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Model for Subharmonic Waves in Granular Materials
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Parametric waves arise spontaneously when a thin layer of granular material is oscillated vertically.
A dynamical model of these waves accounting for the observed instability threshold and appearance of
square patterns is presented. The proposed instability mechanism is due to two competing processes:
a focusing effect that concentrates particles in space, and a diffusion effect that relaxes large thickness
gradients in the layer. When the layer is in a liquid-type state, close to a solid-liquid transition, the
model correctly predicts the presence of oscillons recently reported by P. UmbanébealafNature
(London) 382 793 (1996)]. [S0031-9007(97)04636-X]

PACS numbers: 46.10.+z, 47.53.+n, 47.54.+r, 83.70.Fn

Recent experiments examining thin layers of vertically Here, we present a model explaining the instability
vibrated granular material have revealed that parametrionset of granular surface waves. Our model is based
surface waves occur when the dimensionless acceleratiamn the fact that lateral motion of grains at large scale
I' = AQwf)*/g exceeds a critical value [1,2] (herg takes place when the layer is in free flight, whereas,
is the acceleration of gravityd is the amplitude of the thickness relaxation occurs only during the layer-plate
vibrating surface, and is the frequency of the driving collision. A master equation is introduced to take into
force). The primary instability gives rise to squaresaccount the mass motion while simple arguments allow us
or stripes depending on the frequengyand particle to write down a diffusion equation for the layer thickness.
diameterd. It was found that the frequency at the centerNumerical simulation shows that square patterns are
of the range in which the square to stripe transition occurselected by the nonlinearities introduced in this model and
is proportional tod /2. This scaling is understood in localized structures are observed when the local dilation
terms of the ratio of kinetic energy injected into thein the layer becomes small with respect to the particle
layer to the potential energy required to raise a particleliameter.

a fraction of its diameter, that isy3/gd (where v is Figure 1 is a side view of the experimental cell showing
the vertical velocity relative to the neighboring particle). the time evolution of the waves close to the layer-container
Considering thafl" is constant ands is proportional to  collison. During the collision, thickness modulations relax
the container velocity (so thato ~ '), then at low until the layer takes off. Each layer modulation splits into
f, vé/gd > 1, the horizontal mobility is high since the two sand packets which move laterally. They subsequently
layer dilationé is large and the dissipation is small; while collide and form new modulations shifted in space by half
at largef, v3/gd < 1, the layer dilation is small and the the pattern wavelength. The pattern is then subharmonic,
dissipation is large. Only stripes are observed at high oscillating at one half the drive frequency. Lateral motion
when the energy injection is low. In this regim®jstoo  of grains takes place during every cycle of the external
small to compare to the particle diameter to allow relativeexcitation. This motion is similar to that of a fluid
motion of the grains. The pattern wavelength decreasegarticle in a standing surface wave. However, there is one
with frequency and saturates at a constant value at a veinportant difference: In the fluid case, the lateral transfer
high frequency [1,3,4]. of mass is induced by the gradient of hydrostatic pressure

Another important fact is that, in the same domain ofwhich exists at all times [6]. In the granular case, the
frequencies where the squares to stripes transition occurgiessure gradient exists only during the collision and is
solitary waves or “oscillons” are observed fbrsmaller  a result of the transfer of momentum from the plate to the
than the instability threshold of waves [5]. For oscillonsgrain network. In our analysis, we, therefore, consider the
to exist, the primary bifurcation must be hysteretic soeffective drive to be composed of a series of impulsive
that the waves and the flat layer can coexist at the sanmccelerations that only occur when the layer collides with
parameter values. In the experiment, hysteresis is largée plate.
for low f and small for highf. Oscillons, however, The dynamics of the layer described in the continuum
appear only in a range gf where the hysteresis decreaseslimit using two variablesk(x, t), the local layer thickness,
with increasing frequency. It was suggested that thend v, (x,7), the horizontal component of the grain
strong increase in dissipation occurring whetecomes velocity [x represents the horizontal coordinatesy) and
smaller than a fraction of particle diameter is responsible is the time]. We conside?  (x,7) to be independent
for keeping structures localized [5]. of the vertical coordinate. With these variables, the
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consequence of momentum conservation, the mean lateral
speed, right after the collision, is proportional to both the
layer-plate collision velocity, and the slope of the free
surface of the layer [7]

I_JJ_()_E,O) = _'U()VJ_h()_E,O), (3)

whereV | = (9, dy).

