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Long Memory Processes (1yyyf a Type) in Human Coordination
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Consider the task of synchronizing the movement of one’s limb to a periodic environmental signal
Using rescaled range analysis and the spectral maximum likelihood estimator, we establish that th
experimental errors of human synchronization exhibit1yfa type long memory wherea is about
0.5, and that the underlying stochastic process can be modeled by fractional Gaussian noise.
addition, we provide a preliminary model of this phenomenon using stochastic delayed differentia
equations. [S0031-9007(97)04698-X]

PACS numbers: 87.22.Jb, 05.40.+ j, 87.45.–k
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The wide occurrence of1yfa type of long memory
(long range correlated) processes in electrical systems
in solid state devices has long posed a challenging pro
lem for physics [1]. A number of mechanisms, rangin
from the superposition of many independent relaxatio
processes [2] to self-organized criticality [3], are pro
fered to explain this phenomenon. In this Letter we repo
the manifestation of long memory processes in a hum
sensorimotor coordination experiment in which a subje
synchronizes his finger tapping with an external period
stimulus. Using an array of diagnostic tools includin
rescaled range analysis and the spectral maximum like
hood estimator, we show that the error time series, defin
as the time between a predetermined point in the tapp
cycle and the onset of the stimulus, exhibits long memo
of 1yfa type, and can be modeled as fractional Gauss
noise [4]. The average value ofa is found to be about
0.5. This result adds the present human sensorimotor
ordination system to a growing list of biological example
in which one observes long range correlated random flu
tuations [5–7]. In addition, we report our attempt a
modeling the experimental findings using stochastic del
differential equations. Our motivation is to present a un
fying mechanism for a diverse set of long memory pro
cesses, observed under a variety of sensorimotor conditi
[7], by incorporating both the inevitable occurrence o
noise (white) in the nervous system and delay feedba
networks involved in controlling the motor output.

Experiment and data collection.—Five right-handed
male subjects ranging in age from 25 to 35 took part in t
synchronization experiment. Seated in a sound attenua
chamber, each subject was instructed to cyclically pre
his index finger against a computer key in synchrony wi
a periodic series of auditory beeps, delivered through
headphone. Two frequency conditions,F1 ­ 2 Hz (T1 ­
500 ms) andF2 ­ 1.25 Hz (T2 ­ 800 ms), were studied.
These frequencies were chosen such that the subject
able to perform the required tapping motion continuous
[8,9].

Each experimental session consisted of the subj
performing 1200 continuous taps for a given frequenc
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A computer program was used to register the time
a specific point in the tapping cycle in millisecond
resolution. The data collected were the interrespon
intervals (IRIs) Ii, and the synchronization or tapping
errorsei . As defined in Fig. 1,ei is the time between the
computer recorded response timeRi and the metronome
onsetSi, i.e., ei ­ Ri 2 Si , and Ii is the time between
successive tapping responses, i.e.,Ii ­ Ri11 2 Ri. From
the figure it is clear thatIi and ei are not independent
variables, in particular,8<:

Ii ­ T 1 ei11 2 ei ,

ei ­ e0 1
iP

k­1
sIk21 2 T d . (1)

This relation has important consequences in the seq
for delineating which of the two time series is the mor
fundamental in the present experiment.

Results of data analysis.—Twenty time series, each
consisting of 1200 points, are collected from the five sub
jects, each performing two sessions for a given frequen
condition. Each time series is indexed by the order of r
sponses. For some trials, due mainly to a loss of conce
tration, subjects missed a metronome stimulus or tapp
100 ms or more earlier than the onset of stimulus. We r
fer to these phenomena as “glitches” to contrast them w
the much smaller synchronization errors we treat here.
careful examination reveals that this kind of glitch occurre
fewer than 5 out of 1200 responses and does not appea
affect the long term characteristics we seek to quantify.

FIG. 1. Definition for the synchronization errorei and inter-
response intervalIi .
© 1997 The American Physical Society 4501
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Figure 2 shows a typical example of an error time seri
and the corresponding IRIs forF1 ­ 2 Hz. Both time
series appear to be stationary. In addition, the distributi
of the error variableei , shown as a histogram in the
inset of Fig. 2(a), is well fit by a Gaussian with mea
216.9 ms and standard deviation 20.3 ms. A chi-squa
test confirms the assertion thatei is Gaussian distributed.
From Eq. (1) the IRI variableIi is also a Gaussian random
variable [see inset in Fig. 2(b)].

