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Nonlinear Dynamics Model for Chip Segmentation in Machining
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We have developed a new model for chip formation in machining which includes a mechanism
for thermomechanical feedback. This leads to an interpretation of metal cutting as a process which
is similar in many ways to an open chemical reactor. As the cutting speed is increased, there is a
Hopf bifurcation, which explains the observed change from continuous to segmented chip formation.
[S0031-9007(97)03568-0]

PACS numbers: 62.20.Fe, 81.20.Wk, 82.40.Bj
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High-speed machining encompasses a number
rapidly developing manufacturing processes. Becau
these are nonlinear and dynamic in nature, optimizati
by any means other than trial and error (not uncommon
industry today) requires a fundamental understanding
their physics and new models to predict behavior. He
we consider single-point orthogonal machining, in whic
the tool has a plane face and a single straight cutting ed
normal to its direction of motion, and the depth of cutd
is small in comparison to the length of the cutting edg
Observations in many laboratories over the past fif
years or so have led to the following conventional mod
of the mechanics of this process [1,2]. As indicated
Fig. 1, the metal cutting occurs by concentrated she
along a distinct narrow region which is approximatel
planar, called theprimary shear zone;this extends from
the cutting edge to the work surface ahead of the to
and is inclined at an anglef. The material is unstressed
and does not deform until it enters the shear plane. As
approaches this thin layer of thicknessh at cutting speed
y, the stress in the material builds up rapidly. The she
strain is initially elastic, but the yield stress is exceede
quickly, and plastic flow sets in. Large permanen
deformation takes place within the shear zone, and th
a chip separates from the workpiece and moves up
tool face. Although additional plastic deformation, calle
secondary shear,takes place as the metal moves up th
face of the tool, it is treated as a simple friction proce
in the conventional model, with a chip of thicknes
b ­ dy sinf assumed to move up the tool face like
friction slider with constant coefficient. (Some mor
recent models include a secondary shear zone [3].)

The model just described is based upon the assumpt
that the chip forms by a process of steady homogeneo
shear, and such a chip is calledcontinuous. In many met-
als, however, increases in the cutting speed, and hence
in the strain rate, result in the formation of adiscontinuous,
or segmented,chip characterized by bands of highly local
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ized shear which are almost equally spaced; see Fig. 2
Following the onset of segmentation, the spacing betwe
the segments increases monotonically with cutting spe
and approaches some limiting value [4], as indicated
Fig. 2(b). Understanding the onset of this behavior is
practical importance, because discontinuous chip form
tion is correlated with increased tool wear, decreased t
life, degradation of the workpiece surface finish, and le
accuracy in the machined part [5]; for all these reason
discontinuous chip formation may limit the rate at whic
metal can be machined [6]. The data for hardened stee
Fig. 2 suggest that a bifurcation from steady state to osc
latory behavior takes place as the cutting speed increa
However, there is no mechanism for oscillations to occur
either the conventional model described above, or in mo
recent models of segmented chip formation.

In what follows, we present a theory which supports th
hypothesis that the change from continuous to segmen
chip formation is due to a Hopf bifurcation. We propos
to modify the conventional model for orthogonal cuttin
by introducing the concept of alocal deformation zone
in the workpiece material, based on the observation th
the tool distributes a load in the workpiece a certa
distance back from the primary shear zone. As we w
show, this leads to an interpretation of metal cutting as
thermomechanical feedback process, which is similar
many ways to an open chemical reactor. Recent work
Molinari and Dudzinski [7] is related to our approach
however, they do not consider the connection betwe
local stresses induced on the workpiece material by t
tool and the global shear stress in the primary shear zo
and they treat the deformation inside the shear zone
adiabatic. Also, Marusich and Ortiz [8] have recentl
reported the results of some large-scale Lagrangian fin
element simulations of orthogonal cutting; just as wit
a laboratory experiment, we view our simpler modelin
approach as an attempt to gain insight into the results
such studies.
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FIG. 1. Primary shear zone model of chip segmentation.

As indicated in Fig. 3, we assume the tool is in conta
with the workpiece material over an areaA ­ Lw, where
w is the width of contact andL is the contact length.
Experimental observations indicate thatL is of the same
order of magnitude as the depth of cutd [2,3], so we
make this assumption, also. In order to highlight th
essential physical argument, we simplify the geomet
by assuming thatf ­ a, and we neglect friction as
the chip slides up the tool face. Thus, we assum
the tool exerts a force on the chip over the conta
areaA in the direction perpendicular to the face of th
tool, which causes the chip to deform. In the prese
development, we treat this deformation process as a lo

