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First- and Second-Order Transitions between Quantum and Classical Regimes
for the Escape Rate of a Spin System

E. M. Chudnovsky* and D. A. Garanin†

Department of Physics and Astronomy, City University of New York-Lehman College,
Bedford Park Boulevard West, Bronx, New York 10468-1589
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We have found a novel feature of the bistable large-spin model described by the Hamiltonia
H  2DS2

z 2 HxSx . The crossover from thermal to quantum regime for the escape rate can b
either firstsHx , SDy2d or secondsSDy2 , Hx , 2SDd order, that is, sharp or smooth, depending on
the strength of the transverse field. This prediction can be tested experimentally in molecular magn
like Mn12Ac. [S0031-9007(97)04645-0]
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Transitions between two states in a bistable system
occur either due to the classical thermal activation or v
quantum tunneling. A rigorous study of that problem wa
begun by Kramers [1] and WKB [2–4], and a review o
the progress that followed can be found in Ref. [5]. A
high temperature the transition rate follows the Arrheni
law, G , exps2DUyTd, with DU being the height of
the energy barrier between the two states. In the lim
of T ! 0, the transitions are purely quantum,G ,
exps2Bd, with B independent on temperature. Becau
of the exponential dependence of the thermal rate onT ,
the temperatureT0 of the crossover from quantum to
thermal regime can be estimated asT

s0d
0  DUyB. For

a quasiclassical particle in a potentialUsxd, Goldanskii
[6] noticed the possibility of a more accurate definition
T

s2d
0  "yt0, wheret0 is the period of small oscillations

near the bottom of the inverted potential,2Usxd. Below
T

s2d
0 , thermally assisted tunneling occurs from the excit

levels, that reduces to the tunneling from the ground-st
level at T  0. Above T

s2d
0 quantum effects are smal

and the transitions occur due to the thermal activati
to the top of the barrier. Affleck [7] demonstrated tha
the two regimes smoothly join atT  T

s2d
0 . Larkin

and Ovchinnikov [8] called this situation the second
order phase transition from classical to quantum behav
This means that forG written asG , exps2DUyTeffd,
the dependence of bothTeff and its first derivative on
T are continuous atT  T

s2d
0 . This situation is not

generic, however. The transition between the two regim
can also be of the first order [8,9], i.e., more abrup
with dTeffydT discontinuous at a certain temperatu
T

s1d
0 . T

s2d
0 . Chudnovsky derived the criterion allowing

one to establish whether first- or second-order transit
takes place, based on the shape of the potentialUsxd.
Commonly studied potentialsU  2x2 1 x4 and U 
2x2 1 x3 yield the second-order transition. Physicall
relevant potentials which would exhibit the first-orde
transitions were not known. In this Letter we sho
that spin systems readily accessible in the experim
0031-9007y97y79(22)y4469(4)$10.00
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possess both first- and second-order transitions betw
the classical and quantum behavior of the escape ra
The order of the transition in these systems can
controlled by external magnetic field.

Consider a spin system described by the Hamiltonian

H  2DS2
z 2 HxSx , (1)

where S ¿ 1. This model is generic for problems o
spin tunneling studied by different methods [10–15].
is believed to be a good approximation for the molecul
magnet Mn12Ac of spinS  10, intensively studied in the
last few years (see, e.g., Ref. [16]). In the quasiclassi
approximation the transition rate is given by

G ,
Z

dE W sEde2sE2EmindyT , (2)

whereW sEd is the probability of tunneling at an energyE
andEmin corresponds to the bottom of the potential. Th
probability is defined via the imaginary-time action

W sEd , e2SsEd. (3)

With the accuracy to the exponent,

G , e2FminyT , (4)

whereFmin is the minimum of the effective “free energy”

F ; E 1 TSsEd 2 Emin (5)

with respect toE.
In order to obtainSsEd for the Hamiltonian (1) we

will use the method of mapping the spin problem on
a particle problem [12,14,17,18]. The equivalent partic
Hamiltonian is

H  2
=2

2m
1 Usxd , (6)

where

Usxd 

µ
S 1

1
2

∂2

Dsh2
x sinh2 x 2 2hx coshxd , (7)

and

m ;
1

2D
, hx ;

Hx

s2S 1 1dD
. (8)
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In the future we shall neglect1y2 in comparison to
S ¿ 1.

