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Using data taken with the CLEO Il detector at the Cornell Electron Storage Ring, we present the first
full angular analysis in the color-suppressed moBes— J/i K*° andB™ — J/y K**. This leads to a
complete determination of the decay amplitudes of these modes including the longitudinal polarization
/T =0.52 = 0.07 = 0.04 and theP wave componentP|> = 0.16 * 0.08 = 0.04. In addition, we
update the branching fractions f8r— J/iy K andB — J/iy K*. [S0031-9007(97)04447-5]

PACS numbers: 13.25.Hw, 11.30.Er, 14.40.Nd

One of the interests iB — J/i» K* decays is their role decays using the full CLEO Il data sample. Assuming
in CP violation measurements at asymmetBidactories. isospin symmetry, we determine the fraction of longitu-
The vector-vector decays® — J/i K*, with K** —  dinal polarization, the parity content, and the phase dif-
K270, is a mixture ofCP-even andCP-odd eigenstates ferences of the decay amplitudes from the mofés—
since it can proceed via a#, P, or D wave decay. If J/ K*" andB® — J/iy K*° using thek** and K™ de-
oneCP eigenstate dominates or if the tv@P eigenstates cay modest® * 70, K7, K" 7 ~, andk°#°. TheJ/y
can be separated, this decay can be used to measure theeconstructed in its leptonic decay modeste~ and
angle B8 of the unitarity triangle in a manner similar " u~. The measurements presented here supersede pre-
to which the CP-odd eigenstateB® — J/i Ko is used. vious CLEO Il results [8], which are based on a subset of
Therefore the determination of the wave component the data used for this analysis.
in B — J/iy K* decays is of great interest for futu@P The decayB — J/iy K* is described by three complex
violation measurements. decay amplitudes. Following a suggestion of Dunietz

Measurements of the decay amplitudes B8f— et al.[11,12], we measure the decay amplitudes=
J/ K™ transitions also provide a test of the factor- —/1/3S + 2/3D, A =+2/3S + /1/3D, and
ization hypothesis in decays with intern®# emission. A, = P, whereS, P, and D denoteS, P, and D wave
Several phenomenological models, based on the fa@amplitudes, respectively. Normalizing the decay ampli-
torization hypothesis, predict the longitudinal polarizationtudes to|Ao|*> + |A)|*> + |A.|> = 1 and eliminating one
fraction in B — J/¢ K*, denotedI'; /T", and the ratio of overall phase leaves four independent parameters.
vector to pseudoscalar meson productiégn= B(B — The full angular distribution of a8 meson decaying
J/y K*)/B(B — J/iy K) [1-5]. It has been noted [5,6] into two vector particles is specified by three angles.
that form factor models cannot simultaneously explainPreviously the helicity angle basis [13] has been used for
the earlier experimental data for these two quantitiesangular analyses a8 — J/¢ K* decays. Because of its
The high values ofl'; /T = 0.97 = 0.16 = 0.15 mea- convenience for extracting the parity information, we use
sured by ARGUS [7] and’;/I" = 0.80 = 0.08 = 0.05  a different set of angles, called the transversity basis [12].
measured by CLEO Il [8], with low statistics, are not The direction of the&k™ in the J/y rest frame defines the
consistent with factorization and the measured valuexis of a right-handed coordinate system. The plane
of R. The CDF Collaboration has measured a lowerlfixes they axis with p,(K) > 0 and the normal to this
value of I'y /T = 0.65 = 0.10 = 0.04 [9]. Additional plane defines the axis. The transversity angles. and
information about the validity of factorization can be ob- ¢ are then defined as polar and azimuth angles of the
tained by a measurement of the decay amplitude phases, in the J/¢ rest frame. The third angle, thé* decay
since any nontrivial phase differences indicate final stat@nglefk-, is defined as that of th& in the K* rest frame
interactions and the breakdown of factorization [10]. relative to the negative of th&/y direction in that frame.

In this paper we present a complete angular analysi¥/sing these definitions the full angular distribution of the
and an update of the branching fractionsBor~ J /iy K | B— J/i K* decay is [12]

1 T 9

- = 2|Aol? coS Ok (1 — sin? 6, COS ¢y) + |A|* i O-(1 — sir? 6, sir?

I dcosfud costrddy  32m Al €08 01 = SIM 0y €OS i) + JAI7SIM Oc-(1 = SiMT Oy SN )
+ |A L[> SIN? k- SI? 0, SIP e — IM(AJA ) SIN Ox- SIN26, SiN by

1 , . . . 1 ) . .
+ 7 ReE(AA|) SiN20k: SII? B, SiN2¢ + —= IM(AJA 1) SiN26k- SiN26,; COS.} .