Our next step is to introduce a mechanism to relax the
high thickness gradient in the layer. Such gradients are
a result of the accumulation of sand in regions where
fluxes of sand meet. A simple way to implement this
idea is through a diffusion equation which automatically
conserves mass [8,9]:

d,h(%,1) = DV2 h(%,1), 4)

wheret ranges in the intervaly < ¢ < T, T is the time
between successive collisions with the plate, dnds

a diffusion coefficient that reflects dissipative processes
which cause the layer slope to spread out. In our case,
diffusion of thickness is induced when particles move
down the slope at the free surface of the layer. An estimate
of the dimensional dependence ©Of can be obtained
by considering the flowing layer of grains to be a fluid
with kinematic viscosityr. In our case, the velocity of
the grains should be taken as proportionaboand the
thickness gradient. The total flux of particledlowing in

FIG. 1. Side view of a parametric wave obtained in a narrowthe layer is then

cell. The horizontal white line indicates the moving plate. (a) 3
and (b) show the wavy pattern immediately before the collision. J~vof(N,e,T)(d + 8)V.ih, ()
(c) After the collision, lateral transfer of grains occurs. wheref(N,e,T')(d + &) is a viscous length which takes

into account the penetration of the grain flow into the
continuity equation that accounts for mass conservatiotayer andf (N, e, I') is an unknown function oV = h/d,

reads restitution coefficiente andI'.  Introducing this expres-
sion into the mass conservation equation for the grains,
h(x,tr) = h(x,0) + f dr[W (7 — X)h(7,0) a,h + V. - j =0, we identify the diffusion coefficient
asD ~ vof(N,e,I')(d + 5). At this point, we notice
- WX — #h(x,0)], (1) thatD is proportional to the kinematic viscosity ~ (d +

8)*/t. ~ vo(d + 6) of the layer [10]. The main reason
for this result rests in the fact that the only characteristic

final positionx. For simplicity, we consider deterministic speed in our problem is the collision speeg the lack

trajectories by taking¥ (7 — %) as the Dirac$ function of an intrinsic thermal speed being a direct consequence
that is " of the strong energy dissipation occurring in the granular

. . . .. layer.

W —x) = Co{x — [F + 1,0, (7,0)]}, ) We now study the stability of a vibrated layer by
which reflects the fact that a fractiod (0 < C = 1)  performing a linear stability analysis. We defihg, 1) =
of the grains that were at positiohat r = 0 move to  ho + &(X,1), whereh is the thickness of the flat layer
a new positions , (¥,0)¢;, where 7, (¥,0) is the lateral andé(x, ) is a disturbance in the height. Using (1), (2),
grain speed induced during the collision andis the (3), and (4), and writingé(x, ) = d)k(t)e””‘ + c.c. in
characteristic time during which the lateral motion ofterms of a perturbation wave vectbrand an amplitude
grains takes place. Thereforg, is the flight time and @, (¢), we obtain
also the characteristic time for the kinetic energy injection

whereW (7 — x) is the probability density for the motion
of a single column of sand from an initial positiénto a

into the layer. Equation (2) is an approximation; in reality P(T) = o (k)P (0), (6)
there is a distribution of grain speeds and here we considetith
only the mean lateral velocity of such a distribution. Our o) = (1 — Chovotsz)e’D(T”/)kz, %

approximation is valid when the characteristic horizontal
length, the wavelength of the patter is appreciably which means that after each collision, the amplitude of
larger than the thickness of the layéi(x,7). As a modek, ®, is amplified byo (k) and grows tar (k)" after
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n collisions. Thus, iflo(k)| > 1, the system is unstable; as in Eq. (1), the grain column of heigfitN,e,T') (d +
using Eq. (7), the only way to obtain amplification of §) and basedr is translated and added at a point-
disturbances is for(k) < —1. This result says that at v,V h(7,t) and second, we apply the diffusion process
each collision the phase of the unstable mode must chandsg. (4) until the next taking off point, i.e., during a time
by a factor 77, changing the sign of the disturbance. (T — ;). For low values off", the homogeneous state
Such a phase change is characteristic of a subharmonigx, r) = h, is stable. However, fof' = T'., parametric
standing wave, since after two collisions the perturbatiorwaves appear as predicted by the linear stability analysis.
returns to its original phase. The instability onset andSquares are observed in the numerical simulation [see
the most unstable wave vector are then determined fdFig. 2(a) and, in contrast with experimental observations,

the conditionss’(k.) = 0 ando (k.) = —1. This occurs  the squares transition is always supercritical.

