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It is suggested that the process by which the immune system learns how to recognize foreign inv
proceeds through a cascade of “metastable states” behaving like collective modes in a bit-mat
space. [S0031-9007(97)04601-2]
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Recently, the simulation of the immune system (IS) ha
been drawing significant benefits from the resort tocellular
automata(CA), namely, fully discrete dynamical systems
evolving according to boolean rules [1,2]. CA appea
particularly well suited to the simulation of biological
systems mainly on account of their capability to natural
incorporate complex nonlinearities. In addition, owing t
their space-time locality, they are almost ideal candidat
for massively parallel processing. A prominent examp
of immunological CA is the Celada-Seiden model, whic
has been able to provide a number of fresh insights in
the dynamics of the immune system response [3]. T
Celada-Seiden automaton is characterized by a fairly hi
degree of sophistication which sets it apart from simp
CA in the Ising class. The model includes the followin
entities:antigens (Ag), B cells (lymphocyte B), plasma
cells, antigen processing cells (APC), T-helper cells (Th
andantibodies. These entities move in a two-dimensiona
triangular lattice, and, once on the same site, they inter
according to some rules.

For instance, each B cell is endowed with a rece
tor molecule, which controls the recognition of the in
vading antigens, and a MHC (major histocompatibilit
complex) molecule which mediates its subsequent inte
action with Th cells. Upon recognition of a given antigen
the B cell incorporates it for internal chemical processin
(endocytosis).

As a result of this internal processing, the B ce
moves to a new internal state (B′) characterized by a
different configuration of the MHCyAg complex. The
new B′ cell can now be recognized, via exposition of th
MHCyAg molecule, by the Th cells receptors. This cells
antigen complex, in turn, produces the signal (interleuki
triggering both B cell and Th cell reproduction via clona
division. The result is proliferation of clones of plasma B
cells that finally secrete antibodies specifically prepared
attack the antigen (humoral response) and memory cells
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ready to counteract subsequent infections by the sam
antigen (memory of the IS).

In IMMSIM , the specific code implementing the Celada
Seiden automaton [4], both cell receptors and molecul
are represented by bit strings of lengthl. Binding events
are mediated by anaffinity potentialV which is a function
of the Hamming distance of the two strings involved
namely, the number of matching bits (0’s with 1’s and
vice versa).

For the present study, the affinity potential is cho
sen in the form of a truncated exponential:V smd ­
Vc expslm2mc

l2mc
d for mc # m # l and V smd ­ 0 else-

where. Herel ­ 2 ln Vc, Vc is equal to 0.05,m is the
number of matching bits, andmc is the “cutoff” match be-
low which no recognition takes place. In addition, eac
cell is endowed with a set of internal degrees of freedo
specifying its internal state (e.g., inert, stimulated, Ag pro
cessing, . . .). Full details on the system specification a
given in [4].

Based on a set of computer simulations, we have com
up with the following picture of the immune system
response. Antigens injected from timet0 onwards start to
interact with a random background of B cells, distribute
along a Maxwellian

M0sm, m0, T0d ­ s2pT0d21y2 exp2sm 2 m0d2y2T0

centered aboutm0 ­ ly2 with variances0 ­
p

ly2. Here
T0 ­ s

2
0 is the “temperature” measuring the scatterin

(uncertainty) around the mean valuem0. Subsequently,
after a given induction period, selective Ag interaction
with B cells, lying in the tail of M0 with matchings
abovemc, trigger the growth of a new population of high-
match B cells centered about a higher matching numb
m2 ­ mc. This growth proceeds via stimulation of B
cells by Th cells and subsequent proliferation via clona
multiplication. This is the start-up of the learning process
B cells peaked aboutmc trigger, in turn, the growth of
© 1997 The American Physical Society 4493
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higher-match populations, in a sort of upward cascade
m space ending up with the highest available bit-mat
numberm ­ l.

Such “bump-in-tail” distributions are often encountere
in physics where they are usually associated with instab
ties ensuing from their high energyyentropy content. In
the immunological context, however, there is no therm
dynamic principle forcing the release of the entropical e
cess associated with the bump in tail. On the contrary, t
system dynamics is presumably geared towards a ne
tive entropy production feeding the learning process th
allows the IS to recognize foreign invaders. Hereafte
we are going to show that a quantitative measure of th
learning process is provided by itsrelativeentropy.

To be more specific, let us consider a dynamic
process turning state1 into state 2, characterized by
distributionsf1 and f2, respectively. The quantityG12
defined as

G12 ­
X
m

f2
m lnsf2

myf1
md (1)

is the relative entropy or Kullback informationof the
process [5].

Owing to the inequality lnx $ s1 2 1yxd (equal sign
applying if x ­ 1), it is readily shown thatG12 is positive
definite and zero just in case the two distributions a
exactly the same. According to [6],G12 represents the
information gainencoding the extra knowledge associate
with the availability of an additional distribution function
We observe thatG12 may be related to a metric measurin
the distance between distributionsf1 andf2 in a suitable
information space [7].

