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First- and Second-Order Transitions between Quantum and Classical Regimes
for the Escape Rate of a Spin System
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We have found a novel feature of the bistable large-spin model described by the Hamiltonian
H = —-DS? — H,S,. The crossover from thermal to quantum regime for the escape rate can be
either first(H, < §D/2) or secondSD/2 < H, < 28D) order, that is, sharp or smooth, depending on
the strength of the transverse field. This prediction can be tested experimentally in molecular magnets
like Mnj;Ac. [S0031-9007(97)04645-0]

PACS numbers: 75.45.+j, 75.50.Tt

Transitions between two states in a bistable system capossess both first- and second-order transitions between
occur either due to the classical thermal activation or vighe classical and quantum behavior of the escape rate.
quantum tunneling. A rigorous study of that problem wasThe order of the transition in these systems can be
begun by Kramers [1] and WKB [2—4], and a review of controlled by external magnetic field.
the progress that followed can be found in Ref. [5]. At Consider a spin system described by the Hamiltonian
high temperature the transition rate follows the Arrhenius — _pe2 _
law, ' ~ exp(—AU/T), with AU being the height of }[ DSZ_ HXSXT @
the energy barrier between the two states. In the limifvhere S > 1. This model is generic for problems of
of T — 0, the transitions are purely quantunf, ~  SPin 'gunnellng studied by d|ffere_nt methods [10-15]. It
exp(—B), with B independent on temperature. BecausdS believed to be a good approximation for the molecular
of the exponential dependence of the thermal rat’pn Magnet MmAc of spin§ = 10, intensively studied in the
the temperaturel, of the crossover from quantum to last few years (see, e.g., Ref. [16]). In the quasiclassical

thermal regime can be estimated ag)g) — AU/B. For approximation the transition rate is given by
a quasiclassical particle in a potentidlx), Goldanskii I ~ f dE W(E)e~E~Emin)/T 2
[6] noticed the possibility of a more accurate definition, (E)e ’ )
Ty" = #/70, wherer, is the period of small oscillations whereW (E) is the probability of tunneling at an energy
near the bottom of the inverted potentiall/(x). Below  andE,,, corresponds to the bottom of the potential. This
Té ) thermally assisted tunneling occurs from the excitedorobability is defined via the imaginary-time action
levels, that reduces to theE gunneling from the ground-state W(E) ~ ¢ 5B 3)

5 .
level atT = 0. Above T,  quantum effects are small ,,,
and the transitions occur due to the thermal activatioryv ith the accuracy to the exponent,

to the top of the barrier. Affleck [7] demonstrated that I~ ¢ Fmin/T (4)
the two regimes smoothly join af’ = T(?). Larkin  whereF,, is the minimum of the effective “free energy”
and Ovchinnikov [8] called this situation the second- F=E+ TS(E) — Emp 5)

order phase transition from classical to quantum behavior.

This means that fol" written asT’ ~ exp(—AU/Te),  Withrespecttat. -

the dependence of both.;; and its first derivative on ~ In order to obtainS(E) for the Hamiltonian (1) we
T are continuous afl — Téz). This situation is not will use the method of mapping the spin problem onto

generic, however. The transition between the two regime par_ticle_ prqblem [12,14,17,18]. The equivalent particle
can also be of the first order [8,9], i.e., more abrupt, amiltonian is
with dT./dT discontinuous at a certain temperature V2 ©6)

(1) %) . o . H=-—+UkK),

To > Ty, . Chudnovsky derived the criterion allowing 2m

one to establish whether first- or second-order transitiomvhere

takes place, based on the shape of the potefifial). 1\2

Commonly studied potentials/ = —x2 + x* and U = Ux) = <S + 3) D(h; sint? x — 2h, coshy), (7)
—x? + x? yield the second-order transition. Physically

relevant potentials which would exhibit the first-order @"

transitions were not known. In this Letter we show H,

that spin systems readily accessible in the experiment "m=5p hy = 2S + )D "~ (8)
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In the future we shall neglect/2 in comparison to where@q = +/|U"(0)|/m is the instanton frequency [6,7].

S > 1. It is convenient to introduce dimensionless temperature
The imaginary-time action is then given by the WKB and energy variables
expression T Ueo — E
max

0= —, P=—77——. (14)
dx+UKx) — E, (9) T(gz) Umax = Unin

The effective free energy (5) near the top of the barrier

where *x(E) are the turning points for the particle oscil- (P < 1) can be calculated with the use of Egs. (9) and
lating inside the inverted potential U(x). The period of (11) and reads

these oscillationsr,(E) = —dS(E)/dE, depends on en-

x(E)
S(E) = 2(2m)'/? f (E

—x(E)

ergy. Minimization of (5) gives FP)  _yy-1p+ i(l _ L)PZ
1 Umax = Umin 8 4hy
Tp(E) = T (10) 36 1 1 ;3 4
y - o + —(1- + —= PP + 0(PY).
the condition familiar from the quantum statistics [7,8,19]. 64 3h, 16h2
It determines the instanton trajectory that dominates the (15)

transition rate at a temperatuire The analogy with the Landau theory of phase transitions

