects the fact that a fractionC s0 , C # 1d
of the grains that were at position$r at t  0 move to
a new position$y's $x, 0dtf , where $y's $x, 0d is the lateral
grain speed induced during the collision andtf is the
characteristic time during which the lateral motion o
grains takes place. Therefore,tf is the flight time and
also the characteristic time for the kinetic energy injectio
into the layer. Equation (2) is an approximation; in realit
there is a distribution of grain speeds and here we consi
only the mean lateral velocity of such a distribution. Ou
approximation is valid when the characteristic horizont
length, the wavelength of the patternl, is appreciably
larger than the thickness of the layerhs $x, td. As a
w
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consequence of momentum conservation, the mean late
speed, right after the collision, is proportional to both the
layer-plate collision velocityy0 and the slope of the free
surface of the layer [7]

$y's$x, 0d  2y0='hs $x, 0d , (3)

where='  s≠x , ≠yd.
Our next step is to introduce a mechanism to relax th

high thickness gradient in the layer. Such gradients ar
a result of the accumulation of sand in regions wher
fluxes of sand meet. A simple way to implement this
idea is through a diffusion equation which automatically
conserves mass [8,9]:

≠ths $x, td  D=2
'hs $x, td , (4)

wheret ranges in the intervaltf , t , T , T is the time
between successive collisions with the plate, andD is
a diffusion coefficient that reflects dissipative processe
which cause the layer slope to spread out. In our cas
diffusion of thickness is induced when particles move
down the slope at the free surface of the layer. An estima
of the dimensional dependence ofD can be obtained
by considering the flowing layer of grains to be a fluid
with kinematic viscosityn. In our case, the velocity of
the grains should be taken as proportional toy0 and the
thickness gradient. The total flux of particles$j flowing in
the layer is then

$j , y0fsN , e, Gd sd 1 dd='h , (5)

wherefsN, e, Gd sd 1 dd is a viscous length which takes
into account the penetration of the grain flow into the
layer andfsN, e, Gd is an unknown function ofN  hyd,
restitution coefficiente and G. Introducing this expres-
sion into the mass conservation equation for the grain
≠th 1 =' ? $j  0, we identify the diffusion coefficient
as D , y0fsN, e, Gd sd 1 dd. At this point, we notice
thatD is proportional to the kinematic viscosityn , sd 1

dd2ytc , y0sd 1 dd of the layer [10]. The main reason
for this result rests in the fact that the only characteristi
speed in our problem is the collision speedy0, the lack
of an intrinsic thermal speed being a direct consequenc
of the strong energy dissipation occurring in the granula
layer.

We now study the stability of a vibrated layer by
performing a linear stability analysis. We definehs $x, td 
h0 1 js $x, td, whereh0 is the thickness of the flat layer
andjs$x, td is a disturbance in the height. Using (1), (2),
(3), and (4), and writingjs $x, td  Fkstdei $k?$x 1 c.c. in
terms of a perturbation wave vector$k and an amplitude
Fkstd, we obtain

FksT d  sskdFks0d , (6)

with

sskd  s1 2 Ch0y0tfk2de2DsT2tf dk2

, (7)

which means that after each collision, the amplitude o
modek, Fk is amplified bysskd and grows tosskdn after
4571
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n collisions. Thus, ifjsskdj . 1, the system is unstable
using Eq. (7), the only way to obtain amplification o
disturbances is forsskd , 21. This result says that at
each collision the phase of the unstable mode must cha
by a factor p, changing the sign of the disturbance
Such a phase change is characteristic of a subharmo
standing wave, since after two collisions the perturbati
returns to its original phase. The instability onset an
the most unstable wave vector are then determined
the conditionss0skpd  0 andsskpd  21. This occurs
when the natural control parameter of the instabilityG̃ 
Ch0y0tfyDsT 2 tfd exceeds a critical valuẽGc ø 3.6 for
kp  1.2y

p
DsT 2 tfd.

Using the natural choice forC as the ratio of the pene-
tration length to the layer thickness,C  fsN , e, Gd sd 1

ddyh0, we obtainG̃ ø tfysT 2 tfd, which fits nicely with
the control parameter that was shown to be pertinent
experiments [2]. G̃ has an interesting physical meaning
since it shows a balance between energy injected into
energy dissipated in the layer. Thus,G̃ is similar to the
parameter controlling the onset for Faraday’s instability
a highly viscous fluid [11]. The critical value of̃G pre-
dicted here, however, differs from experimental measu
ments, as should be expected when numerical coefficie
have been disregarded (for instance, when the depende
of G̃ on the restitution coefficient and friction has not bee
considered explicitly).

On the other hand, the most unstable waveleng
at the instability onsetl varies like f fsN , e, Gd sd 1

ddy0tfyG̃g1y2. This result tells us that two regimes ar
possible forl depending on whetherd is much smaller
or much larger thand. Thus, a crossover occurs naturall
when d becomes of the order ofd and corresponds to
the change of the behavior ofl with f observed in
experiments close to the square to stripe transition.
addition, our model predicts thatl selected is a viscous
length, this is, l , sntfyG̃d1y2. It should be noticed
that Faraday’s instability in viscous fluids also selects
wavelength of viscous typel , snyfd1y2 [12]. However,
in the fluid case,n is not a function off.