We shall consider the information gain associated wi
the transition from an initial statef1 to a final state
f2, identified by their first three moments:ni ­

P
m fi

m,
nimi ­

P
m mfi

m, andniTi ­
P

m fi
msm 2 mid2 (ni is the

number of individuals belonging tofi , with 0 # ni # 1).
The total entropy of the “bound state”sf1 1 f2d is

given byH12 ­ H1 1 H2 1 HX , whereHi ;
P

m fi
m 3

ln fi
m, si ­ 1, 2d are the entropies of the “pure” statesfi ,

and HX ­
P

f1
m lns1 1 f2

myf1
md 1

P
f2

m lns1 1 f1
myf2

md
is the exchange entropy due to superposition of the tw
states.

Using Maxwellian states as interpolants, simple algeb
on Eq. (1) yields

G12 ­ n2 ln
n2

n1
1

n2

2
sln u12 1 u21

12 2 1 1 d2
12d , (2)

whereu12 ­ T1yT2 andd12 ­ sm2 2 m1dy
p

T1.
Such a simple formula calls for a number of commen

The term lnu12 1 u
21
12 2 1 on the right-hand side (rhs)

of Eq. (2) is the “thermal” component of the information
gain, namely, the information gained through a differe
tiation of the two states via a temperature change (sc
dilatationycontraction inm space). It is positive definite
and vanishes only forT2 ­ T1.
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The other term on the rhs of Eq. (2),d
2
12, is the infor-

mation gain associated with differentiation via shifts inm
space and consequently it showsexplicitly the desired de-
pendence on the mean displacements we were looking f
It is also positive definite, regardless of the sign of the dis
placementd12, and symmetric under the exchange1 $ 2
so that it can serve as a metric distance betweenf1 andf2.

How do these notions map out onto the immune syste
response?

The information gainG12 alone cannot tell the whole
story because its translational invariance does not allo
us to distinguish between “smart” (highm) and “dumb”
states (lowm). Thus, this indicator has to be comple-
mented with the sign of the mean matching separatio
d12. In other words, the sign ofd12 indicates whether
the system has moved uphill (learning) or downhill (un
learning) along the learning landscape, the module of i
formation gained/lost in such a process being given b
G12. Within this picture,G12 is naturally interpreted as
the information cost associated with the process yieldin
a learning amountjd12j. These considerations allow us to
gain better insight into the actual results of the numeric
simulations. The runs have been performed with the fo
lowing parameters:l ­ 12, mc ­ 10, grid size16 3 15,
Vc ­ 0.05, initial number of B, Th, and APC cells equal
to 2000. The antigens are continuously injected at a ra
of 300 unitsystep. All the input values are drawn from
[3] which represents the basic reference with respect
the biological parameters of the model. The total numbe
of antigens and B cells, as a function of time, is repre
sented in Fig. 1. The B cells succeed to level off the A
content after about50 time steps. Since a single time step
covers1y10 of a typical B-cell lifetime, this corresponds
to about two weeks in physical units. The dramatic dro
of antigens aftert ­ 50 is a clear clue that the IS has been
capable of mounting a very effective response to the in
vading agents.

FIG. 1. The total number of Ag and B cells as a function
of time.
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More insight on the specific carriers of the IS respons
can be gained by inspecting the time evolution of th
B-cell distribution functionfmstd reported in Fig. 2. Here
fm is the total number of B cells with matching numbe
m versus the total number of B cells in the system.

At the beginning, only the initial Maxwellian corre-
sponding to the mean bit matching number (m ­ ly2 ­
6) develops. Subsequently, this Maxwellian sends ind
viduals to a second mode, sayM10, corresponding to the
lowest matching number (m ­ mc ­ 10) recognizable by
the system. TheM10 mode behaves like an ordered (low
temperature) metastable state, being fed by the tail of t
M6 and sending itself individuals to the upper-lying state
In a sense, it serves as an intermediate bridge to acco
plish alearning cascade processtakingm ­ 6 states into
the finalm ­ 12 (perfect learning) state.

Several aspects of such a process deserve partic
attention like the dependency (if any) on the bit-strin
length and on the specific form of the affinity potential.

For longer strings (l . 12), we expect the number of
learning stages to increase assl 2 mcd. Unfortunately,
this hypothesis is hard to test because of the exponen
complexity (22l) of the model. Any additional bit in the
string requires a fourfold increase in computing time
To date we are not aware of any extensive simulatio
of the C-S model withl greater than 14. As a result,
any quantitative assessment on the learning cascade m
await further extensive numerical simulations. To mak
progress in this direction, we have recently developed [
a parallel version of the code that will allow us to gathe
results up tol equal to 20.

As to the correlation of this process with the specifi
form of the potential, we observe that below the cuto
value mc no mode may grow since the potential is
strictly zero and cannot trigger any instability. Moreove
no strong dependence on the shape of the potentia
expected, since the crucial feature is a nonvanishi
potential capable of triggering the instability, rather tha

FIG. 2. The B-cells distributionfsm, td as a function of time.
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the shape of the potential itself. When this occur
the initial value of the high-match (m $ mc) B cells
should be barely forgotten regardless of the shape of t
potential.