FIG. 2. (a) Polished and etched chip cross section obtain
from cutting hardened steel at speeds ranging from 0.7
4.3 mys, with a ­ 210±, andd ­ 30 mm. (b) Mean segment
spacing vs cutting speed.
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compression. Thus, there is an elastic stressS which is
proportional to the compressive strain´, S ­ E´, where
´ ­ sDudysdy sinfd andE is an elastic modulus, which
will be discussed further below. Differentiating with
respect to time, we get the following evolution equation
for S,

dS

dt
­

E sinf

d
dsDud

dt
­

E sinf

d
sytool 2 ychipd , (1)

where, in the assumed geometry,ytool ­ y cosf.
Now, the local compressive stressS causes a shear

stresst to build up in the primary shear zone, as follows
Ignoring small inertial terms, balance of momentum
requires thatSLw ­ twdy sinf. Assuming thatL is
constant, time differentiation of this equation leads to a
evolution equation for the shear stress,

dt

dt
­

L sinf

d
dS

dt
­

EL sin2 f

d2
sy cosf 2 ychipd .

(2)

Initially, this shear stress will cause the material in th
primary shear zone to deform elastically, so thatychip ­
0, but eventuallyt will exceed the yield stressty of
the material, and plastic flow will take place inside the
primary shear zone in order to dissipate the excess sh
energy. This will take place rapidly at high cutting speed
y. With the onset of irreversible plastic deformation
inside the primary shear zone,ychip will become positive,
and there will be a plastic strain rateÙgp in the primary
shear zone given byÙgp ­ ychipyh. Thus, we may rewrite
Eq. (2) in the following form:

dtydt ­ EL sin2 fsy cosf 2 Ùgphdyd2

­ ELy sin2 f cosfs1 2 Ùgpy Ùgavgdyd2,
(3)

where the average strain rate inside the primary shear zo
is defined byÙgavg ­ y cosfyh.

FIG. 3. Local deformation zone.
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Confining our attention to the primary shear zon
we assume the following heat balance equation for t
temperature:

rcg

dT
dt

­ rcg

T0 2 T
hysy sinfd

1 4x
T0 2 T

h2
1 t Ùgp .

(4)

Here, T is absolute temperature inside the zone,T0
denotes the absolute temperature of the material enter
the shear zone,r is the (assumed constant) density o
the workpiece material,cg is its specific heat capacity
at constant elastic configuration [9], andx is its thermal
conductivity. Equation (4) states that the rate of chan
of thermal energy in the shear zone is governed
convection, i.e., net inflow divided by residence time i
the zone; diffusion, which is approximated by a secon
order difference over the shear zone, assuming that
cut chip material exiting the shear zone is at the sam
temperature as at the zone center; and heat production
plastic working, assuming for simplicity that all of this
work is dissipated as heat [9,10].

Nondimensionalizing temperature byT̂ ­ sT 2

T0dyT0, shear stress bŷt ­ tyty , length by ŷ ­ yyd,
and time by t̂ ­ fsELy sin2 f cosfdystyd2dgt, then
dropping the hats, the equations governing evolution
shear stress and energy balance in the primary shear z
can be written in the form

dtydt ­ 1 2 F, dTydt ­ 2jT 1 htF , (5)

where F ­ Ùgpy Ùgavg denotes the dimensionless plasti
strain rate, and

j ­ 2tyd2
£
1 1 4xy

°
rcghy sinf

¢§
ysELh sin2fd ,

(6)

h ­ t2
yd2ysrcgT0hLE sin2 fd . (7)

We note that, as the cutting speed increases, the h
transfer parameterj decreases, while the heat productio
parameterh remains constant.

What is still required is aconstitutive equationwhich
specifies the irreversible plastic flow response of th
material. Since plastic flow at high strain rate is thermal
activated, it can be modeled by Arrhenius kinetics [11
In nondimensional variables, a typical phenomenologic
Arrhenius model for metals is given by [11–14]

Fst, Td ­ exphft 2 s1 2 nT dgyfes1 1 T dgj . (8)

Here, e is the strain-rate sensitivityof the material, and
n is the thermal-softeningparameter;e ø 1 and n is of
the order of magnitude of1. When t is less than the
temperature-modified yield valueY ­ 1 2 nT , F ø 1,
so that essentially no plastic flow takes place. Howev
as t approachesY , F becomes significant. (As in
the conventional model of machining, strain hardenin
is neglected here; this important effect increases t
dimension of the phase space of our model, and thus m
account for more complex aperiodic chip segment spac
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which has been observed at intermediate speeds in so
metals [4].)

When Eq. (8) is inserted into the model evolutio
equations (5), the resulting system closely resemb
models of open chemical reactors [15]. In particula
the second equation is similar to the balance of ener
equation for a chemical combustion process with lar
activation energye21. The equilibrium state of the
system is given byssststd, T stdddd ­ stp, T pd, where

tp ­ jysj 1 nhd, Tp ­ hysj 1 nhd . (9)

This describes steady-state chip formation. Loss of s
bility of this equilibrium state is thus an indication of the
onset of the formation of segmented chips.