The imaginary-time action is then given by the WKB
expression

SsEd  2s2md1y2
Z xsEd

2xsEd
dx

q
Usxd 2 E , (9)

where6xsEd are the turning points for the particle oscil-
lating inside the inverted potential2Usxd. The period of
these oscillations,tpsEd  2dSsEdydE, depends on en-
ergy. Minimization of (5) gives

tpsEd 
1
T

, (10)

the condition familiar from the quantum statistics [7,8,19
It determines the instanton trajectory that dominates t
transition rate at a temperatureT .

The dependence oftpsEd on E determines the kind of
crossover from quantum tunneling to thermal activatio
[9]. If tp monotonically increases with the amplitude o
oscillations, i.e., with decreasing energyE, the transition
is of second order. This kind of crossover has bee
intensively studied, including the case of tunneling wit
dissipation [20–24]. If, however, the dependence
tpsEd is nonmonotonic, the first-order crossover take
place. Let us demonstrate that both kinds of the crosso
exist for our spin model, depending on the strength of th
transverse field. Expanding (7) nearx  0, one obtains

Usxd > Us0d 1 S2D

∑
2hxs1 2 hxdx2

1
hx

3

µ
hx 2

1
4

∂
x4 1 Osx6d

∏
.

(11)

The second-order term in (11) is negative forhx , 1,
which corresponds to the existence of the energy barrie

Umax 2 Umin  S2Ds1 2 hxd2. (12)

For hx . 1y4 the fourth-order term in (11) is positive;
i.e.,Usxd is of the form2x2 1 x4. The inverted potential
2Usxd is hence of the typex2 2 x4, which results in
the increase oftp with the oscillation amplitude (i.e.,
with lowering the energyE) and to the second-order
transition [9]. Athx , 1y4 the anharmonicity of2Usxd
has the opposite sign,2Usxd , x2 1 x4, which leads
to the decrease oftp when lowering E for energies
below the top of the barrier. However, with furthe
lowering of E the period tp begins to increase and
diverges logarithmically forE approaching the bottom of
the potential. This nonmonotonic behavior oftpsEd leads
to the first-order transition from the thermally activate
escape to the quantum escape [9].

In the case of the second-order transition the crossov
occurs at temperature

T
s2d
0 

ṽ0

2p


SD
p

q
hxs1 2 hxd , (13)
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whereṽ0 
p

jU 00s0djym is the instanton frequency [6,7]
It is convenient to introduce dimensionless temperatu
and energy variables

u ;
T

T
s2d
0

, P ;
Umax 2 E

Umax 2 Umin
. (14)

The effective free energy (5) near the top of the barr
sP ø 1d can be calculated with the use of Eqs. (9) an
(11) and reads

FsPd
Umax 2 Umin

> 1 1 su 2 1dP 1
u

8

µ
1 2

1
4hx

∂
P2

1
3u

64

µ
1 2

1
3hx

1
1

16h2
x

∂
P3 1 OsP4d .

(15)

The analogy with the Landau theory of phase transition
described byF  ac2 1 bc4 1 cc6, now becomes ap-
parent. The factor in front ofP (the Landau coefficient
a) changes the sign at the phase transition tempera
T  T

s2d
0 . The factor in front ofP2 (the Landau coef-

ficient b) changes the sign at the field valuehx  1y4
determining the phase boundary between the first- and
second-order transitions, as has been already noticed f
Eq. (11). The factor in front ofP3 (the Landau coefficient
c) remains always positive. The numerically compute
dependence ofF on P for the entire range of energy is
plotted in Fig. 1.

At hx  0.3 [Fig. 1(a)] the minimum ofF remains
Umax 2 Umin for all T . T

s2d
0 . BelowT

s2d
0 it continuously

shifts from the top to the bottom of the potential as tem
perature is lowered. This corresponds to the second-or
transition from thermal activation to thermally assiste
tunneling. Athx  0.1 [Fig. 2(b)], however, there can be
one or two minima ofF, depending on temperature. Th
crossover between classical and quantum regimes oc
when the two minima have the same free energy, wh
for hx  0.1 takes place atT

s1d
0  1.078T

s2d
0 .

