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Long Memory Processes1/ f* Type) in Human Coordination

Yanging Chen, Mingzhou Ding, and J. A. Scott Kelso

Program in Complex Systems and Brain Sciences, Center for Complex Systems, Florida Atlantic University,
Boca Raton, Florida 33431-0991
(Received 28 February 1997

Consider the task of synchronizing the movement of one’s limb to a periodic environmental signal.
Using rescaled range analysis and the spectral maximum likelihood estimator, we establish that the
experimental errors of human synchronization exhihiff® type long memory wherex is about
0.5, and that the underlying stochastic process can be modeled by fractional Gaussian noise. In
addition, we provide a preliminary model of this phenomenon using stochastic delayed differential
equations. [S0031-9007(97)04698-X]

PACS numbers: 87.22.Jb, 05.40.+j, 87.45.—k

The wide occurrence of /f* type of long memory A computer program was used to register the time of
(long range correlated) processes in electrical systems arad specific point in the tapping cycle in millisecond
in solid state devices has long posed a challenging prolresolution. The data collected were the interresponse
lem for physics [1]. A number of mechanisms, rangingintervals (IRIs) I;, and the synchronization or tapping
from the superposition of many independent relaxatiorerrorse;. As defined in Fig. l¢; is the time between the
processes [2] to self-organized criticality [3], are prof- computer recorded response tirRe and the metronome
fered to explain this phenomenon. In this Letter we reporbnsets;, i.e.,e; = R; — S;, and [; is the time between
the manifestation of long memory processes in a humasuccessive tapping responses, ies R;+; — R;. From
sensorimotor coordination experiment in which a subjecthe figure it is clear thaf; and ¢; are not independent
synchronizes his finger tapping with an external periodiovariables, in particular,
stimulus. Using an array of diagnostic tools including L =T+ _
rescaled range analysis and the spectral maximum likeli- { P €it1 — €

hood estimator, we show that the error time series, defined e = ey + i Ity — T). 1)
k=1

as the time between a predetermined point in the tapping

0yl and ne onet of e sl X 00 MMt el s mporan consequences in e seaue
noise [4]. The average value af is found to be about f3:1ddaer|rl1neenatlgrﬁl m@cgget:tee%z;;n:ms eries is the more

0.5. This result adds the present human sensorimotor co- Results of data analysis-Twenty time series, each

_ordln:_;ltlon system to a growing list of biological eXamIOIeSconsisting of 1200 points, are collected from the five sub-
in which one observes long range correlated random fluc:

twations [5-7]. In addition, we report our attempt atjects, each performing two sessions for a given frequency

modeling the experimental findings using stochastic delagogg:g)sn' Fi?C:O%rge,[r?;gere'nmdaei;(thg)ét::) isorg‘ecroﬂc:;-
differential equations. Our motivation is to present a uni- P : ! y

fying mechanism for a diverse set of long memory pro_tration, subjects missed a metronome stimulus or tapped

: : ..~ 100 ms or more earlier than the onset of stimulus. We re-
cesses, observed under a variety of sensorimotor condltlorfgs

[7], by incorporating both the inevitable occurrence of er to these phenomena as “glitches” to contrast them with

nase (unie) i the nenvous system and delay feecbacf(e 1) ST e oTEen o v e re
networks involved in controlling the motor output. 9

Experiment and data collection-Five right-handed fewer than 5 out of 1200 responses and does not appear to
. o : affect the long term characteristics we seek to quantify.
male subjects ranging in age from 25 to 35 took part in the

synchronization experiment. Seated in a sound attenuated
chamber, each subject was instructed to cyclically press wexonome S T S T
his index finger against a computer key in synchrony with
a periodic series of auditory beeps, delivered through a
headphone. Two frequency conditio#y, = 2 Hz (T, = Tpin e, | o o |
500 ms) andF, = 1.25 Hz (T, = 800 ms), were studied.  synchronization  —i ia— e e
These frequencies were chosen such that the subject was ' E ' :
able to perform the required tapping motion continuously ' >
8,9]. R I, R; L R
Each experimental session consisted of the subjeqtig. 1. Definition for the synchronization erref and inter-
performing 1200 continuous taps for a given frequencyresponse interval,.
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Figure 2 shows a typical example of an error time serieS’he autocorrelation function in Eg. (2), with < 8 =
and the corresponding IRIs faf; = 2 Hz. Both time 0.46 < 1, meets this definition. This establishes the error
series appear to be stationary. In addition, the distributiotime series in Fig. 2(a) as coming from a long memory
of the error variablee;, shown as a histogram in the process, specifically, a fractional Gaussian noise process.
inset of Fig. 2(a), is well fit by a Gaussian with mean Similar results are obtained for all twenty error time series
—16.9 ms and standard deviation 20.3 ms. A chi-squardrom the experiment. Also the average spectral density for
test confirms the assertion thatis Gaussian distributed. the ten error time series from each frequency condition is
From Eq. (1) the IRI variablé; is also a Gaussian random observed to obey a power law with slope close @ [l11].