when the natural control parameter of the instability= One possible way to account for subcriticality is by
Chovots/D(T — t7) exceeds a critical valug. = 3.6 for  introducing in our model the internal friction angte

ki = 1.2/\/D(T — ty). of the granular layer. One can estimaie by putting

Using the natural choice far as the ratio of the pene- the flying distance(vots|Vh| = votra) of the order of
tration length to the layer thickness,= f(N,e,I')(d +  the particle size, thusy = d/vot; which gives the good
8)/ho, we obtainl’ =~ t;/(T — t;), which fits nicely with  behavior of @ for large vz, [14]. However, asvyrs
the control parameter that was shown to be pertinent ithecomes of the same order dgf the contact between
experiments [2]. ' has an interesting physical meaning, grains becomes more important and the friction cannot
since it shows a balance between energy injected into artte neglected, thuse goes to angle of repose. for
energy dissipated in the layer. Thus,is similar to the wvyty << d. This dependence could be represented by a
parameter controlling the onset for Faraday'’s instability intentative formula: tafwr«/2a.) ~ d/vots. In our case,

a highly viscous fluid [11]. The critical value df pre- « acts as a minimum angle of activation for which the
dicted here, however, differs from experimental measurelateral motion of the grains is allowed. Thus, in the
ments, as should be expected when numerical coefficienteumerical procedure, a grains column is moved laterally
have been disregarded (for instance, when the dependenaely when the free surface slope exceeds

of I" on the restitution coefficient and friction has not been Numerical results show, in this case, that squares are
considered explicitly). subcritical with hysteresis increasing with Figure 2(b)

On the other hand, the most unstable wavelengtfilustrates a well developed squared pattern and squares
at the instability onsetA varies like [ f(N,e,I')(d +  coexisting with a flat layer state in the subcritical region
5)v0tf/l“]1/2. This result tells us that two regimes are of squares. Because of subcriticality, one hopes that lo-
possible forA depending on whethe$ is much smaller calized structures or pulses appear and, due to the non-
or much larger tha@. Thus, a crossover occurs naturally variational features of this system, these solitary waves
when 6 becomes of the order of and corresponds to will be stable structures. These correspond to the oscil-
the change of the behavior of with f observed in lons reported recently in Ref. [5]. FdF near the unity,
experiments close to the square to stripe transition. Ithe pulses are only a small transient disappearing very
addition, our model predicts that selected is a viscous quickly; however, ag” diminishes, forl" remaining con-
length, this is, A ~ (vt;/T')"/2. It should be noticed stant andf increasing as in experiments, the lifetime of
that Faraday’s instability in viscous fluids also selects gulses and molecules is much longer. (In some sense, the
wavelength of viscous typg ~ (v/f)"/? [12]. However, parameterC makes the “liquid-solid” transitionC ~ 1
in the fluid casey is not a function off.

In order to check if the model gives the observed
scaling for A, we need an estimate of the functional (a) (b)
dependence of with f. Unfortunately, we have neither .
an accurate experimental method nor a procedure to
estimated from first principles. Nevertheless, numerical ..
simulation in a ball column [13] shows that should = IS
be a function of the kinetic energy injected into the St
layer and the number of collisions necessary to dissipate [ -:.':".' . "
it, i.e., 8 ~ vi/N*?g, whereN = hy/d. This estimate .

implies that, in the low frequency regim@ > d), A NS
scales likel/f?, in agreement with experimental results L
obtained in glass particles [4]. However, other scaling for

A is possible depending on the restitution coefficient 01F|GI: 2'd ]fa) 1§q_ua;re pgttgrn_olbtainbed:y n“tm(i”g?' simulation
particles and friction [4]. realized forI' =5 an =1. (b) metastable regime

. . . dominated by the competition of a square pattern and the flat
The nonlinear regime of waves can be studied byayer ohtained by numerical simulation fbr= 5, C = 1, and

solving Egs. (1), (2), (3), and (4) numerically in two tana =~ 0.1. The spatial resolution of both simulationsds =
spatial dimensions. The procedure is the following: First0.5[D(T — 1;)]'/2.
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