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Nonlinear Dynamics Model for Chip Segmentation in Machining
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We have developed a new model for chip formation in machining which includes a mechanism
for thermomechanical feedback. This leads to an interpretation of metal cutting as a process which
is similar in many ways to an open chemical reactor. As the cutting speed is increased, there is a
Hopf bifurcation, which explains the observed change from continuous to segmented chip formation.
[S0031-9007(97)03568-0]

PACS numbers: 62.20.Fe, 81.20.Wk, 82.40.Bj

High-speed machining encompasses a number afed shear which are almost equally spaced; see Fig. 2(a).
rapidly developing manufacturing processes. BecausEollowing the onset of segmentation, the spacing between
these are nonlinear and dynamic in nature, optimizatiothe segments increases monotonically with cutting speed,
by any means other than trial and error (not uncommon imnd approaches some limiting value [4], as indicated in
industry today) requires a fundamental understanding ofig. 2(b). Understanding the onset of this behavior is of
their physics and new models to predict behavior. Herepractical importance, because discontinuous chip forma-
we consider single-point orthogonal machining, in whichtion is correlated with increased tool wear, decreased tool
the tool has a plane face and a single straight cutting eddéde, degradation of the workpiece surface finish, and less
normal to its direction of motion, and the depth of eut accuracy in the machined part [5]; for all these reasons,
is small in comparison to the length of the cutting edgediscontinuous chip formation may limit the rate at which
Observations in many laboratories over the past fiftymetal can be machined [6]. The data for hardened steel in
years or so have led to the following conventional modeFig. 2 suggest that a bifurcation from steady state to oscil-
of the mechanics of this process [1,2]. As indicated inlatory behavior takes place as the cutting speed increases.
Fig. 1, the metal cutting occurs by concentrated sheaHowever, there is no mechanism for oscillations to occur in
along a distinct narrow region which is approximately either the conventional model described above, or in more
planar, called therimary shear zonethis extends from recent models of segmented chip formation.
the cutting edge to the work surface ahead of the tool In what follows, we present a theory which supports the
and is inclined at an anglé. The material is unstressed hypothesis that the change from continuous to segmented
and does not deform until it enters the shear plane. As ithip formation is due to a Hopf bifurcation. We propose
approaches this thin layer of thicknelssat cutting speed to modify the conventional model for orthogonal cutting
v, the stress in the material builds up rapidly. The sheaby introducing the concept of bbcal deformation zone
strain is initially elastic, but the yield stress is exceededn the workpiece material, based on the observation that
quickly, and plastic flow sets in. Large permanentthe tool distributes a load in the workpiece a certain
deformation takes place within the shear zone, and thudistance back from the primary shear zone. As we will
a chip separates from the workpiece and moves up thshow, this leads to an interpretation of metal cutting as a
tool face. Although additional plastic deformation, calledthermomechanical feedback process, which is similar in
secondary shearakes place as the metal moves up themany ways to an open chemical reactor. Recent work by
face of the tool, it is treated as a simple friction procesdMolinari and Dudzinski [7] is related to our approach;
in the conventional model, with a chip of thicknesshowever, they do not consider the connection between
b = d/sin¢g assumed to move up the tool face like alocal stresses induced on the workpiece material by the
friction slider with constant coefficient. (Some more tool and the global shear stress in the primary shear zone,
recent models include a secondary shear zone [3].) and they treat the deformation inside the shear zone as

The model just described is based upon the assumpticadiabatic. Also, Marusich and Ortiz [8] have recently
that the chip forms by a process of steady homogeneougported the results of some large-scale Lagrangian finite-
shear, and such a chip is calledntinuous In many met- element simulations of orthogonal cutting; just as with
als, however, increases in the cutting speed, and hence aladaboratory experiment, we view our simpler modeling
in the strain rate, result in the formation oflscontinuous, approach as an attempt to gain insight into the results of
or segmented;hip characterized by bands of highly local- such studies.
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compression. Thus, there is an elastic stEsshich is
proportional to the compressive strains, = Ee, where

e = (Au)/(d/sing) andE is an elastic modulus, which
will be discussed further below. Differentiating with
respect to time, we get the following evolution equation

for 3,
d¥ _ Esing d(Au) _ Esing ~
dt  d a4 (Vtool — Vehip),> (1)

where, in the assumed geometty,, = v COS¢.

