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We consider behaviors of output jitter in the simplest spiking model, the integrate-and-fire mod
The full spectrum of behaviors is found: The output jitter is sensitive to the input distribution a
can be a constant, diverge to infinity, or converge to zero. Exact formulas for the convergence
the divergence of output jitter are given. Our results suggest that the exponential distribution is
critical case: A faster rate of decrease in the distribution tail as compared to the exponential distribu
tail ensures the convergence of output jitter, whereas slower decay in the distribution tail causes
divergence of output jitter. [S0031-9007(97)04695-4]
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In order to clarify basic issues in neuronal signal infor
mation processing [1–6], the simplest model of a spikin
cell, the IF model, proposed by Lapicque in 1907 [7] is cu
rently receiving renewed attention. Although the mode
has a certain number of risky simplifications, it characte
izes many aspects of real neurons, and it serves as a ru
mentary model to assess theoretical hypotheses on the
of randomness [8]. For an understanding of interspike i
terval (ISI) variability, Troyer and Miller [9], for example,
discuss the dynamics of the model. They find that, whe
ISIs are dominated by post-spike recovery,1y

p
N argu-

ments [10] hold and spiking is regular; after the “mem
ory” of the last spike becomes negligible, spike thresho
crossing is caused by input variance around a steady sta
and spiking is Poisson. With the same model, Marsale
Koch, and Maunsell [11] consider the relationship betwee
the time variance of a synaptic input and output spike
individual neurons. They assume that the arrival time o
inputs is centered ont ­ 0 and that its standard deviation
in time, henceforth called input jitter, issin. Under the
further assumption thatN synapses excite a pulse gener
ating neuron, the standard deviation in time of the spik
triggered in response to the input, termed the output j
ter sout, is computed. It is shown thatsout ø sin which
implies that, depending on other sources of temporal jitte
the temporal variability in spike times in response to a
input converges towards a constant.

Most results on the IF model to date are based upon n
merical simulations and such studies will certainly reve
some fundamental characteristics of the model and the n
ron, but there is the possibility that it may misjudge the be
haviors of the model. In the present paper we carry out
thoroughly theoretical study of the behavior of input jitte
and spike output jitter. We find that there are three type
of behavior ofsout. One is the same as that discovered b
Marsalek, Koch, and Maunsell [11] and an exact relatio
between input jitter and output jitter is given for inputs with
a Gaussian distribution or a uniform interval distribution
respectively. The second is thatsout diverges to infin-
ity when inputs obey a Pareto interval distribution whic
indicates that each consecutive layer of spiking neuro
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will introduce more and more temporal jitter, compromis
ing the ability of higher level neurons to sharply respon
to a sensory input and rendering synfire assemblies [12,
difficult. The third is thatsout remains constant for inputs
with an exponential interval distribution. The mean fir
ing time of output can either go to infinity for inputs with
a Gaussian distribution or an exponential interval dist
bution or become a constant when inputs obey a unifo
interval distribution.

The model without leakage.—We take into account the
simplest model of a spiking cell—the IF model—with
a capacitanceC and a voltage thresholdVthre. Positive
charges (EPSPs) or negative charges (IPSPs) are dum
onto the capacitance, depolarizing or hyperpolarizing t
membrane. An output spike is produced ifVthre is reached
and, after it, the membrane potential is reset toVrest. As
in [11], for simplicity the IF unit is assumed to receive
only N excitatory synaptic inputs of equal weight (EPSP
a. Each synaptic input can be activated independently
the others. More precisely, the voltageV std of a neuron
satisfies

C ÙV ­ Istd (1)

with V s0d ­ Vrest, Istd ­
PN

i­1 adst 2 jid and indepen-
dently identically distributed (i.i.d.) random sequenceji ,
i ­ 1, . . . , N . The solution of Eq. (1) isV std ­ Vrest 1
1
C

PN
i­1 aIhji,tj which means that whent ­ ji the neu-

ron receives an EPSP from theith input. A typical family
of parameters which matches slice recordings of regu
spiking cells is [14]Vrest ­ 273.6 6 1.5 mV, 1ygleak ­
39.9 6 21.2 MV, C ­ tgleak, t ­ 20.2 6 14.6 ms. The
absolute spike thresholdVthre was set20 mV aboveVrest,
and a is a constant related to the size of a single EPS
Recently [15], simultaneous intracellular recordings fro
pairs of pyramidal cells in a cortical slice revealed a ran
of single-axon EPSPs from 0.05 mV to greater than 2 m
with a mean of 0.55 mV, which implies that we need abo
N , 40 EPSPs to trigger a spike.