In order to check if the model gives the observe
scaling for l, we need an estimate of the functiona
dependence ofd with f. Unfortunately, we have neither
an accurate experimental method nor a procedure
estimated from first principles. Nevertheless, numerica
simulation in a ball column [13] shows thatd should
be a function of the kinetic energy injected into th
layer and the number of collisions necessary to dissip
it, i.e., d , y

2
0yN5y2g, whereN  h0yd. This estimate

implies that, in the low frequency regimesd ¿ dd, l

scales like1yf2, in agreement with experimental result
obtained in glass particles [4]. However, other scaling f
l is possible depending on the restitution coefficient
particles and friction [4].

The nonlinear regime of waves can be studied
solving Eqs. (1), (2), (3), and (4) numerically in two
spatial dimensions. The procedure is the following: Fir
4572
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as in Eq. (1), the grain column of heightfsN , e, Gd sd 1

dd and based $r is translated and added at a point$r 2

y0tf='hs$r , td and second, we apply the diffusion proces
Eq. (4) until the next taking off point, i.e., during a time
sT 2 tf d. For low values ofG̃, the homogeneous state
hs $x, td  h0 is stable. However, for̃G  G̃c, parametric
waves appear as predicted by the linear stability analys
Squares are observed in the numerical simulation [s
Fig. 2(a) and, in contrast with experimental observation
the squares transition is always supercritical.

One possible way to account for subcriticality is b
introducing in our model the internal friction anglea
of the granular layer. One can estimatea by putting
the flying distancesy0tf j=hj ø y0tfad of the order of
the particle size, thus,a ø dyy0tf which gives the good
behavior of a for large y0tf [14]. However, asy0tf

becomes of the same order ofd, the contact between
grains becomes more important and the friction cann
be neglected, thus,a goes to angle of reposeac for
y0tf ø d. This dependence could be represented by
tentative formula: tanspay2acd , dyy0tf . In our case,
a acts as a minimum angle of activation for which th
lateral motion of the grains is allowed. Thus, in th
numerical procedure, a grains column is moved latera
only when the free surface slope exceedsa.

Numerical results show, in this case, that squares
subcritical with hysteresis increasing witha. Figure 2(b)
illustrates a well developed squared pattern and squa
coexisting with a flat layer state in the subcritical regio
of squares. Because of subcriticality, one hopes that
calized structures or pulses appear and, due to the n
variational features of this system, these solitary wav
will be stable structures. These correspond to the os
lons reported recently in Ref. [5]. ForC near the unity,
the pulses are only a small transient disappearing ve
quickly; however, asC diminishes, forG̃ remaining con-
stant andf increasing as in experiments, the lifetime o
pulses and molecules is much longer. (In some sense,
parameterC makes the “liquid-solid” transition:C ø 1

FIG. 2. (a) Square pattern obtained by numerical simulati
realized for G̃  5 and C  1. (b) A metastable regime
dominated by the competition of a square pattern and the
layer, obtained by numerical simulation forG̃  5, C  1, and
tana ø 0.1. The spatial resolution of both simulations isdx 
0.5fDsT 2 tf dg1y2.
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FIG. 3. Subharmonic isolated solitary waves forC  0.77,
G̃  8, and tana ø 0.1.

for a liquid, while the solid arises forC ø 0.) Figure 3
shows a collection of different situations, from elementar
pulses to more complex configurations or molecule
According to Ref. [5], the subharmonic pulses are at res
having two phases characterized by a hill and a crate
The dynamics and behavior agree quite well with th
experiments.

In conclusion, we find that an intuitive model account
for several features of parametric waves and gives va
able insight into the instability mechanism. When a dis
turbance appears in the free surface of the layer, a late
flux is induced due to the layer-plate collision. Conse
quently, depending on the shape of the disturbance,
gions where grains accumulate can exist. In fact, if w
focus on particles located at position$r (the disturbance
region) and go to a position$x  $r 2 y0tf

$=hs$rd (flat re-
gion) after a timetf , and we impose mass conservatio
hs $xdd2x , hs$rdd2r , we find that a self-focusing effect
occurs whend2x , d2r. That happens for a downhill of
grainss=2h . 0d because the volume at the new positio
is d2x ø d2rs1 2 y0tf=2hd. The disturbance will thus
be larger at$x than it was at$r. This self-focusing mecha-
nism always leads to instability with no spatial scale sele
tion. However, processes of thickness diffusion allow u
to select a wavelength of the wave pattern. In this sens
our model differs from the one presented in Ref. [15], i
which wave pattern is a result of a dynamical nonunifo
mity of the forcing oscillation. In our case, the compe
tition between self-focusing and thickness diffusion de
termines that the parameter controlling the instability
essentially the acceleration of the plate, in agreement w
experimental results. In addition, the squared pattern r
sult of a subcritical instability is correctly described by in
troducing the internal friction angle of a granular materia
For instance, the wavelength dependence onG observed
experimentally can be related to the variation ofa with
changes inG [14]. Finally, the model presented here als
reproduces the existence and the rules of combination
solitary waves reported by Umbanhowaret al. [5].
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