The crossover temperature for the escape rate is
quently estimated by equating the ground-state tunnel
exponent to that of thermal activation:

SsEbottomd ; B 
Umax 2 Umin

T
s0d
0

. (16)

The ground-state tunneling exponentB given by Eq. (9)
can be analytically calculated [10], which together wit
Eq. (12) yields

T
s0d
0 

SD
4

s1 2 hxd2

ln

√
1 1

p
1 2 h2

x

hx

!
2

p
1 2 h2

x

>
SD
4

8>><>>:
1

lnf2ysehxdg
, hx ø 1 ,

3
81y2

s1 2 hxd1y2, 1 2 hx ø 1 .

(17)
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FIG. 1. Effective free energy for the escape rate: (a)hx ;
Hxy2SD  0.3, second-order transition; (b)hx  0.1, first-
order transition.

One can see from Fig. 1(b) thatT
s0d
0 somewhat underes-

timates the crossover temperature. Forhx  0.1 one has
T

s0d
0  1.061T

s2d
0 , T

s1d
0 . The estimationT

s0d
0 becomes,

however, accurate in the limit of smallhx . The depen-
dence of the crossover temperatureT0 on the transverse
field in the whole range,0 , hx , 1, is presented
in Fig. 2. The temperature dependence of the e
cape rate can be conveniently written in the for
G , expf2sUmax 2 UmindyTeffsT dg, where the depen-
dence of the effective temperature onT is presented in
Fig. 3 for differenthx. It can be seen from Fig. 3 that the
most significant difference between the crossover te
peratureT

s0d
0 of Eq. (16) and the actual crossover tem

peratureT0 arises in the limit of a small barrier, tha
is, at hx ! 1. The former is described by the inter
section of the dotted Arrhenius line with the horizont
line corresponding toTeffsT dyT0 at zero tempera-
ture. From Eqs. (13) and (17) forhx ! 1 one obtains
T

s0d
0 yT

s2d
0  3pys8

p
2 d ø 0.833.
s-
m

m-
-

t
-
al

FIG. 2. Dependence of the crossover temperatureT0 on the
transverse field.

As follows from Fig. 3, the difference between th
curves TeffsTd describing the first- and second-ord
crossover is quite dramatic. It must be easily obser
in experiment if the appropriate system is found. Ve
recently experiments on individual small magnetic p
ticles with S , 105 106 have become possible [25]. I
these experiments the barrier is lowered by tuning
magnetic field to the critical value. In our model this
the case of the second-order transition. In order to
the first-order transition,Hx must be lower thanHAy4,
whereHA ; 2SDygmB is the anisotropy field. This cas
requires a moderate spinS in order to provide a significan
escape rate. The Hamiltonian (1) has been found
be a good model for Mn12Ac [16], S  10. In this
case the quantization of spin levels becomes import

FIG. 3. Dependences of the effective temperatureTeff on T
for the different values of the transverse field.
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However, our statement regarding the possibility of fir
and second-order transitions remains valid [26].

The analogy with phase transitions in the temperat
dependence of the escape rate formally exists only in
limit of S ! `. For a finiteS, the transition from (2) to
(4) has the accuracy of1yS. Quantum corrections to the
escape rate aboveT0 [5] are of the same order. Therma
and quantum corrections will smoothen the first-ord
transition in the narrow temperature region close toT0.
Nevertheless, even forS  10, the difference between th
crossover at small and largeHx must be easily observable
The sharpness of the crossover between thermal
quantum regimes also depends on the strength of
dissipation. In the case of the low dissipation whi
is common for the magnetic systems, its effect on
crossover is small [5].

For Mn12Ac the anisotropy field is about 10 T. Th
crossover from thermal to quantum regime should, the
fore, switch from first to second order atHx . 2.5 T.
The crossover temperature is about 1 K [26]. The
ranges of field and temperature are easily accessibl
experiment. Note that similar effects may exist in t
Fe8 molecular magnet where the crossover from th
mal to quantum regime has been already observed [
This system, however, is described by the spin Hamilto
ian with the transverse anisotropy which requires sepa
theoretical investigation. We believe that the statem
made in this paper, regarding the possibility of first- a
second-order crossover from thermal to quantum regi
must be very general for spin systems.
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