NG 2
For B decays the interference terms containingswitch [ The data for this analysis were recorded with the CLEO
sign while all other terms remain unchanged. Il detector located at the Cornell Electron Storage Ring
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(CESR). We have used a data sample of approximatelgonstrained mass are very close to the signal region. The
3.4 X 10° BB events taken on th¥ (4S5) resonance and biggest source of this background is from swapping a ran-
representing an integrated luminosity 8fl fo~!. To  dom or misidentified slowr® for the correct one. Con-
evaluate norbb backgrounds, we have collected a “con- sequently most background events have #femoving
tinuum” data sample 60 MeV below thé(4S) resonance, backwards with respect to th€* direction of flight. To
with an integrated luminosity of about6 fo~!. suppress this background we require #ie decay angle
The components of the CLEO Il detector [14] mostto satisfy co®x- < 0.7 in these decays. This is equiva-
relevant to this analysis are the charged particle trackindent to a constraint on the® momentum, corresponding
the Csl electromagnetic calorimeter, and the muon counto a minimump ;o of about200 MeV/c. The total frac-
ters. The tracking system comprises a set of precisiotion of misidentifiedB — J/is K* events in the signal re-
drift chambers totaling 67 layers inside a 1.5 T solenoidabjion, averaged over ak* modes, is 8.0%.
magnet. It measures both momentum and specific ioniza- Examining theK s invariant mass spectrum (Fig. 1)
tion (dE/dx) of charged particles. shows an excess of events between 1.1 la#fl GeV/c?.
Electron candidates are identified by their energy depoBy computing the kinematics of nonreson@nt- J/i X;
sition in the calorimeter, which must equal their measurediecays, using both thé/y momentum spectrum from
momenta, and their specific ionization, which must beinclusive B decays [15] and several theoretical models
consistent with that expected for electrons. At least on¢16], we do expect strangeness-containing final states
muon candidate is required to have penetrated five nucleavith invariant masses in this region. Decays via higher
interaction lengths of material while the other must havek* resonances may have line shapes consistent with
penetrated at least three interaction lengths. The decayise my, distribution seen by us [17]. Unfortunately,
B* — J/y K+ andB® — J/y K¢ have little background; due to the limited statistics fotg, > 1.1 GeV/c2, we
therefore only one of the two leptons has to be positivelycannot distinguish between possible components. By
identified. We require the dimuon invariant mass to beextrapolation of the sideband, we estimate the amount of
within 45 MeV/c? of the J/i mass, which corresponds the nonk*(892) contribution in the signal region to be
to a3c selection. For the dielectron invariant mass we6.4% with a conservatively chosen systematic uncertainty
require—150 < me, — my;y < 45 MeV/c* to allow for ~ of *+100%. In addition, we considered many other
the radiative tail. The//iy energy resolution is improved possible origins for the excess events abbMeGeV/c?,
by a factor of 5-6 by performing a kinematic fit of the including misidentified events from othe® — J/¢ X
dilepton mass to the nomind}ys mass. The angle mea- modes such a8 — J/y K*7w, B— J/yy Kp, or B —
surements are not affected by the kinematic fit. Their resj/y K, and found none of these to contribute significantly.
olution is better than 0.06 radian for all decay angles. With a similar analysis CLEO has found nine events for
We require the charged hadron candidates to havB® — J/i p° [18]. If a pion from thep® is misidentified
dE /dx measurements that lie within 3 standard deviationsis a kaon,mx, could fall in the K* region but these
of the expected values. We reconstrig} candidates events would fail the|AE] energy criterion. For the
through the decay ter "7~ and #° candidates through same reason other misidentifi&— J/i X decays, like
the decay toyy. CandidateK™ mesons are required B — J/is K*7 or misidentifications between th&/y K
to have ak invariant mass withir75 MeV/c? of the  andJ/ K* modes, do not contribute significantly to the
nominal K* mass.
In symmetrice™ e~ annihilations at theY(4S) reso-

nance, the energy of & meson must equal the beam 80 Fr T T T
energy. We require the energy differendef| between 705_ _
the B candidate and the beam energy to be less than ~ | 1
45 MeV for J/¢ K* and J/i K9, less than 30 MeV for %o E
J/p(K*7~) andJ/y(Ka*), and less than 60 MeV for os0f E
J/w(K* 7% and J/¢(K3w°). These ranges correspond 8 40} :
to approximately3o in |AE|. Since the resolution on 250l E
the beam energy is an order of magnitude better than the £ [ 1
resolution on theB candidate energy, we substitute the w20 E
beam energy in the calculation of tilBcandidate mass 10 RS * E
(referred to as the “beam-constrained masg;). The ofl_w_H_H_‘H‘_H_H_H_f‘,ml‘f
detection efficiencies range from 48% for tlE" — 06 08 10 12 14 16 1.8 20 22 24
J/y KT mode down to 9% forB® — J/y K** with m,_(GeV/c?)