Definej ­ infht : V std . Vthrej. We first consider the
case ofN (fixed but large) EPSPs arriving at a neuron an
generating an output spike, and soj ­ maxhj1, . . . , jN j.
© 1997 The American Physical Society 4505
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The output jitter is given bys2
out ­ ksj 2 kjld2l. As it

is always true that neurons can be excited by activati
of a small subset of their synaptic inputs, it is then mo
interesting to consider the case of an output spike produc
when onlyN 2 k (for any givenk . 0) EPSPs arrive. In
this case—a neuron with redundant inputs—j is thekth
largest ofji , i ­ 1, . . . , N . Similar results fork . 0 and
k ­ 0 (the largest maximum) are obtained. We presen
brief description of the results fork . 0 as well.

The model with leakage.—It is well known that depo-
larizations do not persist forever, but that perturbations
membrane voltage tend to decay toward the resting pot
tial. The IF Model with leakage can be expressed in t
following way [16]:

C ÙV ­ 2gleakV 1 Istd . (2)
The solution of Eq. (2) is

V std ­ Vrest 1
1
C

NX
i­1

expfsji 2 tdytgaIhji,tj . (3)

Note that, in this case, the actual numberN of EPSPs
which can cause a spike depends on each realization
ji , i ­ 1, 2, . . ., and cannot be determined in advance.

We discuss the casek ­ 0 first and then the casek . 0.
Behaviors of extreme values.—For most commonly

encountered random variable sequences, the distribu
of their extreme value (the maximum of the sequenc
takes the following form [17]:

PsssaN sj 2 bN d # xddd ! Gsxd (4)
for constantsaN , bN . According to different forms of
the distributionGsxd, the input distributions can be fur-
ther divided into three types. Type-I input distributions
fo
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Gsxd ­ exps2e2xd, 2` , x , `. The Gaussian distri-
bution is a special case withaN ­ s2 ln Nd1y2 and bN ­
s2 ln Nd1y2 2 1y2s2 ln Nd21y2sln ln N 1 ln 4pd. Type-II
input distributions: Gsxd ­ 0 if x # 0 and Gsxd ­
exps2x2ad for somea . 0 if x . 0. The Pareto distri-
bution with distribution functionFsxd ­ 1 2 Kx2a , x $

K1ya , K . 0, a . 0 is an example of this type of be-
havior with aN ­ sKNd21ya , bN ­ 0. For simplicity of
notation we takeK ­ 1 in the following discussion.
Type-III input distributions: Gsxd ­ expf2s2xdag for
somea . 0, x # 0, and Gsxd ­ 1 if x . 0. The uni-
form distribution onf0, 1g is of this type with a ­ 1,
aN ­ N, andbN ­ 1.

Various necessary and sufficient conditions are known
involving the “tail behavior”1 2 Fsxd asx increases—for
each type of limit, whereFsxd is the distribution function
of j1. Here is an example. LetxF ­ suphx : Fsxd , 1j.
Then ji , i ­ 1, . . . , N belongs to each of the three type
if and only if the following applies: Type-I, there exists
some strictly positive functiongstd such that limt!xF f1 2

Fssst 1 xgstddddgyf1 2 Fstdg ­ e2x for all x; type-II, xF ­
` and limt!`f1 2 Fstxdgyf1 2 Fstdg ­ x2a , a . 0, for
each x . 0; type-III, xF , ` and limh!0f1 2 FsxF 2

xhdgyf1 2 FsxF 2 hdg ­ xa , a . 0, for eachx . 0.
Behaviors of jitter without leakage.—Previous results

tell us that the output jitter takes the form

sout ­
q

ksj 2 bN d2l 2 skjl 2 bN d2

­

sZ
x2dGsxd 2

µZ
xdGsxd

∂2 ¡
aN .