As pointed out by Recht [16], if the rate of plastic strai
becomes sufficiently large, and the transport of heat aw
from the shear zone is sufficiently slow, the deformin
material can become hot enough that its flow stress w
drop catastrophically, and the strain will become high
localized into anadiabatic shear band. Shaw and co-
workers [2] and Komanduriet al. [5,6,17] have observed
that this is the mechanism which causes segmented ch
to form. According to our model, this segmentation
caused by a sudden increase in the the displacement
ychip of the portion of material containing the local plasti
deformation zone, as a shear band forms inside the prim
shear zone. While this segmentation occurs, the lo
compressive stress unloads elastically, first inside the sh
zone and then further up the tool face, which in tur
causes the global shear stresst to decrease. Thus, plastic
flow ceases inside the primary shear zone, so that h
production also ceases, but cooling still takes place
convection and conduction. Soon, however, enough n
material passes through the primary shear zone for anot
buildup in stress and temperature to occur. As we will no
show, this provides the feedback in stress and tempe
ture which leads to oscillations in these fields inside th
shear zone.

By linearizing the model equations (5) about the equ
librium state (9) and computing the eigenvalues of the r
sulting system, it can be shown that the real parts of t
eigenvalues equal zero along theneutral stabilitycurve

h ­ fsj; e, nd ­ sj 1 j2edyfnsj 2 1d 2 ejsn 1 1dg ,

(10)

and ≠fy≠e . 0 for n . 0, ≠fy≠n , 0 for j .

1ys1 2 ed. To proceed further, values of the constitutiv
parameterse and n are required. Unfortunately, one o
the biggest difficulties in modeling plastic deformatio
at high strain rate is the lack of constitutive data fo
most materials. It is our hope that the present approa
to modeling will lead eventually to improved estimate
of constitutive parameters for materials of interest
machining. Here, we choose parameter values wh
have been determined from torsion tests at a strain rate
1600 s21 on HY-100 steel,e ­ 0.02 andn ­ 0.73 [14].
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These parameter values lead to the Hopf bifurcation cur
in Fig. 4. Thus, pointssj, hd below this curve correspond
to solutions of (5) which asymptotically approach th
steady state (9), while points above this curve correspo
to solutions of (5) which asymptotically approach a lim
cycle.

We estimate the other coefficients (6) and (7) in th
nondimensional model equations (5) as follows. We ha
already assumed thatdyL ø 1. Furthermore, for hard-
ened steel,r ø 8000 kgym3, cg ø 500 Jyskg Kd, x ø
50 WysmKd, ty ø 1.5 GPa. Which elastic modulus to
use forE is still an open problem; Young’s modulus is ap
proximately 200 GPa, while the shear modulus is appro
mately 80 GPa. Thus,tyyE ø 1022. From Fig. 2(a) we
estimate thathyd ø 1021. Thus, forT0 ø 300 K, we es-
timate thattyysrcgT0d andh are of the order of magni-
tude of 1, as is the leading coefficient in the definition o
j. We also estimate that4xysrcgd ø 5 3 1025 in the
second term in the sum which definesj. For h ø 3 mm,
y ø 1 mys, andf ø py6, we thus estimate thatj is of
the order of magnitude of10. For fixedh, asj decreases
with increasing cutting speedy, Fig. 4 indicates that a
Hopf bifurcation can realistically be expected for hardene
steel. For copper, on the other hand, if we make the re
sonable assumption that the parametere is still 0.02, and
go through the same exercise of estimatingj andh, then
even if n is larger than0.72, we find thath is at least
an order of magnitude too small for oscillations to occu
These predictions of the model are consistent with what
observed for steel and copper in actual machining ope
tions. Once oscillations occur in the workpiece materia
we no longer expect the contact lengthL to remain con-
stant, i.e., we expect thatL scales with the cutting speedy.
We are currently developing a reaction-diffusion mode
based on the ideas outlined here, to study this.

FIG. 4. (a) Bifurcation curve (10) withe ­ 0.02 and n ­
0.73. (b) Shear stresst (upper curve) and temperatureT
(lower curve) vs timet from simulations of Eqs. (5) with zero
as initial data ande ­ 0.02, n ­ 0.73, h ­ 2.0 (left to right)
j ­ 30—steady state,j ­ 15—small amplitude oscillations,
j ­ 10—relaxation oscillations.
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In conclusion, we have developed a new lumped
parameter model for orthogonal cutting of metals. Th
key idea has been the introduction of the concept of
local deformation zone. We have shown that the mod
explains the observed formation of segmented chips
higher cutting speeds in hardened steel as a supercritic
Hopf bifurcation, and it also explains why segmentation
is rarely observed during the machining of copper.

It is a pleasure to acknowledge helpful conversation
with Chris Evans, Tim Whalen, and Tim Wright.
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