Initial hints about the long memory character of th
time series in Fig. 2(a) are provided by computing it
spectral density using 1024 points after discarding the fi
50 points to eliminate transient. The result, plotted o
a log-log scale in Fig. 3(a), roughly follows a straigh
line, suggesting that the spectral densitySs fd scales with
frequencyf as a power law,Ss fd , f2a , where a ø
0.54. From the Wiener-Khinchin theorem this implies tha
the autocorrelation functionCskd of the original error time
seriesei decays with the time lagk also as a power law

Cskd , k2b , (2)

where b ­ 1 2 a ø 0.46. Recall that a long memory
process is mathematically defined as a process who
autocorrelation functionCskd sums to infinity [10],

k­X̀
k­0

Cskd ­ ` . (3)

FIG. 2. Example of an error time series (a) and the corr
sponding interresponse intervals (b) (in ms). Histograms a
their Gaussian fits for the time series are shown in the inse
Notice that most synchronization errors and their average a
negative, meaning that on the average the subject tapped be
the beep.
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The autocorrelation function in Eq. (2), with0 , b ø
0.46 , 1, meets this definition. This establishes the erro
time series in Fig. 2(a) as coming from a long memor
process, specifically, a fractional Gaussian noise proce
Similar results are obtained for all twenty error time serie
from the experiment. Also the average spectral density f
the ten error time series from each frequency condition
observed to obey a power law with slope close to 1y2 [11].

Another index for long memory processes is the Hurs
exponentH. It relates toa through [10]

H ­ s1 1 ady2 . (4)

A direct way to estimate the value ofH is the trend-
corrected rescaled range analysis [5] originally used b
Hurst to analyze yearly minimums of the Nile River
[12]. Let ei ­ ei 2 e where e denotes the sample
mean of the given error time series. Consider the cu
mulative sumLsn, sd ­

Pi­s
i­1 en1i, whereLsn, sd can be

regarded as the position of a random walk afters steps.
Define the trend-corrected range of the random wa
as Rsn, sd ­ maxhLsn, pd 2 pLsn, sdys, 1 # p # sj 2

minhLsn, pd 2 pLsn, sdys, 1 # p # sj. Let S2sn, sd
denote the sample variance of the data sethen1iji­s

i­1. If
the average rescaled statisticQssd ­ kRsn, sdySsn, sdln

scales withs as a power law for larges, Qssd , sH ,
thenH is the Hurst exponent. One can show that, if th
autocorrelation functionCskd sums to a finite number,
then generallyH ­ 1y2, corresponding to the case of
short term memory. If Eq. (3) holds, then1y2 , H , 1,
and the time series is said to have long persistent memo

Figure 3(b) shows the log-log plot ofQssd versuss for
the error time series shown in Fig. 2(a). A straight line
fit to the data givesH ­ 0.79 which is consistent with
H ­ 0.77 obtained from Fig. 3(a) and Eq. (4). Apply-
ing the same rescaled range analysis to all the error tim
series, we summarize the calculated Hurst exponents
Table I (top row for each trial). Averaging all the rele-
vant entries in the table givesH ­ 0.723 6 0.071 which
is significantly greater thanH ­ 1y2.

The fractional Gaussian noise characteristic establish
for the error time series further enables us to apply

FIG. 3. (a) Spectral density of the error time series in
Fig. 2(a). We have converted the unit of frequency from 1ybeat
to Hz (see Gildenet al. in [7]). (b) Log-log plot of averaged
RyS value Qssd against window sizes for the time series in
Fig. 2(a).
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TABLE I. Hurst exponents for error time series. For eac
trial, the first row givesH calculated based onRyS analysis, the
second row gives MLE results (standard deviations are 0.024

Stimulus Subject Subject Subject Subject Subje
period A B C D E

500 ms 0.74 0.77 0.76 0.71 0.71
trial A 0.895 0.69 0.73 0.80 0.845

500 ms 0.79 0.72 0.68 0.80 0.76
trial B 0.835 0.845 0.83 0.85 0.83

800 ms 0.66 0.75 0.58 0.71 0.70
trial A 0.79 0.74 0.555 0.815 0.685

800 ms 0.81 0.70 0.71 0.80 0.69
trial B 0.755 0.78 0.64 0.775 0.665

more systematic statistical method—the frequency d
main maximum likelihood estimation (MLE) [10]—to the
calculation of the Hurst exponent. The result is displaye
as the lower number in each box in Table I. The overa
average givesH ­ 0.77 6 0.085. Note that most of the
MLE values are slightly larger than the correspondingH
values from theRyS method. This is consistent with the
observation that the rescaled range analysis tends to
derestimate the Hurst exponent whenH . 0.75 [13].