Now, the local compressive stres¥ causes a shear
stressr to build up in the primary shear zone, as follows.
Ignoring small inertial terms, balance of momentum

Idepth of cutd requires that>Lw = 7wd/sin¢. Assuming thatL is
constant, time differentiation of this equation leads to an
cutting speed v evolution equation for the shear stress,
dr _ Lsing d3% _ ELSIi ¢

workpiece

(vCose — venip) -

)

Initially, this shear stress will cause the material in the
primary shear zone to deform elastically, so thaf;, =
0, but eventuallyr will exceed the yield stress, of

As indicated in Fig. 3, we assume the tool is in contacthe material, and plastic flow will take place inside the
with the workpiece material over an arda= Lw, where  primary shear zone in order to dissipate the excess shear
w is the width of contact and. is the contact length  energy. This will take place rapidly at high cutting speeds
Experimental observations indicate thats of the same wv. With the onset of irreversible plastic deformation
order of magnitude as the depth of a#t[2,3], so we inside the primary shear zone,;, will become positive,
make this assumption, also. In order to highlight theand there will be a plastic strain rate’ in the primary
essential physical argument, we simplify the geometryshear zone given by” = wveyip/h. Thus, we may rewrite
by assuming that$p = @, and we neglect friction as Eq. (2) in the following form:
the chip slides up the tool face. Thus, we assume
the too_l exerts a force on tht_e chip over the contact dr/dt = ELSir? ¢(vcose — y"h)/d>
areaA in the direction perpendicular to the face of the ) L )
tool, which causes the chip to deform. In the present = ELvsin’ ¢ cos (1 = 77 /yav)/d?,

development, we treat this deformation process as a local i o )
where the average strain rate inside the primary shear zone

is defined byy,,, = v cos¢ /h.

At d  dt d2

FIG. 1. Primary shear zone model of chip segmentation.
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FIG. 2. (a) Polished and etched chip cross section obtained
from cutting hardened steel at speeds ranging from 0.7 to
4.3 n/s, witha = —10°, andd = 30 um. (b) Mean segment

spacing vs cutting speed. FIG. 3. Local deformation zone.
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Confining our attention to the primary shear zone,which has been observed at intermediate speeds in some
we assume the following heat balance equation for thenetals [4].)

temperature: When Eg. (8) is inserted into the model evolution
dT Ty — T To— T . equations (5), the resulting system closely resembles
Py — P hjwsing) | X k2 Ty models of open chemical reactors [15]. In particular,

(4) the second equation is similar to the balance of energy

i o equation for a chemical combustion process with large
Here, T is absolute temperature inside the zom®, activation energye!. The equilibrium state of the
denotes the absolute temperature of the material entenn@stem is given byr(¢), T(1)) = (=%, T*), where

the shear zonep is the (assumed constant) density of . y
the workpiece materiale, is its specific heat capacity T =¢/(E+wvn), T =n/+wvn). (9
at constant elastic configuration [9], apdis its thermal  This describes steady-state chip formation. Loss of sta-
conductivity. Equation (4) states that the rate of changility of this equilibrium state is thus an indication of the
of thermal energy in the shear zone is governed bynset of the formation of segmented chips.
convection, i.e., net inflow divided by residence time in As pointed out by Recht [16], if the rate of plastic strain
the zone; diffusion, which is approximated by a secondbecomes sufficiently large, and the transport of heat away
order difference over the shear zone, assuming that thigom the shear zone is sufficiently slow, the deforming
cut chip material exiting the shear zone is at the samenaterial can become hot enough that its flow stress will
temperature as at the zone center; and heat production klyop catastrophically, and the strain will become highly
plastic working, assuming for simplicity that all of this localized into anadiabatic shear band Shaw and co-
work is dissipated as heat [9,10]. A workers [2] and Komandutét al. [5,6,17] have observed
Nondimensionalizing temperature by7 = (T — that this is the mechanism which causes segmented chips
To)/Ty, shear stress by = 7/7,, length byy = y/d,  to form. According to our model, this segmentation is
and time by 7 = [(ELvsir® ¢ cose)/(7,d*)]t, then caused by a sudden increase in the the displacement rate
dropping the hats, the equations governing evolution ob.;, of the portion of material containing the local plastic
shear stress and energy balance in the primary shear zodeformation zone, as a shear band forms inside the primary
can be written in the form shear zone. While this segmentation occurs, the local
dr/dt =1 — ®, dT/dt = —¢T + nrd, (5) compressive stress unloads elastically, first inside the shear
zone and then further up the tool face, which in turn
causes the global shear strest® decrease. Thus, plastic
flow ceases inside the primary shear zone, so that heat
& =27,d*[1 + 4x/(pcyhvsing)]/(ELhsin2¢), production also ceases, but cooling still takes place by
convection and conduction. Soon, however, enough new
(6) material passes through the primary shear zone for another
n = rf,dz/(pc,/TthEsinz b). (7)  buildupin stress and temperature to occur. As we will now