variable [see inset in Fig. 2(b)]. Another index for long memory processes is the Hurst
Initial hints about the long memory character of theexponentd. It relates toa through [10]
time series in Fig. 2(a) are provided by computing its H=(+a)2. 4)

spectral density using 1024 points after discarding the first

50 points to eliminate transient. The result, plotted onA direct way to estimate the value d@f is the trend-

a log-log scale in Fig. 3(a), roughly follows a straight corrected rescaled range analysis [5] originally used by
line, suggesting that the spectral densityf) scales with Hurst to analyze yearly minimums of the Nile River

frequencyf as a power lawS(f) ~ f~¢, wherea = [12]. Let ¢; =e —C Wh_ere e Qenotes th_e sample
0.54. From the Wiener-Khinchin theorem this implies that mean of the given error time series. Consider the cu-
the autocorrelation functio@(k) of the original error time  mulative sumL(n,s) = > ;_] €,+;, whereL(n, s) can be

seriese; decays with the time lag also as a power law  regarded as the position of a random walk aitesteps.
Clk) ~ kB 2 Define the trend-corrected range of the random walk

’ as R(n,s) = maxXL(n,p) — pL(n,s)/s,1 = p = s} —

where 3 =1 — a =~ 0.46. Recall that a long memory min{L(n, p) — pL(n,s)/s,1 = p =s}. Let S%*(n,s)

process is mathematically defined as a process whoskenote the sample variance of the data{ggt ;}i=]. If

autocorrelation functio (k) sums to infinity [10], the average rescaled statistit(s) = (R(n,s)/S(n, s)),
k= scales withs as a power law for large, Q(s) ~ s,
D> Ck) = =. (3)  thenH is the Hurst exponent. One can show that, if the
k=0

autocorrelation functionC(k) sums to a finite number,
then generallyd = 1/2, corresponding to the case of
short term memory. If Eq. (3) holds, théri2 < H < 1,
and the time series is said to have long persistent memory.
Figure 3(b) shows the log-log plot @ (s) versuss for
the error time series shown in Fig. 2(a). A straight line
fit to the data givesH = 0.79 which is consistent with
H = 0.77 obtained from Fig. 3(a) and Eq. (4). Apply-
ing the same rescaled range analysis to all the error time
series, we summarize the calculated Hurst exponents in
Table | (top row for each trial). Averaging all the rele-
sl vant entries in the table givegg = 0.723 = 0.071 which
0 200 400 L E00peri 800 1000 1200 is significantly greater thafl = 1/2.
The fractional Gaussian noise characteristic established
for the error time series further enables us to apply a
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FIG. 2. Example of an error time series (a) and the corre-

sponding interresponse intervals (b) (in ms). Histograms andIG. 3. (a) Spectral density of the error time series in
their Gaussian fits for the time series are shown in the inset$ig. 2(a). We have converted the unit of frequency frofhedat
Notice that most synchronization errors and their average ar® Hz (see Gilderet al.in [7]). (b) Log-log plot of averaged
negative, meaning that on the average the subject tapped befoRe'S value Q(s) against window size for the time series in
the beep. Fig. 2(a).
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TABLE I. Hurst exponents for error time series. For each 10 10
trial, the first row gives calculated based aR/S analysis, the @ i ®)
second row gives MLE results (standard deviations are 0.024). o ' Slope=146
(2] -~
Stimulus ~ Subject Subject Subject Subject Subject §° &
period A B C D E o0t !
500 ms 0.74 0.77 0.76 0.71 0.71
trial A 0.895  0.69 0.73 0.80 0.845 0.001 ‘
500 ms 0.79 0.72 0.68 0.80 0.76 0.00 351 o — oy o o0 000
trial B 0.835 0.845 0.83 0.85 0.83 ) s

800 ms 0.66 0.75 0.58 0.71 0.70 FIG. 4. The power spectrum (a) and tR¢S plot (b) for the
trial A 0.79 0.74 0.555 0.815 0.685 IRI time series in Fig. 2(b). The parabolically shaped curve
800 ms 0.81 0.70 071 0.80 0.69 in (b) should not be construed as giving multiple valuesHof