K — K270, N
, " FIG. 1. The mg, distribution for mg > 5.27 GeV/c>.
The most severe background in the— J/i K" modes  ghown are the data points, the fittekd (892) mass peak

are misidentified decays of anoth8r— J/i K* mode. including background from misidentifie — J/ K* decays
For such events both the total energy and the beanthistogram), and the combinatorial background (shaded).
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oboctioii i d obi i |P|?, and the phases(A)) and¢ (A | ). Other free parame-

1 |
-1.0 05 0 05 10 -2 0 2 ters in the fit are the branching fractid(B — J/i K¥),
008 b P the mean of then distribution, and the normalization of
FIG. 2. Projections of the four-dimensional fit to te— the combinatorial background of each mode. The simulta-
J/y K* data. The plot of the beam-constrained mass shows thaeous fitting for the branching fraction and the polarization
data (histogram), the fit (solid line), the sum of all backgroundsparameters ensures both the statistically correct treatment
(dashed), and the contribution of misidentifi&— J/y K* f the background events and the adjustment of the branch-
events (dotted). The angular distributions are backgroungn ¢raction measurement for the polarization dependence
subtracted and efficiency corrected. _ . . L
of the efficiency. The one-dimensional projections of the
resulting fit function are shown in Fig. 2. The results are
background since they lie outside the energy windowlisted in Table I. The correlations between the fit parame-
Furthermore, the contributions are uniform in the beamdiers are small. Note that for polarization parameters, like
constrained mass. I', /T and|P|?, the statistical errors depend on the fitted
We define combinatorial backgrounds to be eventgnean values, which explains the relatively small statistical
that do not contain a trué/yy — [T~ decay. In both error of [, /I in the previous ARGUS and CLEO Il mea-
the BB Monte Carlo simulation and our continuum data surements compared to this measurement. The system-
sample we see very few such events. atic uncertainties of the decay amplitude measurements are
We must correct our data for detection efficiency. Todominated by those in the efficiency parametrization and
obtain the efficiency as a function of all three angles, aackground polarization and are small compared to the sta-
large Monte Carlo samplel20000 eventgK* mode) is tistical errors.
divided into a20 X 20 X 10 grid in cosf,,, cosfk-, and We repeated the fit to the decay amplitudes using
¢.. For eachJ/y K* final state the efficiency is fitted helicity angles rather than transversity angles as well as
separately with polynomials in three dimensions includ-performing one-dimensional fits to both the longitudinal
ing all correlations. The efficiency distributions are nearlypolarization fraction and the parity-odd component. An
uniform in all angles except th&* decay angle, where it independent angular analysis with the same data sample
drops at high co8k- because of the slow pion. has also been performed, using a Monte Carlo technique
To determine the decay amplitudes, a four-dimensionall9] to evaluate the likelihood function. All results are in
unbinned maximum likelihood fit is performed to the distri- agreement with those reported here.
butions of the three angles and the beam-constrained mass.These results are the first determination of the parity-
Setting¢ (Ag) = 0, we fit for the longitudinal polarization o0dd component and the phases of the decay amplitudes of
fraction, |Aq|> = ', /T, the parity-odd fractionjA, |> =  theB — J/iy K* decay. The small fraction of the parity-
odd component encourages using tB&— J/y Kgar®
decay forCP violation studies at asymmetrg-factories.
TABLE I. Resuling decay amplitudes from the fit to the 1h€ phases of the decay amplitudes are measured to be

transversity angles. The phasiA,) has been set to zero.
The first error is statistical and the second is the estimated

systematic uncertainty. TABLE Il. Measured signal yields and branching fractions.
Parameter Value Decay mode Signal yield Branching fractior{1073]
|Ag|> = T,/T 0.52 = 0.07 + 0.04 Bt — J/yK* 198.1 = 14.9 1.02 = 0.08 + 0.07
lALI> = |P]? 0.16 + 0.08 + 0.04 B — J/y K° 455173 0.85701 + 0.06
d(A)) —0.11 = 0.46 = 0.03 rad Bt — J/y K* 425 £ 7.1 141 £ 0.23 = 0.24
d(A)) 3.00 = 0.37 = 0.04 rad BY — J/ip K*° 81.6 = 10.3 1.32 £ 0.17 = 0.17
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TABLE lll. Comparison between this measurement andEngineering Research Council of Canada, and the A.P.

model predictions fol"; /T" and the ratiaR. Sloan Foundation.
Model r,/r R

Neubertet al. [3] 0.35 1.61

Deandreeet al. [4,6] 0.36 1.50

Aleksanet al. [5] 0.45 2.15 *Permanent address: University of Texas, Austin, TX

This measurement 0.52 + 0.07 = 0.04 1.45 + 0.20 + 0.17 78712. -
TPermanent address: BINP, RU-630090 Novosibirsk,

o ) ] Russia.
C|Ose_t0 Zero ormr, giving no evidence for strong final *Permanent address: Lawrence Livermore National
state interactions. Laboratory, Livermore, CA 94551.
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