In particular the output jitter of type-I is thus
sout ­

sZ `

2`
x2 exps2e2xde2xdx 2

µZ `

2`
x exps2e2xde2xdx

∂2 ¡
aN ­ 1.28yaN .
e

i

)
Under the condition thatji , i ­ 1, 2, . . . , are i.i.d. ran-
dom variables and normally distributed we have the
lowing equation:sout ­ 1.28y

p
2 ln N . The mean ofj,

the average time for the neuron to fire isbN ,
p

2 ln N .
The relation between the mean and jitter is plotted
Fig. 1. As observed by Marsalek, Koch, and Mauns
[11], the firing time is delayed tobN and the jitter be-
comes sharper. The relation between input jitter and
put jitter is soutysin ­ 1.28y

p
2 ln N as shown in the

inset of Fig. 1. Note that the constant1.28 is universal
for type-I distributions.

The behavior of output spike jitter in the case of t
uniform distribution is

sout ­ s1yNd

sZ 0

2`

x2 expsxddx 2

µZ 0

2`

x expsxddx

∂2

­ 1yN

which shrinks to zero faster than the case of Gaus
distribution. In contrast to the Gaussian distribution c
(see Fig. 2), the firing time becomes exact att ­ 1. The
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relation between input jitter and output jitter is (see [11]
soutysin ­ 2

p
3yN .

FIG. 1. Behavior of mean and jitter for inputs obeying a
Gaussian distribution. The average firing time (line), mean1
jitter s¶d, and mean jitters1d of an output spike vsN, the
number of EPSPs received by the neuron. AtN ­ 100 we
find that mean­ 2.366 and jitter­ 0.422 [11]. Jitter tends to
zero at a rate of1y

p
2 ln N, and is replotted in the inset.
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In contrast to type-I and type-II behaviors, the variance for type-III behaviors tends to infinity withN; it is given by

sout ­ N1y3

sZ `

0
3x22 exps2x23ddx 2

µZ `

0
3x23 exps2x23ddx

∂2

but with sin ­
p

7y4. Let

c1 ­ 4

sZ `

0
3x22 exps2x23ddx 2

µZ `

0
3x23 exps2x23ddx

∂2 ¡
p
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The relation between input jitter and output jitter is give
by (see Fig. 3)soutysin ­ N1y3c1.

A comparison of type-I and type-II distributions may
give us the following impression. The Gaussian distr
bution, with a density exps2x2y2d, decreases to zero ex-
ponentially and so the maximum of a sequence goes
infinity very slowly and its variance tends toward zero
whereas the Pareto distribution, with a densityax2a21,
goes to zero geometrically (slow) and hence the max
mum will become more spread out. However, output ji
ter is capable of additional behaviors, as we will discov
in the following.

From a neuronal system, it is generally believed thatj1

will be exponentially distributed and so its tail will go to
zero exponentially. This suggests that we may expec
reduction in output jitter compared to input jitter. The
reduction aN depends on the concrete distribution an
a universal constant1.28. However, for the exponential
distributionj1 we haveaN ­ 1, bN ­ ln N , and thus the
equation,soutysin ­ 1.28, holds. The time taken to fire
increases asbN ­ ln N, and the output jitter stays at a
constant, output jitter is independent ofN (see Figs. 3
and 4).

Now we are in a position to analyze the relationship b
tween output jitter and input distribution. The exponentia
distribution is the critical case: A quickly decreasing dis
tribution tail, such as the Gaussian distribution, ensur
that the output jitter converges to zero, whereas a slo

FIG. 2. Behavior of mean and output jitter for inputs obey
ing a uniform distribution. The average firing time (line)
mean1 jitter s1d, and mean jitters¶d of output spike vsN,
the number of EPSPs received by the neuron, when the tim
of input EPSPs is uniformly distributed.
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decay, such as the Pareto distribution, causes diverge
of the output jitter (see Fig. 3). The critical case is wh
the timing of EPSPs received by a neuron is expon
tially distributed; a perturbation of input distribution wil
change its ability to process information.