show, this provides the feedback in stress and tempera-

We note that, as the cutting spged Increases, the.hefﬂre which leads to oscillations in these fields inside the
transfer parametef decreases, while the heat productlonShear zone

parametem remains constant. By . : ,
o . ; i . . y linearizing the model equations (5) about the equi-
What is still required is aonstitutive equationwhich librium state (9) and computing the eigenvalues of the re-

specif_ies the irrever_sible pIasFic ﬂOW. response of th ulting system, it can be shown that the real parts of the
material. Since plastic flow at high strain rate is therma”yeigenvalues equal zero along theutral stabilitycurve

activated, it can be modeled by Arrhenius kinetics [11]. R
In nondimensional variables, a typical phenomenologicaln = f(§;€,v) = (£ + €7€)/[v(€ — 1) —e&(v + 1],
Arrhenius model for metals is given by [11-14] (10)

O(r,T) = expllr — (1 = »D)/[e(l + DI} 8)  and 9f/se >0 for » >0, affov <0 for &>
Here, € is the strain-rate sensitivityof the material, and 1/(1 — €). To proceed further, values of the constitutive
v is thethermal-softeningparametere << 1 andv is of  parameters and v are required. Unfortunately, one of
the order of magnitude of. When 7 is less than the the biggest difficulties in modeling plastic deformation
temperature-modified yield valuE =1 — vT,® « 1, at high strain rate is the lack of constitutive data for
so that essentially no plastic flow takes place. Howevenmost materials. It is our hope that the present approach
as 7 approachesY, ® becomes significant. (As in to modeling will lead eventually to improved estimates
the conventional model of machining, strain hardeningof constitutive parameters for materials of interest in
is neglected here; this important effect increases thenachining. Here, we choose parameter values which
dimension of the phase space of our model, and thus mayave been determined from torsion tests at a strain rate of
account for more complex aperiodic chip segment spacing600 s~! on HY-100 steele = 0.02 andv = 0.73 [14].

where ® = y?/v,,, denotes the dimensionless plastic
strain rate, and
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These parameter values lead to the Hopf bifurcation curve In conclusion, we have developed a new lumped-
in Fig. 4. Thus, point$£, 1) below this curve correspond parameter model for orthogonal cutting of metals. The
to solutions of (5) which asymptotically approach thekey idea has been the introduction of the concept of a
steady state (9), while points above this curve corresponiibcal deformation zone. We have shown that the model
to solutions of (5) which asymptotically approach a limit explains the observed formation of segmented chips at

cycle.

higher cutting speeds in hardened steel as a supercritical

We estimate the other coefficients (6) and (7) in theHopf bifurcation, and it also explains why segmentation
nondimensional model equations (5) as follows. We havés rarely observed during the machining of copper.

already assumed that/L = 1. Furthermore, for hard-
ened steelp =~ 8000 kg/m?, ¢, = 500 J/(kgK), y =

50 W/(mK), 7, = 1.5 GPa. Which elastic modulus to
use forE is still an open problem; Young’s modulus is ap-
proximately 200 GPa, while the shear modulus is approxi
mately 80 GPa. Thus;,/E =~ 10~2. From Fig. 2(a) we
estimate that/d =~ 10~!. Thus, forT, = 300 K, we es-
timate thatr,/(pc,Ty) andn are of the order of magni-
tude of 1, as is the leading coefficient in the definition of
£. We also estimate thaty /(pc,) =5 X 1072 in the
second term in the sum which defings Fori = 3 um,

v = 1 m/s, and¢ = /6, we thus estimate that is of
the order of magnitude dfo. For fixedn, as¢ decreases
with increasing cutting speed, Fig. 4 indicates that a
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