; (see text).
trial B 0.755 0.78 0.64 0.775 0.665

more svstematic statistical method—the frequency do- In this Letter we focus our attention on aspects of senso-
main mgximum likelihood estimation (MLE) [1(%—to>t/he rimotor coordination as embodied by the synchronization
calculation of the Hurst exponent. The result is displaye Xperiment. From a modeling point of view two points
as the lower number in eapch box. in Table . The gve¥a$re salient. First, the nervous system is a massively paral-
average gived — 0.77 + 0.085. Note that most of the el processing unit which possesses intrinsic spontaneous

. activities in addition to the control of the synchronization
MLE values are slightly larger than the corresponditg task. To afirst approximation we may consider those unre-
values from theR /S method. This is consistent with the ; P y

observation that the rescaled range analysis tends to ulr?-ted processes as a white noise background. Second, the

; actual control of the synchronization task is not entirely
de}&etiti'rr;aﬁu?ﬁ Thlgﬁk??pgnegggrﬁn;eognsoﬁg]r' natural centralized. Sensory feedback may play an important role
variable for ch’aracteriziln pt?]e svnchronization proces for the production of correct behavior. Transmission de-

. g the sy ; b S1'ays through the neural circuitry imply that a proper mathe-
However, if the same analysis is applied to thetime

series from the present experiment, without realizing th matical description of the synchronization problem should

relation in Eq. (1), one can easily arrive at erroneou?e a stochastic delay differential equation [16]. Specifi-

conclusions.  As an illustration of what to expect from cally, we hypothesize that the nervous system controls the
T L P behavior by comparing the input periodic stimulus rep-
such an analysis we show in Figs. 4(a) and 4(b) the : . .
; - tfesented by sifwr) with a delayed version of the actual
spectral density and the rescaled range plot for the tim : . : .
series in Fig. 2(b). The positive slope of the power ovementx(r — 7), wherex is normalized finger posi-
9. L pos| P the p tion andr denotes sensory delay. [We comment that the
spectrum is a reflection of rapid local fluctuations in the

time series. indicating its origin as a differenced timedelay feedback assumption is essential in reproducing the
' 9 9 observed phase advance in Fig. 2(a).] Below we present

€% model which is modified from a previous model of bi-

to a through the known formul@ — «. The R/S plot renanual thythmic coordination [17],

also shows the characteristic shape of a differenced tim
series which is not linear on log-log scale. In fact, the % + x> — x + xx? + x = B[sin(wr) — x(t — 7)]?
local slope of theR/S plot in this case approaches zero + JO¢ 5)
as the time scale increases [14]. Clearly, these results P
are not informative in terms of revealing the underlyingwhere 8 gives the strength of the coupling, represents
long memory. In this regard we propose the notion ofGaussian white noise of unit variance, agdis noise
a fundamental time serie® capture the role played by amplitude. WherB = 0 the equation has a natural period
the error time series [15]. We expect this notion to beof 277. If we choose the period of the stimulus around
of importance in experimental situations where severathis value the output of the oscillator can be phase locked
interrelated dynamical variables all appear to provide aro the input (synchronized). [Note that we make no effort
adequate description of the problem. to conform the driving frequency here to that used in the
Modeling and discussior~A common feature of experiment, although it can be done by rescaling the vari-
physical and biological systems that exhibitf« type ables in Eq. (5). This is partly because Eq. (5), although
long memory is that they all have many interactingbased on detailed experimental observations [18], is a
components. Observation df/f* behavior has been phenomenological model, not a model derived from first
seen as an indicator of complex self-organized dynamicgrinciples.] Because of the stochastic tefm the phase
In view of the diverse set of problems in which they arise,difference or synchronization error here is obtained by
it is generally accepted that no single mechanism cacomputing the peak distance between the input and the out-
explain all long memory processes. put signals. The error time series obtained this way looks
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very similar to that from the experiment. FQr= 0.0004,

B =04, 7=04, o =27 X 0.14 = 0.88, using the
numerical method in [19] to obtain a time series of
1024 phase errors, the Hurst exponent estimated fromi®]
MLE is about0.75 (0.72 from R/S). For Q = 0, the
period of oscillation for Eq. (5) is aboudt, = 7.143. For

the experiment withl', = 500 ms, the samer/T; ratio
yields a sensory delay af00 X (0.4/7.143) = 28 ms,
which is actually a reasonable value for the real nervous
system.
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