*E***2/***M***1 Ratio from the Mainz** $p(\vec{\gamma}, p)\pi^0$ **Data**

In a recent Letter [1], Beck *et al.* have determined the $E2/M1$ ratio using differential cross section and photon asymmetry data from the $p(\vec{\gamma}, p)\pi^0$ reaction at the Mainz Microtron MAMI. After the correction of a sign error, Eqs. (4) and (6) of [1] read

$$
A_{\parallel} = |E_{0+}|^2 + |3E_{1+} - M_{1+} + M_{1-}|^2, \qquad (1)
$$

$$
C_{\parallel} = 12 \operatorname{Re}[E_{1+}(M_{1+} - M_{1-})^*], \tag{2}
$$

for the constant and $\cos^2(\theta)$ terms in the parallel (||) component of the differential cross section.

In Eq. (7) of [1], the following association is made:

$$
R = \frac{\text{Re}(E_{1+}M_{1+}^{*})}{|M_{1+}|^{2}} \simeq \frac{1}{12} \frac{C_{\parallel}}{A_{\parallel}}
$$
(3)

between the ratio of C_{\parallel} and A_{\parallel} coefficients, and the ratio of multipoles giving the $E2/M1$ ratio at resonance. At the resonant point, a simplified expression is given,

$$
R = \frac{\operatorname{Im} E_{1+}^{3/2}}{\operatorname{Im} M_{1+}^{3/2}} = R_{\text{EM}}.
$$
 (4)

The authors of [1] note that the ratio $C_{\parallel}/(12A_{\parallel})$ has a constant value of -2.5% across the resonance. As a result, they quote $(-2.5 \pm 0.2 \pm 0.2)\%$ for the *E*2/*M*1 ratio, the systematic error coming from the limited angular efficiency of their detector and ignored isospin $1/2$ contributions.

If we neglect, in our Eqs. (1) and (2), all contributions apart from those involving $|M_{1+}|^2$ and $Re(E_{1+}M_{1+}^*)$, we actually have

$$
\frac{1}{12} \frac{C_{\parallel}}{A_{\parallel}} \simeq \frac{R_{\text{EM}}}{1 - 6R_{\text{EM}}}
$$
 (5)

at the resonant point. Neglect of the R_{EM} term in the denominator results in an error of about 17% for R_{EM} , which is more than double the systematic error quoted in [1].

Using our multipole amplitudes [2], we find this effect is reduced due to a cancellation between $\text{Im } M_{1-}$ and Im E_{1+} in Eq. (1). The extent to which this applies to the result of [1] is unclear, as we find [2] a different value, $(-1.5 \pm 0.5)\%$, for the *E*2/*M*1 ratio. (The error quoted here accounts only for variation within our fitting scheme. A considerably larger variation is found using different models.) We should also note that the correction in Eq. (5) implies an $E2/M1$ ratio which is larger in magnitude. This actually *worsens* the agreement between our value and the value found in [1].

We have compared our fit to an independent fit over the resonance from the RPI group [3]. While both fits describe the Mainz data with a χ^2 /data near unity, there are differences in detail. In particular, the RPI group finds a much larger $E2/M1$ ratio (-3.2%). This also supports the view that the associated systematic errors are much larger than those reported in [1].

We thank R. Beck, R.M. Davidson, and N.C. Mukhopadhyay for numerous helpful communications. This work was supported in part by the U.S. Department of Energy Grant No. DE-FG02-97ER41038.

R. L. Workman

Department of Physics Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

Received 25 February 1997 [S0031-9007(97)04638-3] PACS numbers: 13.60.Le, 13.60.Rj, 14.20.Gk, 25.20.Lj

- [1] R. Beck *et al.,* Phys. Rev. Lett. **78**, 606 (1997).
- [2] Our multipole amplitudes, determined in a fit to lowenergy data, are accessible through the SAID program (the solution is W500). Telnet to clsaid.phys.vt.edu with the userid: said. We should note that the W500 analysis fits the Mainz data quite well. The χ^2 /data is 193/182. Some earlier fits, prior to the Mainz experiment, accurately predict the Mainz data. For example, solution SM95 gives a χ^2 /data of 168/182 for this data set.
- [3] R.M. Davidson and N.C. Mukhopadhyay (private communication).