The dependence af, (E) on E determines the kind of described %{F — 4y + byt + c¢/6y novF\)/ becomes ap- ’
crossover from quantum tunneling to thermal activation t The factor in front of (th ,L d Hicient
[9]. If 7, monotonically increases with the amplitude of parent. e factor in front oP (the Landau coefficien

oscillations, i.e., with decreasing energy the transition a) changes the sign at the phase transition temperature

is of second order. This kind of crossover has beed = Ty’ The factor in front ofP? (the Landau coef-
intensively studied, including the case of tunneling withficient b) changes the sign at the field valug = 1/4
dissipation [20-24]. If, however, the dependence ofdetermining the phgge boundary between the flrst.— and the
7,(E) is nonmonotonic, the first-order crossover takessecond-order transitions, as has been already noticed from
place. Let us demonstrate that both kinds of the crossovéfd- (11)- The factor in front oP* (the Landau coefficient
exist for our spin model, depending on the strength of th&) remains always positive. The numerically computed

transverse field. Expanding (7) near= 0, one obtains dependence of' on P for the entire range of energy is
plotted in Fig. 1.

U(x) = U(0) + SzD[—hx(l — hy)x? At h, = 0.3 [Fig. 1(a)] the minimum of F remains
Umax — Umin forall T > Téz). BeIowTéz) it continuously
. E(h B L>x4 4 0(x6):| shifts from the top to the bottom of the potential as tem-
3V 4 ' perature is lowered. This corresponds to the second-order

(11) transition from thermal activation to thermally assisted
tunneling. Ath, = 0.1 [Fig. 2(b)], however, there can be
one or two minima ofF, depending on temperature. The
crossover between classical and quantum regimes occurs
Umax = Umin = S*D(1 — h,)%. (12)  when the two minima have the same free energy, which
For h, > 1/4 the fourth-order term in (11) is positive; for 4, = 0.1 takes place aTél) = 1.078T(§2).
i.e.,U(x) is of the form—x? + x*. The inverted potential The crossover temperature for the escape rate is fre-
—U(x) is hence of the typec> — x*, which results in quently estimated by equating the ground-state tunneling
the increase ofr, with the oscillation amplitude (i.e., exponent to that of thermal activation:

The second-order term in (11) is negative for < 1,
which corresponds to the existence of the energy barrier

with lowering the energyE) and to the second-order Ui — Un
transition [9]. Ath, < 1/4 the anharmonicity of- U (x) S(Epottom) = B = —2— 5 (16)
has the opposite sign;U(x) ~ x> + x*, which leads Ty

to the decrease of, when lowering E for energies The ground-state tunneling exponehtgiven by Eq. (9)

below the top of the barrier. However, with further can be analytically calculated [10], which together with
lowering of E the period 7, begins to increase and gq. (12) yields

diverges logarithmically fo approaching the bottom of

ARV
the potential. This nonmonotonic behaviorf(E) leads T(g()) = sD (= )
to the first-order transition from the thermally activated 4 In L+l —h3\ JT= 72
escape to the quantum escape [9]. hy x
In the case of the second-order transition the crossover ] (17)

occurs at temperature —_ hy <1,

o @  SD = 5D ] Inf2/(eh)]

Ty = — = —/h:(1 — hy), 13 4
0 =5 = ( ) (13) 817(1 —h)V2, 1 - h < 1.
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FIG. 1. Effective free energy for the escape rate: k)=
H,/28D = 0.3, second-order transition; (b}, = 0.1, first-
order transition.

One can see from Fig. 1(b) thmgo) somewhat underes-
timates the crossover temperature. kor= 0.1 one has

T(go) 1061T(()2) < Tél). The estimationTéO) becomes,
however, accurate in the limit of small,. The depen-
dence of the crossover temperatdigon the transverse
field in the whole range,0 < h, < 1, is presented
in Fig. 2.
cape rate can be conveniently written in the form
I' ~ exd—(Umax — Umin)/Tett(T)], where the depen-

dence of the effective temperature @nis presented in

Fig. 3 for differenti,. It can be seen from Fig. 3 that the

most significant difference between the crossover tem-

peratureTo of Eg. (16) and the actual crossover tem-
peratureT, arises in the limit of a small barrier, that
is, at h, — 1. The former is described by the inter-
section of the dotted Arrhenius line with the horizontal
line corresponding toT(T)/Ty at zero tempera-
ture. From Eqgs. (13) and (17) far, — 1 one obtains

701 = 37/(8v2) =~ 0.833.

The temperature dependence of the es- 10

nTy/(SD)
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FIG. 2. Dependence of the crossover temperafiyen the
transverse field.

As follows from Fig. 3, the difference between the
curves T (T) describing the first- and second-order
crossover is quite dramatic. It must be easily observed
in experiment if the appropriate system is found. Very
recently experiments on individual small magnetic par-
ticles with § ~ 10°-10° have become possible [25].
these experiments the barrier is lowered by tuning the
magnetic field to the critical value. In our model this is
the case of the second-order transition. In order to get
the first-order transitiond, must be lower thand,/4,
whereH, = 28D /g up is the anisotropy field. This case
requires a moderate spbhin order to provide a significant
escape rate. The Hamiltonian (1) has been found to
be a good model for MpAc [16], S = 10. In this
case the quantization of spin levels becomes important.

Tes/ Ty
1.1 ' ' ' ' 1.1

h,=0.01 .
0.9+ ~0.9

0.999 )
0.8 T T T T T T 0.8
04 0.6 0.8 1.0
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FIG. 3. Dependences of the effective temperatiisg on T
for the different values of the transverse field.
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