An interesting feature of the learning cascade is that
is realized via shifted bump-in-tail states, which stand o
as “collective modes” of the immune system dynamic
This is to be contrasted to an alternative scenario where
the initial Maxwellian would develop long (exponential or
algebraic) tails rather than narrow bumps at highm.

It is worth pointing out an amazing analogy with the
mechanism of “current drive” in fusion plasmas, namely
the dramatic rise of electric current triggered by injectio
of even minute amounts of radio-frequency power in
range of frequencies much higher than the mean electr
speed ([9]).

Formally the analogy proceeds by identifying B cell
with electrons interacting with antigens (photons) via th
affinity potentialV smd (electron-wave potential). Within
this analogy, the mean bit-matching numberm can be
seen as the electric current driven by the waves, perfec
in line with the interpretation ofm as a fictitious “particle
speed.” In this context, it would be interesting to defin
a sort of learning efficiency as the analog of electri
conductivity, namely, the ratio between the mean b
matchm and the strength of the affinity potentialVc.

In Fig. 3 we show the normalized mean matchmn ­
mstd2ms0d

ms0d , [ms0d ­ ly2], the entropyHstd ­
P

m fm ln fm,
and the information gainGstd.

The mean bit-match number is the most immedia
indicator of whether or not the system is learning t
withstand the antigens’ attack.

As expected, after an induction time of about50 time
units, the mean bit match exhibits a sharp rise associa
with the onset of them ­ 10 mode. This is the time it
takes the system to develop the catalytic growth of B ce
lying in the tail (m $ mc) of the initial Maxwellian. It

FIG. 3. Time evolution of the normalized mean matchmn,
standard entropyHstd, and information gainGstd.
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is also the stage of substantial learning. The subsequ
evolution shows a progressive improvement due to t
disappearance ofM10 in favor of the “smarter”M12 mode.
Since theM6 is continuously sustained from the exterior
it never dies out completely thereby preventingm from
achieving the top valuem ­ 12 (perfect learning state).

After a stagnation period (up tot , 50), the entropy
undergoes a sudden drop as a result of the IS prima
response. Note, in fact, that the statistical dispersion
M10, T10, is significantly smaller thanT6. Subsequently,
the simultaneous presence of competing modes cau
a slight entropy increase, mainly contributed by th
exchange entropy component. Finally, as the mo
centered inm ­ 12 prevails, the entropy starts again to
decrease monotonically. As a general remark, we obse
that the entropyHstd does not behave like a proper
H function, i.e., a monotonically decreasing/increasin
function of time. Since ourfm is a standard probability
density function (i.e., positive definite and normalized t
one), our interpretation is that no standardH function can
be associated to the C-S automaton dynamics.

Finally, we inspect the evolution of the information
gain Gstd. As expected from previous analytical con
siderations,Gstd proceeds much in sympathy with the
mean match numbermstd. However, the sharp rise around
t ­ 50 is significantly steeper, taking almost the connota
tions of a first order phase transition.

A semiquantitative assessment of the time evolutio
of Gstd may be attempted on the assumption that th
bump-in-tail modes behave like Maxwellian distributions
We want to stress that, due to the limited string leng
(l ­ 12) this is no more than a reasonable hypothesis.
other words, we have been able to test it just for the initi
Maxwellian M6. For higher-match modes longer string
are required. Nevertheless it is reasonable to state t
the specific shape of these modes should not affect
qualitative features of the learning cascade.

By identifying state 1 with M6 and state2 with
M10, from Fig. 2 we infern1 ­ 1, n2 ­ 0.63, T1 ­ 3,
T2 , 0.4, d12 ­ s10 2 6dy

p
3. According to Eq. (2),

this yields G12 , 1.75 in a satisfactory agreement with
the data in Fig. 3. By modeling the subsequent evolutio
as a transition fromM10 to M12, we obtainn1 , 0.63,
n2 , 0.85y2, u12 , 1, d

2
12 , s12 2 10d2y0.4 ­ 10.

SinceM12 lies on the rightmost boundary of bit-matching
space, we must account for finite-size effects. Som
algebra yieldsGfs ­ Gy2 1

n2

2
T2

T1
d12y

p
2pT2, where the

subscriptfs stands for “finite size.” The final result for
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the transitionM10 to M12 is thereforeG , 2.8, again in
reasonable agreement with the results of the numeric
simulation.

As a further observation, we note that, at variance wit
standard entropy, the information gaindoesbehave like
a properH function; namely, it monotonically increases
with time. This is conducive to the idea of a “maximum
information-gain principle” [10] of the formdG

dt $ 0 with
the equality sign holding when the learning process i
basically over. This is a direct consequence ofG being
a monotonic function ofd, which is quite reasonable in
light of the interpretation ofG as the information cost
associated with the learning amountd.

In turn,d is a monotonic function of time because high-
m bumps develop as a result of the depletion of lower
m “parents,” hence after them. This is why the system
dynamics exhibits a “built-in” time arrow.

The present study sets a pointer in the direction o
kinetic theory (Boltzmann) as a valuable approach to th
IS dynamics, possibly achieving an optimal compromis
between CA microdynamics and macroscopic populatio
dynamics.
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