Behaviors of jitter with leakage.—Suppose that in the
case of no leakage we needN0 EPSPs to trigger a spike o
a neuron. Then, if leakage is introduced, more EPSPs
needed to accumulate enough charge to produce a sp
Let us initially estimate how many EPSPs will be need
to trigger a spike in the case of leakage. We first confi
ourselves to the Gaussian distribution.

From the discussion above, we see thatj ,
p

2 ln N .
Taking the expectation of both sides of Eq. (3), w
have kV sjdl ­ Vrest 1 kej1ytlaNyC exps

p
2 ln Nytd.

Let ssskV stdl 2 VrestdddCya ­ N0 then N1 is given in
N0 ­ exps1y2t2dN1y exps

p
2 ln N1ytd. On average,N1

EPSPs can trigger a spike, and sosout takes a value at
N ­ N1 . N0 in Fig. 1.

In the more general case whereN1 is a random number
that depends on the realization ofji, similar behavior to
that discussed above is expected. This is partly confirm
by numerical simulations [11].

A neuron with redundant inputs.—As we mentioned
above, results for the casek . 0 is similar to that for

FIG. 3. The output jitter vsN , the number of EPSPs receive
by the neuron, when input timing is distributed as the Par
distribution s¶d with a ­ 10y3, the exponential distribution
(line), and the uniform distributions1d. The exponential
distribution is the critical case: If the tail of the inpu
distribution decays to zero faster than the exponential (e
the uniform distribution), then output jitter converges to zer
whereas a slower decay (e.g., the Pareto distribution) cau
divergence of output jitter.
4507
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FIG. 4. Numerical results of output jitters of different distri
butions vs the number of total inputsN . We usek ­ 100, i.e.,
the number of EPSPs required to produce a spike isN 2 100
anda ­ 1 in the Pareto distribution. The Gaussian input di
tribution (line, replotted in the inset), Pareto input distributio
(thick line), and exponential input distribution (dots) are show

k ­ 0. In fact, we have the following conclusion (se
Theorem 2.2.2 in [17]):

PsssaN sj 2 bN d # xddd ! Gsxd
kX

s­0

sss 2 ln Gsxdddds

s!
, (5)

where aN , bN , and functionGsxd are given before, de-
pendent on the distribution, andj is the kth maximum
of j1, . . . , jN . Note that the behavior of output jitter
(increasing, decreasing, or remaining a constant) is
clusively determined by the constantaN , and we thus
conclude that all of the results presented are qualitativ
true for k . 0: A faster decrease in the tail than the ex
ponential distribution will ensure the convergence of th
output jitter; a slower decrease will cause the divergen
of the output jitter, and the exponential distribution is th
critical case. In Fig. 4 (see also Fig. 3) we present n
merical results fork ­ 100 for the Gaussian distribution,
Pareto distribution, and the exponential distribution.

In an attempt to fully understand the exact relationsh
between output jitter and input jitter, we carry out a
analytical analysis on the IF model. Our results sho
that there are different behaviors for the output jitte
It is known that the magnitude of EPSPs is expect
to vary greatly, depending on their location on th
dendritic tree [18], quantal fluctuations, etc. Neuron
behaviors are greatly different as well. For example,
the vasopressin system, neurons fire without correlat
among themselves, but in the oxytocin system neuro
are strongly organized to fire together [19]. Our results
this paper encompass the whole spectrum of behaviors
output jitter and provide a justification for further test
on assumptions of information processing in a sing
neuron. The possibility that the brain might use high
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order statistics has been pointed out from a theoretic
viewpoint [20]. The results in this paper indicate that
neurons can either amplify or diminish higher order
statistics of input signals.

There remain many problems for further investigations
For example, it is interesting to consider in more detail th
model with leakage, rather than in an average sense as
did here. For the model itself, we have not included in
hibitory postsynaptic potentials. For a given distribution
these considerations will change the behaviors of outp
jitter quantitatively, but not qualitatively, as partly shown
in numerical simulations [11].
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