At first blush, the IRIIi appears to be another natura
variable for characterizing the synchronization proces
However, if the same analysis is applied to theIi time
series from the present experiment, without realizing th
relation in Eq. (1), one can easily arrive at erroneou
conclusions. As an illustration of what to expect from
such an analysis we show in Figs. 4(a) and 4(b) th
spectral density and the rescaled range plot for the tim
series in Fig. 2(b). The positive slope of the powe
spectrum is a reflection of rapid local fluctuations in th
time series, indicating its origin as a differenced tim
series [see Eq. (1)], and the value of the slope relat
to a through the known formula2 2 a. The RyS plot
also shows the characteristic shape of a differenced ti
series which is not linear on log-log scale. In fact, th
local slope of theRyS plot in this case approaches zero
as the time scale increases [14]. Clearly, these resu
are not informative in terms of revealing the underlyin
long memory. In this regard we propose the notion o
a fundamental time seriesto capture the role played by
the error time series [15]. We expect this notion to b
of importance in experimental situations where sever
interrelated dynamical variables all appear to provide a
adequate description of the problem.

Modeling and discussion.—A common feature of
physical and biological systems that exhibit1yfa type
long memory is that they all have many interactin
components. Observation of1yfa behavior has been
seen as an indicator of complex self-organized dynami
In view of the diverse set of problems in which they arise
it is generally accepted that no single mechanism c
explain all long memory processes.
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FIG. 4. The power spectrum (a) and theRyS plot (b) for the
IRI time series in Fig. 2(b). The parabolically shaped curve
in (b) should not be construed as giving multiple values ofH
(see text).

In this Letter we focus our attention on aspects of sens
rimotor coordination as embodied by the synchronizatio
experiment. From a modeling point of view two points
are salient. First, the nervous system is a massively par
lel processing unit which possesses intrinsic spontaneo
activities in addition to the control of the synchronization
task. To a first approximation we may consider those unr
lated processes as a white noise background. Second,
actual control of the synchronization task is not entirely
centralized. Sensory feedback may play an important ro
for the production of correct behavior. Transmission de
lays through the neural circuitry imply that a proper mathe
matical description of the synchronization problem shoul
be a stochastic delay differential equation [16]. Specifi
cally, we hypothesize that the nervous system controls th
behavior by comparing the input periodic stimulus rep
resented by sinsvtd with a delayed version of the actual
movementxst 2 td, wherex is normalized finger posi-
tion andt denotes sensory delay. [We comment that th
delay feedback assumption is essential in reproducing t
observed phase advance in Fig. 2(a).] Below we prese
a model which is modified from a previous model of bi-
manual rhythmic coordination [17],

ẍ 1 Ùx3 2 Ùx 1 Ùxx2 1 x ­ bfsinsvtd 2 xst 2 tdg2

1
p

Qjt , (5)

whereb gives the strength of the coupling,jt represents
Gaussian white noise of unit variance, andQ is noise
amplitude. Whenb ­ 0 the equation has a natural period
of 2p. If we choose the period of the stimulus around
this value the output of the oscillator can be phase locke
to the input (synchronized). [Note that we make no effor
to conform the driving frequency here to that used in th
experiment, although it can be done by rescaling the var
ables in Eq. (5). This is partly because Eq. (5), althoug
based on detailed experimental observations [18], is
phenomenological model, not a model derived from firs
principles.] Because of the stochastic termjt, the phase
difference or synchronization error here is obtained b
computing the peak distance between the input and the o
put signals. The error time series obtained this way look
4503
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very similar to that from the experiment. ForQ ­ 0.0004,
b ­ 0.4, t ­ 0.4, v ­ 2p 3 0.14 ­ 0.88, using the
numerical method in [19] to obtain a time series o
1024 phase errors, the Hurst exponent estimated fro
MLE is about 0.75 (0.72 from RyS). For Q ­ 0, the
period of oscillation for Eq. (5) is aboutTs ­ 7.143. For
the experiment withT1 ­ 500 ms, the sametyTs ratio
yields a sensory delay of500 3 s0.4y7.143d ø 28 ms,
which is actually a reasonable value for the real nervo
system.

The present modeling effort is an attempt to establis
that random noise and sensory delay in the nervous s
tem are the origins of observed long memory process
in sensorimotor experiments. It is known that certain sto
chastic partial differential equations display long spatia
memory [10]. Recent work shows that delay differentia
equations and partial differential equations are intimate
related [20]. This provides the hope that certain dela
differential equations may have long temporal memor
Future effort will be directed toward making these consid
erations more concrete [11].

In conclusion, the analysis presented in this Lette
shows strongly that the error time series associated w
the synchronization task has long term memory. In a
dition, one can model the underlying stochastic process
as fractional Gaussian noises. Previous work has not e
plored sufficiently long time series to establish this effec
(e.g., [8]). We further postulate that this phenomeno
may be attributed to the inevitable occurrence of nois
and sensory delay in the nervous system. The function
significance of long memory in human coordination ma
be related to the flexibility of switches from one patter
to another [11,21]. More investigations are underway
explore these possibilities.

This work was supported by National Science Found
tion Grant No. SBR-951136, National Institute of Menta
Health Grants No. MH 42900 and No. KO5 MH01386
Thanks to Tom Holroyd for writing the computer program
for data collection.
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